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Abstract: This study explores the structural properties and X-ray dosimetric performance of (ZnO)₀.₂(TeO₂)₀.₈ thin films 

fabricated using the spray pyrolysis method. Aqueous solutions containing zinc acetate dihydrate and tellurium dioxide 

were deposited onto glass substrates to form both pure and doped ZnO-TeO₂ thin films. Interdigitated graphite electrodes 

were applied to the films to serve as electrical contacts. Current-voltage (I-V) measurements were conducted under X-ray 

irradiation from a linear accelerator (Linac). At all applied voltages, the measured current increased linearly with 

increasing X-ray dose.. The thin films demonstrated sensitivity values ranging from 0.37 to 0.94 mA/cm²/Gy, 

corresponding to minimum detectable doses between 1.064 and 2.703 mGy. The linear regression analysis of the I-V 

characteristics produced correlation coefficients ranging from 0.966 to 0.998, with regression errors between 0.0006 and 

0.0025. These findings suggest that (ZnO)₀.₂(TeO₂)₀.₈ thin films are promising candidates for high-dose X-ray detection, 

particularly in clinical radiotherapy using Linac systems. 
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1 Introduction 
 

In recent years, there has been growing interest in 

developing advanced materials for the precise detection of 

ionizing radiation, particularly in healthcare, industry, and 

environmental protection. One of the critical needs in 

medical imaging and radiotherapy is the ability to 

accurately monitor X-ray doses, ensure effective treatment 

outcomes, and promote patient safety. [1-4]. Compared to 

conventional radiation detectors, thin-film-based 

dosimeters offer significant advantages such as flexibility, 

affordability, and suitability for integration into 

miniaturized systems [2, 5-8]. 

Zinc oxide (ZnO) and tellurium dioxide (TeO₂) are two 

promising compounds that have been widely explored for 

their complementary optical and electrical characteristics. 

Among these, zinc oxide (ZnO), a wide-bandgap 

semiconductor (~3.4 eV), is known for strong radiation 

responsiveness, which provides excellent electrical 

performance [2, 9-13]. TeO₂, on the other hand, enhances  

 

the material’s optical and structural qualities, making it 

suitable for dosimetric applications [14- 16]. By combining 

these two oxides in specific proportions, it becomes 

possible to engineer thin films with improved sensitivity 

and dose response behavior under X-ray exposure. 

Semiconducting thin films have emerged as promising 

candidates for radiation detection due to their tunable 

electrical properties, ease of fabrication, and compatibility 

with low-cost deposition techniques. Among these, zinc 

oxide (ZnO), a wide-bandgap semiconductor (~3.4 eV), is 

known for its high radiation sensitivity, chemical stability, 

and nontoxicity [17- 19]. Tellurium dioxide (TeO₂), with a 

relatively lower bandgap (~2.8 eV), complements ZnO by 

enhancing the optical and electronic response of the 

composite material. When combined, ZnO and TeO₂ can 

form a hybrid thin film with improved electrical 

conductivity, enhanced sensitivity, and stable response 

under ionizing radiation. The performance of such a 

composite material depends significantly on the ratio of its 

components and the method of deposition [[7, 20-25]. 
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Spray pyrolysis, a simple, cost-effective, and scalable 

technique, offers several advantages for thin-film 

fabrication, including uniform coating, controllable 

thickness, and suitability for large-area applications. It 

ensures uniform film deposition across substrates and is 

particularly effective for preparing multi-component oxide 

films with consistent stoichiometry [26-29].  

This work investigates (ZnO)₀.₂(TeO₂)₀.₈ thin films 

produced using the spray pyrolysis method. The study is 

aimed at evaluating the electrical response of the films to 

high-energy X-ray radiation, such as that encountered in 

medical linear accelerators (Linacs). Key performance 

metrics—including sensitivity, linear dose response, and 

minimum detectable dose—are analyzed to assess the 

feasibility of using these films in practical radiation sensing 

environments. 

2 Experimental Procedure 

2.1 Chemical Synthesis 

To prepare the precursor solutions for ZnO and TeO₂, 0.863 

g of zinc acetate di-hydrate was dissolved in 60 ml of 

methanol, and 0.638 g of tellurium dioxide powder was 

dissolved in 40 ml of hydrochloric acid (concentration to 

43% w). The ZnO solution was stirred with a magnetic 

stirrer until a clear, homogeneous solution was obtained. 

