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Abstract: In the study of finite element model updating or damage detection, most papers usually employ transformation matrix from
the master coordinates to the full-order coordinates, by either model reduction or modal expansion schemes to deal withspatially
incomplete situations. This article employs the direct mode shape expansion method, by applying a hybrid vector that isconstructed
by measured values at master degrees of freedom (dofs) and constant values at slave dofs, to expand the measured spatially incomplete
mode shape based on a series of modification factors. One theoretical development is that model updating or damage detection using
Cross Model Cross Mode (CMCM) method is firstly combined withthe direct mode shape expansion scheme for dealing with spatial
incompleteness. The other development is a new indicator, i.e., modal strain energy change indicator (MSECI) is presented based on
traditional modal strain energy method. Numerical studieshave been conducted for a three-dimensional four-story frame structure with
multiple damaged elements, as the measured modes are synthesized from finite element models. The numerical results reveal that the
direct mode shape expansion method outperforms Guyan expansion method on higher order mode shape expansion. Implementing the
CMCM method together with the direct mode shape expansion scheme, proper damge detection results can be obtained.
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1 Introduction

Detection, location and quantification of damage in a
structure via techniques that examine changes in
measured structural vibration response have attracted
much attention in recent years. The methods for damage
detection are commonly classified into four levels. While
a higher level method always includes issues covered in a
lower level method, specific focus of each level is
generally accepted as follows: Level 1-determining
whether damage occurs in the structure, Level
2-identifying the geometric location of the damage, Level
3-quantifying the severity of the damage, and Level 4
-predicting the remaining service life of the structure.

The method widely used to detect damage in
structures is using modal frequency changes for the lower
natural frequency can be easily and precisely measured in
practice. Vandiver (1976)[1] used the same principle to
determine the occurrence of damage in offshore

structures. Biswas et al.(1990)[2] demonstrated that a
decrease in natural frequencies could be used to detect
damage in a highway bridge. Messina et al. (1996)[3]
used the natural frequency sensitivity analysis to
determine damage locations and extents. These methods
seem to fail to locate and quantify damages sometimes
since modal frequencies are a global property of the
structure, which are especially obvious for the
symmetrical structure. As mode shapes can provide much
information than natural frequency, many researchers
have devoted their efforts to detect damages with mode
shape information or both mode shape information and
natural frequency information. Mannan and Richardson
(1990)[4] located structural cracks by using the difference
in the stiffness matrices of structures before and after
damage. Pandey et al. (1991)[5] used the changes in the
mode shape curvature to detect and locate damage.
Pandey and Biswas (1994)[6] developed a method to
locate damages using changes in the flexibility matrix of
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the structure. This approach is feasible since the structural
flexibility matrix can be obtained accurately by using
only a few of the lower frequency modes. Later they
demonstrated the effectiveness of the flexibility change
method using experimental data. The disadvantage of
their method is that results of damage localization depend
on the conditions of the structural boundary. However, in
actual engineering the structural boundary condition is
difficult to determine ideally. Shi et al. (1998)[7]
proposed using the change of modal strain energy (MSE)
in each element as damage indicator, and it was proved to
be effective in locating the structural damage. However,
because the damage elements are not known, the
undamaged elemental stiffness matrix is used instead of
the damaged one as an approximation during calculating
modal strain energy change of the nth element for the jth
mode. Li et al. (2006)[8] developed an effective damage
localization method for three-dimensional frame
structures, the modal strain energy decomposition
(MSED) method. The MSED method defines two damage
indicators, axial damage indicator and transverse damage
indicator, for each member. Analyzing the joint
information of the two damage indicators greatly
improves the accuracy of localizing damage elements.
But the MSED method cannot achieve satisfactory
estimate for the corresponding damage severity. Hu et al.
(2006)[9] developed a newly damage severity estimation
method, termed as cross modal strain energy (CMSE)
method. This damage severity estimation method can be
applied sequentially after damage members have been
correctly identified by any other damage localization
method. The CMSE method is a non-iterative, exact
solution method and uses both the mode shapes and
modal frequencies for the damage severity estimation.

