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Abstract: Despite the vast amount of research on the analysis of existing and ongoing human activity, there are still significant
challenges worthy of address. In this paper, an innovative approach for human action recognition based on discriminative models
like CRFs, HCRFs and LDCRFs is proposed. To handle human action recognition, different number of window size ranging from 0
to 7 are applied using a compact computationally-efficient descriptor as statistical chord-length features (SCLF), inaddition to optical
flow motion features that derived from 3D spatio-temporal action volume. Our experiment on a standard benchmark action KTH, as
well as our IIKT dataset show that the recognition rate, and the reliability of human activity is improved initially as the window size
increase, but degrades as the window size increase further.Furthermore, LDCRFs is robust and efficient than CRFs and HCRFs, in
addition to problematic phenomena than those previously reported. It also can carry out without sacrificing real-time performance for a
wide range of practical action applications.
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1 Introduction

Automatically recognizing human activities into video
sequences is increasingly receiving research attentions
due to its great potentials for many applications in several
contexts and domains [1]. For example, action-based
Human Computer Interaction (HCI) is probably one of
the most widespread applications for human action
recognition, where no explicit actions as keystrokes and
mouse clicks are available to capture user input. Many
approaches deem an action as a sequence of observations.
For this view, an activity is represented by a sequence of
feature vectors picked up from video data; thus by
searching for such sequence, the activity can be
recognized. One notice via literature scanning that a
significant working body in action recognition focuses on
using feature descriptors and spatial-temporal key points.
Generally, there are several existing surveys within the
area of human action that can be classified using various
visual cues such as shape [2] and motion [3].

In [4], the authors present an approach to represent
and recognize the human movement. In their work, a
representation known as ”temporal templates” are
introduced to capture both motion and shape, represented
as evolving silhouettes. Two 2D images; motion energy
images and motion history images, instead of maintaining
3D spatio-temporal volumes, are employed as templates
for action recognition. In [5], the authors present an
approach that extracts spatio-temporal features at multiple
temporal scales to isolate and cluster actions. To deal with
the speed variations of actions, they analyze manifold
temporally scaled video volumes. Then local intensity
gradients are estimated and normalized for all points
within a 3D volume.Shectmanand Irani proposed an
approach to estimate motion flows for recognizing human
action from a 3D spatio-temporal correlation volume that
detects similarities among video segments [6]. Ahmad
andLeepresented a method for human action recognition
from multivites image sequences, which uses the
integrated shape and motion flow information with
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variability consideration [7]. In this method, a set of
multi-dimensional combined local-global optic flow and
shape flow feature vectors are employed for a set of
multi-dimensional Hidden Markov Model (HMM) for
modeling human action.

The major problem that arises here is that the
comparison of results obtained with different datasets can
be difficult. For this reason and to avoid this problem,
many other researchers [8,9,10,11,12,13,14,15,16,17],
have preferred to use some common datasets to evaluate
their systems effectiveness. In this case, the comparison
with other recognition methods turns out to be very
meaningful and just fair, as all techniques use the same
public dataset and the same experimental settings. In the
literature, there are a variety of benchmark datasets (e.g.,
KTH [18] and Weizmann [19], etc.) commonly used to
evaluate activity recognition algorithms. These datasets
differ notably from one to another in many aspects (e.g.,
the number of action categories, the number of actions per
category, the number of subjects performing actions,
camera viewpoints, illumination, occlusion, etc.).

Ke et al. proposed a novel appearance-based
framework that employs volumetric features for
efficiently analyzing video’s optical flow [8]. This
framework extends the rectangle feature into
spatio-temporal domain, in addition to sperate the optical
flow into the horizontal and vertical components and
compute volumetric features on each component.Fathi
and Mori developed an approach for action recognition
based on mid-level motion features, which are built from
low-level optical flow information and classified by a
binary AdaBoost classifier [14]. In [2], the authors
proposed an innovative approach for human activity
recognition based on affine-invariant shape representation
and Support Vector Machine (SVM) based feature
classification. Sminchisescuet al. [20] applied CRFs
model to recognize human motion activities and showed
improvement over the Hidden Markov Models (HMMs)
technique.