For the TeO₂ solution, stirring was carried out under mild 

heating conditions (67°C) for 12 minutes, until 

transparency was achieved. 20 ml of methanol was added to 

the TeO₂ solution to prevent precipitation and enhance 

solubility. Before film deposition, the ZnO and TeO₂ 

solutions were combined in an 8:2 volumetric ratio. The 

resulting mixture was stored at ambient temperature for 

about 36 hours to allow chemical stabilization before 

deposition. 

2.2 Thin Film Deposition 

The (ZnO) and (TeO₂) were mixed in a 2:8 volumetric 

ratio, and the thin films were fabricated using an ultrasonic 

spray pyrolysis approach. A benchtop automated spray 

system (U-spray USP 1500) was employed to atomize and 

spray the ZnO-TeO₂ composite solution onto pre-heated 

soda-lime glass substrates. Compressed air acted as the 

carrier gas. For each deposition cycle, 10 ml of the mixed 

precursor solution was loaded into the system’s dispensing 

tank, and the substrate temperature was held constant at 

300°C. The flow parameters included a solution feed rate of 

0.15 ml/min, air pressure of 0.2 kg/cm², and a nozzle-to-

substrate distance of 3.0 cm. The spray nozzle consisted of 

a coaxial design with an inner solution tube and an outer 

airflow channel, enabling effective atomization by air 

suction. Spraying continued until 1.2 ml of the precursor 

was deposited onto 10 mm × 10 mm glass substrates for 

clarity. After deposition, the coated substrate was removed 

and allowed to cool naturally at room temperature. A thick 

graphite-based interdigitated electrode (IDE) pattern with 

0.3 mm spacing was printed onto the film surface. Copper 

contacts, spaced 10 mm apart, were also attached at both 

edges of the graphite layer to serve as electrical terminals. 

 

Fig. 1: Fabricated (ZnO)0.2(TeO2)0.8 thin film sensor. 

2.3 Current–Voltage Characteristics During X-

ray Irradiation 

The (ZnO)₀.₂(TeO₂)₀.₈ thin film’s X-ray dose response was 

evaluated using a linear accelerator delivering 6 MV X-ray 

photon beams at doses of 0, 50, 100, 150, 200, and 250 

cGy, all delivered at a constant dose rate of 400 cGy/min. 

During exposure, the thin film sensor was positioned 

perpendicular to the beam to ensure uniform irradiation. 

The setup featured a beam field size of 5 × 5 cm² and a 

source-to-surface distance (SSD) of 100 cm. To achieve 

build-up region compensation and maximize surface dose 

deposition, a 10 mm thick bolus was placed directly on top 

of the sample. 

As the irradiation proceeded, the resulting electrical current 

induced in the sensor was monitored in real-time using an 

electrometer connected to the sample. The readings were 

simultaneously transmitted and displayed on a computer 

screen located in the control room, using CCTV footage 

from inside the treatment bunker. The current–voltage (I–

V) characteristics were recorded at each radiation dose for 

applied bias voltages of 0 to 6 V in 1 V increments. A 

schematic diagram illustrating the entire experimental setup 
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for measuring the I–V response of the thin films during 

irradiation is shown in Figure 2. 

3 Results and Discussion 

The I–V characteristics of the fabricated thin film sensors 

are presented in Figure 4. The plots display clear evidence 

of semiconducting behavior across all tested samples. The 

observed variations in electrical sensitivity suggest that an 

appropriate compositional balance of ZnO to TeO₂ 

significantly improves the overall conductivity of the  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Summary of the sensitivity, minimum measurable 

dose, regression linearity, and regression error of the thin 

film devices. 

 

Absorbed 

Dose 

(cGy) 

Sensitivity 

(mA/(cm
2
.Gy)) 

x 10
-2

 

Minimum 

Measurable 

Dose (mGy) 

Regression  

Linearity (%) 