One particular model-based approach to identify the
damage location and to assess its severity is the finite
element (FE) model updating method. The purpose of FE
model updating is to calibrate the mass, damping and
stiffness matrices of the FE model based on the test data
so as to obtain better agreement between numerical model
predictions and measured results. Clearly, comparing the
updated matrices associated with a damaged structure to
those of the baseline model provides an indication of the
damage, for both location and severity. Friswell et al.
(1998)[10] first conducted FE model updating to damped
systems, who extended the traditional direct methods to
estimating both the damping and stiffness matrices of a
damaged cantilever beam while assuming that its mass
matrix was known. Their algorithm has the drawback that
it does not guarantee the connectivity of the original finite
element model. Kuo et al. (2006)[11], extended the direct
method to a more general problem that the analytical
mass, damping, and stiffness matrices were all allowed to
be updated. Li et al. (2008)[12] extended the CMCM
method to the damped systems for damage detection
using spatially incomplete complex modes. The method
was demonstrated to be effective using a cantilever beam
structure, which has been employed by Friswell et al.

(1998). However, further studies indicate the method is
sensitive to noise; thus, a more robust indicator is
expected based on the CMCM method for damage
localization.

In this paper, we will make improvements in two
aspects: 1) employing the direct mode shape expansion
method by Liu (2011)[13] to deal with spatial
incompleteness of measured modes; and 2) a new damage
localization indicator, i.e., modal strain energy change
indicator (MSECI) is proposed based on the concept of
modal strain energy. In numerical study, a
three-dimensional four-story frame structure with
multiple damaged elements will be chosen for the
numerical studies, where the measured modal information
will be synthesized from using a finite element model that
is similar to the analytical model, but with different sets
of system coefficients.

2 Preliminary

Throughout this paper, to distinguish symbols associated
with the models before and after updating, a superscript
”′” is used for the updated model in contrast to the original
(or baseline) model, e.g.,M′ andM represent the mass
matrix of the updated and baseline models, respectively.

The author (Liu, 2011)[13] presented a direct
estimation method for expanding incomplete
experimental mode shapes. The performance of the
method was investigated using a 5 dofs mass-spring
system and a steel cantilever-beam experiment. A hybrid
vector for thejth mode, which includes the measured
data at master coordinates and constant values at slave
coordinates, is defined
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in which, the constant can be assumed to be any
integer, such as one or two.

Thejth measured mode shapeΦ′
j is a modification of

Φ̃j by

Φj
′ = Φ̃j +

N
∑

s=1

δs,jΦ̃s,j (2)

whereΦ̃s,j is a vector of which the value at thesth dof
equals to the in Eq. (1), and other values are zero; N is the
number of unmeasured dofs, andδs,j are a series of
factors to modify the vector̃Φs,j , here δs,j are called
mode-correction factors for thejth mode.
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Then a series of equations are constructed

Ne
∑

n=1

αnK
♦
n,ij +

N
∑

s=1

δs,jK
♦
s,ij −

N
∑

s=1

δs,jM
♦
s,ij

+

N
∑

s=1

Ne
∑

n=1

αnδs,jK̃
s
n,ij = f

(3)

Assumeδj is known, thenδj is reproduced iteratively
and the proposed method is again implemented; and the
process is repeated until convergence are obtained. Thejth
estimated mode shape from Eq.3 is denoted asΦj,es

∗, and
readers can find detailed information in reference[14].

Cross model cross mode method. First, the stiffness,
damping and mass matrices of the baseline model,
denoted asK, C andM, respectively, have been initially
modeled. In the proposed cross-model cross-mode
approach, the stiffness matrixK′ of the updated model is
a modification ofK via

K
′ = K+

NK
∑

n=1

αnKn (4)

where individual Kn is a pre-selected stiffness
sub-matrix of the baseline model;αn are unknown
stiffness correction factors to be determined; andNK is
the number of stiffness correction terms for the stiffness
matrix. Likewise, one writes the corresponding
expression for the mass matrixM′ and viscous damping
matrixC′, respectively, as

M
′ = M+

NM
∑

n=1

βnMn (5)

and

C
′ = C+

NC
∑

n=1

γnMn (6)

where the individualCn and Mn are pre-selected
sub-matrices of the baseline model;βn and γn are
correction coefficients to be determined;NM andNC are
the numbers of mass and damping correction coefficients,
respectively.

WhenNi andNj modes are taken from the analytical
model and the measured model, respectively, totalNm =
Ni ×Nj complex equations can be formed

Kij
† +

NK
∑

n=1

αnK
†
n,ij + λj

′

(

Cij
† +
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γnC
†
n,ij

)

+ λj
′2

(

Mij
† +
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∑

n=1

βnM
†
n,ij

)

= 0

(7)

Those equations are named cross-model cross-mode
(CMCM) equations in view of the fact that they are
formed by crossing over two models, for two arbitrary

modes. From Eq.7 αn is solved and used to detect
damages’ location and severity. Note that in the following
presentation, the damping is not taken into account.
Readers can find detailed information in reference[12].