The main contribution in this paper is to investigate
humane action recognition based on an affine-invariant
shape descriptor like SCLF, in addition to mass center and
optical flow motion features. The extracted features from
3D spatio-temporal volumes are employed with varying
windows size for the discriminative models as CRFs,
HCRFs and LDCRFs to recognize the human activities in
image sequences. Our experiments on standard
benchmark action KTH and IIKT datasets show that the
proposed approach is more robust and yields promising
results when comparing favorably with those previously
reported throughout the literature without sacrificing
real-time performance. The rest of this paper is organized
as follows; Section 2 demonstrates the literature review.
Section 3 roads the systematic concept of the human
action recognition approach in three subsections.
Experimental results on human actions are described in
Section 4. Finally, Section 5 summaries and concludes
this paper.
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Fig. 1: An example of CLFs obtained through the division of a
shape contour into a finite number of arcs of equal length.

2 Related Literature

A good choice for classification approaches helps the
success of any system and makes it suitable for real-world
applications. In this paper, human actions are classified
according to discriminative models like CRFs, HCRFs
and LDCRFs, which enforce the vigorous view-invariant
task. So, this section is important in the context of
understanding the motivation of doing the research and
enables to investigate and compare the novel techniques.
The following two subsections briefly review the
statistical chord-length function and the Conditional
Random Fields classifier.

2.1 Chord-Length Function

The chord-length shape features are constructed using 1-D
chord-length functions. Formally speaking, the contourC

of a 2-D shape can be defined as an ordered sequence ofN
coordinate points [21,22];

C = {zt = (xt ,yt) ∈ R2|t = 0,1, ...,N−1} (1)

wherezt+N = zt as C is closed. The diameterD of the
shape is given by;

D =
N−1
max
i, j=0

‖zi − zj‖, i 6= j (2)

where‖.‖ is defined as the Euclidean distance between two
pointszi andzj . Let us take a pointzi ∈C , as starting point
and the contourC be traversed anti-clockwise and divided
into k> 1 sections, i.e.,̂zis1, ŝ1s2, ..., ŝk−1zi of equal length,
wheresj is the jth division point and 1≤ j < k. Thereby,
we havek−1 chords having the lengths;

L(i)
1 ,L(i)

2 , ....,L(i)
k−1 (3)

whereL(i)
j is the length of the chord̂zisj that measured as

the Euclidean distance between the two pointssj andzi , as
illustrated in Fig.1.

Let us now show that while the pointzi moves along

the contour, the chord length’sL(i)
j will vary accordingly.

This implies thatL(i)
j is a function ofzi . Here a function is
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called the Chord-Length Function (CLF), and shortly

denoted asL(i)
j . Thus we can getk − 1 CLFs, i.e.,

L1,L2, ....,Lk−1. Since these functions are obtained from
splitting the contour evenly and from moving the initial
point zi , along the contour, so that they guarantee to be
invariant to translation and rotation. However, the chord
length itself is not a scale invariant, but it can be made to
be invariant to scale by normalization using the contour
diameter D. The CLFs apparently meet the key
requirements for being a shape descriptor. Then we need
to scale all the CLFs to be within the same range (e.g. [0,
1]). By their definition, CLFs are obtained by segmenting
the contour evenly, so that it is easy to deduce that only
half of the CLFs,L1,L2, ....,Lk/2 are enough to describe
the shape adequately. It is germane to point to the fact that
both global and local features of shape can be captured by
using chord-lengths of different level. This is viewed as a
distinct competitive advantage of the CLF-based
descriptor over other shape descriptors.

2.2 Conditional Random Fields

Conditional Random Fields are undirected graphical
models that were developed for labeling sequential data
[23]. However, each label (state) corresponds to a specific
human action. Moreover, there is a trade-off in the
weights of each feature function for each state because
CRFs use a single exponential distribution to model all
reference labels of given observation [24]. The CRFs are
satisfied by defining the normalized each product of
potential function. In the case of chain-structured CRFs as
depicted in Fig.2, each potential function operates on
pairs of adjacent label variablesyi andyi+1.