0.00 NA NA 99.8 

50.00 94.000 1.064 98.7 

100.00 53.000 1.887 97.8 

150.00 41.000 2.439 97.7 

200.00 42.000 2.381 96.9 

250.00 37.000 2.703 96.6 

NA=Not Applicable 

composite film, as previously reported [28, 29]. Among the 

tested films, D5, fabricated with a higher ZnO ratio than the 

standard (ZnO)₀.₂(TeO₂)₀.₈, demonstrated the poorest charge 

transport characteristics. This reduced conductivity is likely 

due to defect states, film morphology, crystallinity, and the 

relatively wide bandgap of ZnO, approximately 3.4 eV, in 

contrast to the narrower 2.8 eV bandgap of TeO₂. The 

enhanced conductivity observed in TeO₂-rich compositions 

likely results from improved charge transport facilitated by 

increased density of available energy states and reduced 

recombination losses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 presents the current–voltage (I–V) characteristics 

of the (ZnO)₀.₂(TeO₂)₀.₈ thin film sensors under varying X-

ray doses from 0.0 to 2.5 Gy. Current was measured at each 

applied voltage within the 0–6 V range, corresponding to 

the different radiation dose levels. Linear regression was 

applied to the I-V data, and key performance parameters —

including sensitivity, correlation coefficient (R²), and 

regression error—are summarized in Table 1. The R² 

values, which reflect the linearity of the response, were 

found to range between 0.966 and 0.998, confirming a 

strong linear relationship between induced current and X-

ray dose at all applied voltages The data show a 

proportional increase in current with radiation dose. This 

linear trend aligns with findings reported by Maity et al. 

[28], Shamma et al. [29], Amal et al. [25], and Gryzinski et 

al. [30], in comparable oxide-based thin-film sensors. The 

 
Fig.2: Schematic view of the experimental setup. 
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sensitivity of the thin film devices to X-ray dose was found 

to vary between 0.37 and 0.94 mA/cm²/Gy across the 

measured voltage range. Additionally, regression error 

values remained low, falling between 0.0006 and 0.0025, 

further confirming the reliability of the measurements. 

Notably, these sensitivity values compare favorably with 

those of some existing commercial dosimeters [22, 31, 32], 

supporting the potential of the (ZnO)₀.₂(TeO₂)₀.₈ thin film 

sensors for practical radiation sensing applications. 

 

Fig. 3: Typical I-V characteristics plot at different X-ray 

doses for (ZnO)0.2(TeO2)0.8 thin film device. 

 

Fig. 4: Current versus X-ray Dose (I-D) plot at different 

applied Voltages for (ZnO)0.2(TeO2)0.8 thin film sensor. 

 

The operational range for employing the (ZnO)₀.₂(TeO₂)₀.₈ 

thin film sensor in real-time X-ray dosimetry is defined by 

the region in which the measured current exhibits a 

consistent linear increase with radiation dose, demonstrated 

up to 2.5 Gy (250 cGy). ). Integrated into a dosimetric 

system comprising the thin film sensor, a 6 MV medical 

linear accelerator delivering doses between 0.5 and 2.5 Gy, 

and an electrometer with a detection threshold of 0.1 µA, 

the device is capable of detecting minimum measurable X-

ray doses ranging from 1.064 to 2.703 mGy at an applied 

bias of 1.0 V.  

 

These results highlight the sensor’s suitability for high-

dose X-ray monitoring in clinical radiotherapy 

environments, where precise dose measurement is critical 

for patient safety and treatment efficacy [33-39]. 

 

4 Conclusions  

This study demonstrated that (ZnO)₀.₂(TeO₂)₀.₈ thin films, 

fabricated via spray pyrolysis, are promising for high-dose 

X-ray monitoring. The thin films, prepared via spray 

pyrolysis, exhibited clear semiconducting behavior and a 

strong linear relationship between induced current and X-

ray radiation dose across the tested range of 0 to 250 cGy. 

The I–V measurements revealed that the electrical response 

of the sensors was dose-dependent, with sensitivity values 

ranging from 0.37 to 0.94 mA/cm²/Gy and high regression 

linearity (R² between 0.966 and 0.998). The minimum 

detectable dose was estimated to fall between 1.064 and 

2.703 mGy at an applied voltage of 1.0 V, indicating 

potential for low-dose X-ray detection. 

These results indicate that the (ZnO)₀.₂(TeO₂)₀.₈ thin film 

sensor possesses the essential qualities required for real-

time X-ray dosimetry, including high sensitivity, linear 

response, and low measurement error. Its compatibility 

with 6 MV photon beams from a medical linear accelerator 

further supports its relevance for radiotherapy applications. 

Therefore, this material system offers a promising and cost-

effective alternative for developing reliable dosimeters for 

clinical and industrial use. 
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