3 CMCM Method for Spatial Incompleteness

In dealing with spatially incomplete situations, one
usually applies either model reduction or modal
expansion schemes. The transformation matrix from the
master coordinates to the full-order coordinates for the
baseline model is denoted asT , which can follow either
TG for Guyan transformation[14] or TS for SEREP[15].

When mode shape values for the damaged structure are
available only at master coordinates, applying the modal
expansionΦ′

j = T
′
(

Φ
′
j

)

m
, one can write

K†
ij = Φ

t
iKT

′
(

Φ
′
j

)

m
(8)

where
(

Φ
′
j

)

m
is thejth mode shape of the damaged

structure measured only at the master coordinates, andT
′

is the counterpart ofT for the damaged structure.
Likewise, following the concept of the modal expansion,
one writes

K†
n,ij = (Φi)
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KnT
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(9)
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(11)
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and
Cn,ij

† = (Φi)
t
CnT

′
(

Φ
′
j

)

m
(13)

In this paper, we will employ the direct mode shape
expansion method to deal with spatial incompleteness,
thusT′

(

Φ
′
j

)

m
in Eq. 8 is replaced by the estimated one

of Φ′
j in Eq.2, denoted byΦ′

j,es, then Eq.8 becomes

K†
ij = Φ

t
iKΦ

′
j,es (14)

4 Modal Strain Energy Change Indicator

The elemental modal strain energy (MSE) is defined as the
product of the elemental stiffness matrix and the second
power of the mode shape component (Shi et al, 1998). For
thenth element, theith mode for the baseline model, and
thejth mode for the damaged model, MSE is given as

MSEni = (Φi)
t
KΦi (15)

MSE′
nj =

(

Φ
′
j

)t
K

′
nΦ

′
j (16)
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From Eq.4 , Eq.16can be rewritten as

MSE′
nj =

(

Φ
′
j

)t
(Kn + αnKn)Φ

′
j (17)

whereαn is correction factor corresponding to thenth
element.

In the above equation, thejth mode shape from the
damaged model,Φj

′, which includes the information of
the mass, stiffness and damping after the occurrence of
damage, is slightly different from its traditional
counterpart, which only includes the stiffness information
after the occurrence of damage.

If the MSE for several modes are considered together,
theMSEn andMSEn

′ of thenth element is defined as
the average of the summation ofMSEni andMSEnj

′

respectively.

MSEn =
1
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∑
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(19)
Then the modal strain energy change (MSEC) of the

nth element could be obtained from Eq.18and Eq.19
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1

Nj

Nj
∑
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′
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−
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SubstitutingK
′
n = Kn + αnKn into the above

equation, one obtains
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Neglecting the difference between the first and third
terms, Eq.21becomes

MSECn ≈

1

Nj

Nj
∑

j=1

αn

(

Φ
′
j

)t
KnΦ

′
j (22)

Following the normalization procedure by Stubbs et al.
(1995)16, a new damage indicator of thenth element based
on modal strain energy change (MSECI) is defined as

MSECIn =
MSECn −MSECn

σMSECn

(23)

whereMSECn and σMSECn
represent the sample

mean and standard deviation ofMSECn, respectively.
When mode shape values for the damaged structure are

available only at master coordinates, applying the direct
mode shape expansion, Eq.15and Eq.16become

MSEni = (Φi)
t
KΦi (24)

MSE′
nj =

[

Φ
∗
j,es

]t
(Kn + αnKn)Φ

∗
j,es (25)

Employing Eq.18, the MSECI of thenth element can
be obtained, which can be utilized for damage detection.

5 Numerical Study

The structure adopted in the numerical studies is a
three-dimensional four-story frame structure shown in
Fig. 1, which is synthesized from a finite element model
where each structural member is modeled as a
three-dimensional uniform beam element, and is
distinguished by assigning an element number. The
essential geometrical and material properties of the frame
structure are given below. The length of all horizontal
members oriented in the x direction is 1m, all horizontal
members oriented in the y direction 3m, and all vertical
members 1 m. For all members, the Young’s module
E = 210GPa, the mass density per unit length
m̄ = 22.035Kg/m, the cross-section are
A = 2.825 × 10−3m2, and the moment of inertia
I = 2.89 × 10−6m4. Performing an eigen analysis, one
obtains that the structure has the first three modal
frequencies 8.8626, 11.95, and 15.434 Hz, respectively.