Formally speaking, for each observation sequence
x = {x1,x2, ...,xm} such that each frame observationx j is
represented by a feature vectorφ(x j) ∈ Rd and a labely
that is a member of a setY of possible class labels, the
probability of label sequencey given observation
sequencex is calculated as;

p(y|x,θ ) =
1

Z(x,θ )
exp

( n

∑
i=1

Fθ (yi−1,yi ,x, i)
)

(4)

where parameterθ = (λ1,λ2, ...,λNf ;µ1,µ2, ...,µNg), Nf
represents the number of transition feature function,Ng
refers to the number of state feature function andn is the
length of observation sequencex. Fθ is defined as;

Fθ (yi−1,yi ,x, i) = ∑
f

λ f t f (yi−1,yi ,x, i)+∑
g

µgsg(yi ,x, i)

(5)
where t f (yi−1,yi ,x, i) is a transition feature function at
position i and i − 1. sg(yi ,x, i) refers to a state feature
function at positioni. λ f andµg represent the weights of
the transition and the state feature functions, respectively.
Z(x,θ ) is the normalized factor where it is calculated as

CRFs HCRFs LDCRFs

xm

y1 y2 ym

x1 x2 xm

h1 h2 hm

x1 x2 xm

y
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x1
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Fig. 2: Different type of discriminative models: CRFs, HCRFs
and LDCRFs. In these models,x j refers to thej th corresponding
observation value,h j is a hidden states that assigned tox j . y j
is the label ofx j where the gray circles represent the observed
variables.

follows;

Z(x,θ ) = ∑
y

exp
( n

∑
i=1

Fθ (yi−1,yi ,x, i)
)

(6)

Other approaches, including the hidden variables offer
several advantages over previous CRFs model. Although
the CRFs model the transition among actions and
overcome the weakness of directed graphical models,
which suffer from bias problem, it does not have the
ability to learn the internal sub-structure of action
sequences. Hidden Conditional Random Fields (HCRFs)
are the extension of CRFs that include hidden variables
[25,26]. HCRFs can automatically model the local
interconnection between labels (i.e. states) with hidden
variables, but it cannot model dynamics among states. On
the other sides, Latent-Dynamic Conditional Random
Fields (LDCRFs) can model the sub-structure of a state
and learn dynamic among states [27]. The LDCRFs
model combines the strengths of CRFs and HCRFs.
Furthermore, it can detect and recognize states from
un-segment data (Fig.2).

3 Proposed Methodology

In this section, the proposed approach for action
recognition is described. The main steps within the
framework are explained in detail along the following
subsections (Fig.3).

3.1 Preprocessing

Background subtraction is a widely used approach for
detecting the unusual motion in a scene, which involves
comparing each new frame to a designed model against
the scene background. It is worth mentioning that,
Gaussian Mixture Models (GMM) are an example of a
larger class of density models that have several functions
as additive components [28].

Formally speaking, LetXt be a pixel in the current
frame, andK is the number of distributions. Thus, each
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Fig. 3: Road map of the proposed approach for action
recognition.

Fig. 4: Foreground detection via background subtraction.

pixel can be modeled separately by a mixture ofK
Gaussian as follows;

p(Xt) =
K

∑
i=1

ωi,t ·η(Xt ;µi,t ;Σi,t) (7)

whereη refers to a Gaussian probability density function.
µi,t ,Σi,t and ωi,t represent the mean, covariance and an
estimate of the prior probability of theith component (i.e.
weighting function), respectively.

In our work, a constructive algorithm, which uses the
criteria of maximizing a likelihood function is employed
to decide the number of components automatically [28].
Additionally, the background is updated and optimized
based upon the minimization of error functionE (Eq.8).

E =−
N

∑
n=1

ln
( K

∑
i=1

η(X;µi ;Σi) ·ωi

)
(8)

where N represents the number of data pointsXn. By
applying a thresholdγ = 0.5, the background distribution
remains on top with the lowest variance. Finally, all pixels
X that match none of the components are best candidates
to be marked as foreground. An example from the results
of background estimation withK = 5 is shown in Fig.4.
For more details, the reader can refer to [29].

3.2 Feature Extraction

In this approach, a variety of local and global features are
used to describe the segmented silhouettes of moving
human body partsf (x,y, t). For shape (global) features,
the silhouette image sequences are considered with an
invariant descriptor such as statistical chord-length
feature. Additionally, the motion (local) features of
foreground image sequence which are extracted by the
trajectory of the motion centroid and optic flows are also
used. Thereby, the feature matrix of human action is
represented by the following equation;

Actionf eatures=

(
Gts

i Gts+1
i · · · Gte

i
Lts

i Lts+1
i · · · Lte

i

)
(9)

where Gi and Li refer to global and local feature,
respectively. The duration of feature’s action is the
difference between starting frame (ts) and ending frame
(te), where Gts

i ={gts
1 ,g

ts
2 , ...,g

ts
F1
} and Lts

i ={l ts1 , l
ts
2 , ..., l

ts
F2
}.

Thus, the combined feature of global and local features at
each frame isF1+F2.

3.2.1 Global Feature

Although the chord-length function has an ability to be
invariant with respect to translation, rotation, and scaling,
but it appears to be not compact enough. In addition, the
chord-length function may be changed because it
constantly depends on a reference point whereby the
shape border is parameterized. The reason of its
dependence is that the contour is closed, and any point on
the contour can be used as a reference point. To alleviate
such problems and for convenience, the meanµ j and
varianceσ j of the chord-length functionsL j , j = 1, 2, ...,
k/2 are estimated as;

µ j =
1
N

N−1

∑
i=0

L(i)
j , σ j =

1
N−1

N−1

∑
i=0

(L(i)
j − µ j)

2 (10)

Therefore, the chord-length features that are used as a
shape descriptor can be arranged in 1-D of sizek as
follows;

F = (µ1,σ1,µ2,σ2, ....,µk/2,σk/2)
T (11)

To get the final chord-length features of a given human
action, we firstly obtain the chord-length features of all
pose of that action. Shortly speaking, each action snippet
is temporally divided into a number of fuzzy states, each
represents a pose of the action, then the chord-length
features of an action pose is occurred by;

G j =
1
ρ j

ρ j

∑
t=1

ΨjFt , j = 1,2, ...,m (12)

whereΨj ∈ [0,1] is the fuzzy membership function that
defines the temporal slicej, ρ j is the total number of the
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chord-length feature vectors of the posej, andm is the
total number of time-slices. Accordingly, the final feature
vector of a given action can be constructed by catenating
all the descriptors of its temporal poses. The resulting
feature vectors are normalized to the integral value of
unity to achieve robustness to scale variations and to
reduce the influence of illumination. The normalized
feature vectors obtained can now be exploited as shape
descriptors for action classification and recognition.

3.2.2 Local Feature

The motion flow as the local flow of foregrounds is
characterized and stated by the center of gravity and optic
flow Li=[z(t),υop]

T as follows described;

Center of Silhouettes Motion (CM) The use of motion
information motivates us to fuse it with global features to
form the final CRFs classifier. The motion features
extracted here are based on calculating the centroidz(t)
that delivers the center of motion. Therefore, the features
υ(t) describing the general distribution of motion are
given by;

υ(t) = lim
n→∞

∆z(t)
∆ t

(13)

where 1
2

(
∑n

i=1xi ,∑n
i=1yi

)
are the spatial coordinates of

z(t) with respected to the total number of moving pixelsn
in the given frame. Such features have profound
implications, not only about the type of motion (e.g.,
translationally or oscillatory), but also about the rate of
motion (i.e. velocity). With these features, it would be
able to distinguish, for example, between an action where
motion occurs over a relatively large area (e.g., running)
and an action localized in a smaller region, where only
small parts of the body are in motion (e.g., waving either
one or two hands). It is worth mentioning that fusing
motion information with regular global features
consistently boosts action recognition (i.e., leads to an
overall increase in recognition rates).

Optic Flow It is being notice that related body parts
involve optical flow velocity. As, the person conducts the
action ”hand waving”, motion only involves the hand.
However, when the person conducts the action ”walking”,
the motion involves the whole body. Furthermore,
pruning of computed flow values appears to be a clue to
accurate flow fields, which in turn allows for better
motion estimation. Optical flow pruning involves two
passes, each based on the magnitude (Euclidean length)
of optical flow vectors to separate relevant from irrelevant
flow vectors [14]. In the first pass, all flow vectors whose
magnitudes are either relatively truly small or very large
are removed [30].