In this study, the test structure is considered to be a
damaged one. The damage is modeled as a reduction in
the stiffness of element 2, 16 and 21 by 30%, 20% and
35% respectively, from the analytical model. These three
elements represent different type of structure members
and are highlighted in Fig.1(b). Specifically, other
elements of the tested model are produced with a series of
quantitiesβn generated based on a Gaussian distribution
with the mean equal to 0 and standard deviation equal to
0.05. Firstly, the feasibility of MSECI for damage
localization using spatially complete and noise-free
complex modes is investigated. Assume all dofs of the
structure can be measured, and 96 modes from the
analytical model and 1 modes from the true model are
utilized; thus 96 real-valued CMCM equations can be
formed, which are sufficient to solve 96 unknowns.
Resulting estimates of damage locations usingα and
MSECI are shown at the top and the bottom panels of Fig.
2 respectively, plotted against the element number n.
From Fig. 2, one concludes that the proposed damage
indicator MSECI can be employed for damage
localization in structures, and we also can see that the
proposed indicator MSECI is more effective to damages
occurred in legs. If only a subset of the dofs are measured
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Fig. 1: A three-dimensional four-story frame structure: (a) node
numbers; (b) element numbers

Fig. 2: Damage localization employing spatially complete, noise-
free modes

(a spatially incomplete situation), then the analytical
model must be reduced or the measured mode shapes
must be expanded. In the following presentation, only the
translational dofs in x, y and z directions at nodes 9 to 20
are measured for the first two modes. When the traditional
Guyan reduction scheme is used to reduce the analytical
model, implementing the proposed indicator based on the
same previous consideration yields the result shown in
Fig. 3. From Fig.3 one concludes that errors caused by
Guyan reduction have a great influence on damage
detection, even on the proposed indicator. In the following
presentation, we will study whether mode shape
expansion could be improved employing the direct mode
shape expansion method, compared to Guyan expansion

Fig. 3: Damage localization employing traditional Guyan
reduction scheme

scheme. Therefore the first mode shape values at slave
coordinates from the Guyan expansion and the direct
mode shape expansion are investigated, respectively.
Shown at the top panel of Fig.4 are translational mode
shape values in x, y and z directions at nodes 5 to 8,
plotted against the degrees of freedom. Likewise,
rotational values in x, y and z directions at nodes 5 to 20
are plotted in Fig. 4 (b) and Fig.4(c), respectively. From
Fig.4 one can find that traditional Guyan expansion and
direct mode shape method have similar performance on
the first mode shape values corresponding to slave
coordinate. While for the second mode shape, the direct
mode shape expansion method outperforms the traditional
Guyan expansion, as shown in Fig.5. Then one may
predict that implementing the CMCM method with the
direct modes shape expansion scheme could perform
better in damage detection. Shown in Fig.6 are the results
of damage detection using the direct mode shape
expansion method based on the same considerations
yields Fig.3, and Fig.6 demonstrated our consideration.
Note that the robustness of the proposed method has not
been discussed here, one reason is that our aim is to
expand mode shapes using the measured values which
maybe include a certain measurement noise to replace
ones at master dofs, while not using the uncontaminated
ones because they are not known in practice; the other
reason is we can adopt noise elimination techniques to
separate noise from the measurement response, which
will be further studied in our future experiment work.

6 Conclusion

Cross model cross mode (CMCM) method performs
better in model updating and damage detection when a
number of spatially complete modes are available, which
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Fig. 4: The first mode shape values comparison using Guyan
expansion and direct mode shape expansion, respectively: (a)
translational values at nodes 5 to 8; (b) rotational values at nodes
5 to 12; (c) rotational values at nodes 13 to 20

Fig. 5: The sencond mode shape values comparison using Guyan
expansion and direct mode shape expansion, respectively: (a)
translational values at nodes 5 to 8; (b) rotational values at nodes
5 to 12; (c) rotational values at nodes 13 to 20

not only provides damage locations, but also damage
severities. While employing several lower order spatially
incomplete modes, results become unstable. Therefore,
our recent development is used, i.e., the direct mode
shape expansion method, to deal with spatial
incompleteness of measured modes, expected to improve
damage detection implementing the CMCM method.
Numerical results from a three-dimensional four-story

Fig. 6: Damage detection employing direct mode shape
expansion

frame structure show that the direct mode shape
expansion method outperforms Guyan expansion method
on higher order mode shape expansion. Implementing the
CMCM method and combined with the direct mode shape
expansion to deal with spatial incompleteness of the
measured modes, better damage detection could be
obtained.
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