For this purpose, two predefined minimum and
maximum thresholds are used to control the filtering of
flow vectors. Briefly speaking, given two thresholdsρ1
and ρ2, a flow vectorυop = [x,y]T is only accepted as
valid if it satisfies the validity constraint:
ρ1 < ‖υop‖ < ρ2 where‖.‖ denotes the magnitude of the
flow vector with respect to the Euclidean metric;
otherwise, it is assumed to be a noisy flow component and
thus removed. For the second pass, a vectorυop is treated
as a valid flow component if the Euclidean distance
between the center of flow and the vector being analyzed
does not exceed a specific thresholdτ. Formally, this is
expressed as;

‖υop− z‖< τ (14)

where z is the centroid of the motion region. In our
experiments, the setting values ofρ1 = 5,ρ2 = 20 andτ at
25% of the average of image widthw and heighth;
ℓ= (w+h)/2 give an overall good pruning performance.

3.3 Classification

Throughout the classification stage, the action recognition
is handled according to three classifiers: CRFs, HCRFs
and LDCRFs to decide which one is the best in terms of
performance. The action recognition module matches the
tested human activity against the reference database, to
classify which class it belongs to. Thereby, the human
action sequence is recognized corresponding to the
maximal likelihood of all actions (i.e. labels)
accumulatively. The maximal label of CRFs model is the
action whose observation probability is the largest among
all the action’s labels. The following two subsections
briefly review the learning and the inferencing CRFs.

3.3.1 Learning CRFs Model

The parameterθ = (λ1,λ2, ...,λNf ;µ1,µ2, ...,µNg) is

determined from training dataD = {(x( j),y( j))}
Td
j=1,

wherex( j) is an observation sequence of training set,y( j)

is the corresponding label sequence for observation
sequencex(i) andTd is the number of training sequences.
The objective function to learn the parameterθ that
maximize the log-likelihood of training data is computed
by;

L(θ ) =
Td

∑
j=1

log p(y( j)|x( j),θ )

=
Td

∑
j=1

( n

∑
i=1

Fθ (y
( j)
i−1,y

( j)
i ,x( j), i)− logZ(x( j),θ )

)

(15)

Likelihood maximization can be performed using a
gradient ascent method the BFGS optimization technique
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of 300 iterations to converge [31] :

∂L(θ )
∂θ

=
Td

∑
j=1

( n

∑
i=1

∂Fθ (y
( j)
i−1,y

( j)
i ,x( j), i)

∂θ
−

∑
x

p(y|x( j))
n

∑
i=1

∂Fθ (yi−1,yi ,x( j), i)
∂θ

) (16)

Based on the above-mentionedsteps, HCRFs and LDCRFs
models have a similar computational complexity to fully
observable CRFs.

3.3.2 Inference CRFs Model

To compute the probabilityp(y|x,θ ) of label sequencey
given a new observation sequencex, a set of matrices is
computed [20,23,32]. To simplify some expressions,
special starty0 and stopyn+1 states are added. These
states are dummy. Suppose thatp(y|x,θ ) is given by5.
For each positioni in the observation sequence,Mi(x) is
|Y ×Y | matrix is defined as follows;

Mi(y
′,y|x) = exp

(
Fθ (y

′,y,x, i)
)

(17)

whereY = {y1,y2, ...,yl} is a set of label of the training
data.l is the number of the labels.y′ andy are the labels of
Sat timei. Using this notation, the conditional probability
of a label sequencey is computed as;

p(y|x,θ ) = ∏n+1
i Mi(yi−1,yi |x)

Z(x,θ )
(18)

The normalizationZ(x,θ ) is the entry of product of these
matrices:

Z(x,θ ) =
(n+1

∏
i=1

Mi(i)
)

start,stop
(19)

4 Experimental Results

To evaluate the proposed approach, two main experiments
were carried out, and the results we achieved were
compared with those reported by other state-of-the-art
methods. In order to provide an unbiased estimation of
the generalization abilities of the classification process,
the sequences, for each action, were divided into a
training set (two thirds) and a test set (one third). In this
work, CRFs, HCRFs and LDCRfs are trained using
gradient ascent with the BFGS optimization technique
with 300 iterations to converge. The training process is
more expensive ranging from 20 minutes to several hours
for models having longer windows of observations on a
standard desktop PC. On the contrary, inference (i.e.
recognition) is about as fast for all models in the order of
seconds for sequences of several frames (i.e. more than 20
frames in a sequence). In addition, inference process used

forward score of each sample to select the label with the
highest likelihood.

In an automatic action recognition task, there are three
types of errors called insertion, substitution and deletion.
The insertion error is occurred when the classifier detects
a nonexistent action. It is because the emission
probability of the current label for a given observation
sequence is equal to zero. A substitution error occurs
when the action is classified falsely (i.e. classifies the
human action as another action). This error is usually
happened when the extracted features are falsely
employed to other features. The deletion error happens
when the classifier fails to detect a meaningful action. In
order to calculate the recognition ratio, insertion errors
are totally not considered (Eq.20). However, insertion
errors are probably caused due to substitution and
deletion errors because they are often considered as a
strong decision in determining the meaningful actions.

Recognition ratio=
# recognized actions

# test actions
×100 (20)

Deletion errors directly affect the recognition ratio
whereas insertion errors do not. However, the insertion
errors affect the action recognition ratio directly. To
consider the effect of insertion errors, another
performance measure called reliability is estimated by the
following equation;

Reliability=
# correctly recognized actions

# test actions+# Inseration errors
×100

(21)
Furthermore, the action recognition accuracy is

measured according to different window size ranging
from 0 to 7 to decide the best in terms of recognition
results. A window size of zero means that the feature
matrix at the current frame is only used to construct the
input feature while the window size of three means that
the input feature matrix at each frame consists of seven
features, which contain the current frame, three preceding
frames and three future frames. So, multiple experiments
have been conducted with a variety of window sizes on
the proposed approach to empirically conclude the
optimal outcome of the system.

4.1 Experiment 1

In real-world scenarios, we decided to create our own
realistic action recognition dataset (hereinafter calledas
IIKT 1 action dataset) which is going to be publicly
available free of restrictions on use for action recognition
research on the Web very soon. This action database

1 IIKT is an acronym for the German expression: ”Institut
für Informations und Kommunikationstechnik”; the Institute for
Information Technology and Communications at OvG University
Magdeburg, Germany and is one of the largest engineering
schools in Germany.
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Walk                                  Jog                                    Run 

Box                                    Wave                                Clap 

Fig. 5: Sample frames form action sequences in the IIKT dataset.

contains a total of six action categories; three ”leg
actions” (i.e., walking, jogging, and running) and three
”arm actions” (i.e., boxing, hand-waving, and
hand-clapping). The video sequences were typically
acquired by a Canon IXUS 65 digital cameras at 30 FPS
with 640 × 480 pixels image resolution represented in
256 grayscale levels. Within the sequences, actions are
performed by six subjects; each subject was asked to wear
a different clothing item. Each action sequence was then
segmented into shorter video clips of 53 sec. duration,
which we termed ”action snippets”. Fig.5 shows example
frames from action sequences of different categories
represented in the IIKT dataset. In this work, a
motion-related descriptor based on optical flow analysis is
proposed. However, most optical flow computations turn
out to be sensitive to background noise, and changes in
scale and/or directionality of motion. Furthermore, the
number of moving pixels is subject to change with time.
Due to these restrictions, raw values of optical flow would
likely be less suitable or unsuitable as features for motion
analysis. In order to overcome these difficulties, the
characteristics of distribution of optical flow as featuresto
describe motion is used. As a matter of fact, one can see
that the motion activity of an individual moving in a scene
with a static background can be characterized fully by its
own self-induced optical flow profile. In Fig.6, samples
optical flow patterns in a sequence showing a person
performing actions of walking, boxing and clapping are
illustrated.

According to the above-mentioned discriminative
models, the human action accuracy is measured according
to different sliding window sizes ranging from 0 to 7
(Fig.7). It noted that the action recognition accuracy and
the reliabilities of CRFs, HCRFs and LDCRFs was
improved initially as the window size increase, but
degrades as a window size increase further. Generally, the
optimal window size of them was assigned to 4, where
multiple experiments have been conducted to empirically
conclude the optimum value on the outcome of the
system. From Fig.7, It is being noted that, the insertion,
substitution and deletion errors decrease sharply between

Walk                                  Box                                    Clap 

Fig. 6: Optical flow estimation results for a real-world video
sequence showing a single person performing various actions,
i.e. walking, boxing and clapping from left to right, respectively.

a window size =0 and window size=4. However, deletion,
insertion and substitute errors begin to increase after
window size = 4. Moreover, the system can deal with
several video samples, which contain confusing situations
with superior performance and low computational
complexity. Experimental results with CRFs, HCRFs and
LDCRFs show that the proposed approach automatically
recognizes human actions at window size=4 with 89.64%,
92.14% and 96.33%, receptively. And also, the reliability
of these systems at the same window size is 88.38%,
91.17% and 95.41%, respectively. As a result, LDCRFs is
the best in terms of results than CRFs and HCRFs.

Table 1: Confusion matrix for per-video classification on IIKT
dataset using LCDRFs at window size = 4.

Action Walk Run Jog Box Wave Clap

Walk 1.00 0.00 0.00 0.00 0.00 0.00

Run 0.00 0.94 0.06 0.00 0.00 0.00

Jog 0.00 0.05 0.95 0.00 0.00 0.00

Box 0.00 0.00 0.00 0.95 0.00 0.05

Wave 0.00 0.00 0.00 0.00 1.00 0.00

Clap 0.00 0.00 0.00 0.06 0.00 0.94

As follows from the figures tabulated in Table1, most
actions are correctly classified. Furthermore, there is a
high distinction between arm actions and leg actions.
Most of the mistakes where confusions occur are between
”running” and ”jogging” actions and between ”boxing”
and ”clapping” actions. This is intuitively plausible due to
the fact of high similarity between each pair of these
actions.

4.2 Experiment 2

This second experiment was conducted using KTH
dataset [18]. The KTH human action dataset includes six
actions: walking, running, jogging, boxing, hand waving
and hand clapping, which performed by 25 subjects (Fig.
8). Four different scenarios are used; outdoors, outdoors
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Fig. 7: Insertion, deletion and substitution errors, as well as therecognition and reliability of IIKT dataset using CRFs, HCRFs and
LDCRFs relative to sliding window size ranging from 0 to 7.

with scale variation, zooming, outdoors with distinct
clothes and indoors. Apart from zooming setting, there is
an only slight camera a movement, variation in the
performance and duration, and somewhat in the
viewpoint. The backgrounds are relatively static, where
all sequences are acquired at 25 FPS and a spatial
resolution of 160× 120 pixels.

Walk                                  Jog                                    Run 

Box                                    Wave                                Clap 

Fig. 8: Sample frames form action sequences in the KTH dataset
[18].

Similarly, the human action accuracy is measured
according to different sliding window sizes ranging from
0 to 7 (Fig.9). It is being observed that the action
recognition accuracy and the reliabilities of CRFs,
HCRFs and LDCRFs was improved initially as the
window size increase, but degrades as a window size
increase further. Experimental results with CRFs, HCRFs
and LDCRFs show that the proposed approach
automatically recognizes human actions at window
size=4 with 90.36%, 93.57% and 98.50%, receptively. In
addition, the reliability of these systems is 89.08%,
92.58% and 97.87%, respectively. Furthermore, it is being
noted that, LDCRFs is the best in terms of results than
CRFs and HCRFs, for all window size ranging from 0 to
7.

The confusion matrix depicting the results of action
recognition achieved by using LDCRFs at window size =

4 is shown in Table2. Here, there is a clear distinction
between arm actions and leg actions. Most of the mistakes
where confusions occur are between ”running” and
”jogging” and actions and between ”boxing” and
”clapping”. Thereby, our method has achieved a 98.50%
accuracy per-video classification.

Table 2: Confusion matrix for per-video classification on KTH
dataset using LDCRFs at window size = 4.

Action Walk Run Jog Box Wave Clap

Walk 1.00 0.00 0.00 0.00 0.00 0.00

Run 0.00 0.98 0.02 0.00 0.00 0.00

Jog 0.00 0.02 0.98 0.00 0.00 0.00

Box 0.00 0.00 0.00 0.98 0.00 0.02

Wave 0.00 0.00 0.00 0.00 1.00 0.00

Clap 0.00 0.00 0.00 0.03 0.00 0.97

To assess the efficiency of the proposed method, the
obtained results have been compared with those of other
previously published studies in the literature, as shown in
Table 3. From this comparison, it turns out that our
approach using LDCRfs performs competitively with
other state-of-the-art approaches, and its results compared
favorably with previously published results. Notably, all
the methods that we compared our method with have used
similar experimental setups. Thus, the comparison is
meaningful.

Table 3: Comparison with the state-of-the-art on KTH dataset
Uing LDCRFs at window size=4.

Method Recognition rate
Our Method 98.50%
Ke et al. [8] 63.00%
Liu and Shah[9] 92.80%
Jhuanget al. [10] 91.70%
Wang and Mori [11] 92.50%
Rapantzikoset al. [12] 88.30%
Dollár et al. [13] 81.20%
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Fig. 9: The recognition and reliability accuracy of KTH dataset using CRFs, HCRFs and LDCRFs relative to sliding window size
ranging from 0 to 7.

4.3 Evaluation

The sample test data is entirely different from the training
data and is tested onIntel(R) Core(TM) i7 CPU 3.4 GHz
PC with 4 GB of RAM. The time complexity of the CRFs
matching model presented throughout this work is
proportional to the number of cells, which are visited by
dynamic programming method. CRFs takeO(PL2) where
L is either six labels for human actions, andP is the
number of input feature vectors at every time instance.
The space complexity for the matching algorithm is
similar to the time complexity if the proposed approach is
running in offline modes. The following algorithm
summarizes the matching process of CRFs models for a
given observation sequence.

Input: An observation sequencex, T represents the length
of x and the number of labels isL

Output: Probability of label sequencey given CRFs
parameters:p(y|x,θ )

——–
i = 1, initializeZ
while i ≤ T do

for j = 1 to L do
for k = 1 to L do

Mi(y j ,yk) =
exp

(
∑ f λ f t f (y j ,yk,x, i)+∑g µgsg(yk,x, i)

)

end
end
Z = Z×Mi % Z is a normalization factor
q∗ = Mi(yi−1,yi |x) % q∗ is a product of all matricesM
i = i + 1

end
p(y|x,θ ) = 1

Z× q∗

Algorithm 1: Matching CRFs model

Although, CRFs, HCRFs and LDCRFs show an
extremely strong performance, they are very expensive in
terms of training costs. Fig.10, summarize the time costs
of the used discriminative models on IIKT and HKT
datasets, and further indicating the cost proportional to
the window size. Additionally, illustrate that LDCRFs
models that allow the representation of hidden states are

(a) Window size (IIKT database) (b) Window size (KTH database)
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Fig. 10: Effects of different window size on the training cost in
terms of time.

usually more expensive than their standard counterparts.
The high recognition rate achieved is due to the following
reasons; 1) A high segmentation accuracy of the
foreground is achieved. 2) A set of feature candidates
who optimally discriminate among the input actions is
elected. 3) A carefully experimental based selection of
initialization parameters for training process. 4) LDCRFs
classification technique has the ability to alleviate
spatio-temporal variabilities.

5 Conclusion

In this paper, we proposed an approach to investigate
humane action recognition based on an affine-invariant
shape descriptor like SCLF, in addition to mass center and
optical flow motion features. The extracted features from
3D spatio-temporal action volumes are employed with
varying windows size for the discriminative models as
CRFs, HCRFs and LDCRFs for recognition. As a result,
the reliability of human activity is improved initially as
the window size increase, but degrades as the window size
increase further. Our experiments on standard benchmark
action KTH and IIKT datasets show that the proposed
LDCRFs approach is more robust and yields promising
results when comparing favorably with those previously
reported without sacrificing real-time performance. The
future research will address the empirical validation of the
approach on more realistic datasets presenting many
technical challenges in data handling, such as object
occlusion and significant background clutter.
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