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Abstract: This study explores the structural properties and X-ray dosimetric performance of (ZnO)o.2(TeOz)o.s thin films
fabricated using the spray pyrolysis method. Aqueous solutions containing zinc acetate dihydrate and tellurium dioxide
were deposited onto glass substrates to form both pure and doped ZnO-TeO: thin films. Interdigitated graphite electrodes
were applied to the films to serve as electrical contacts. Current-voltage (I-V) measurements were conducted under X-ray
irradiation from a linear accelerator (Linac). At all applied voltages, the measured current increased linearly with
increasing X-ray dose.. The thin films demonstrated sensitivity values ranging from 0.37 to 0.94 mA/cm?/Gy,
corresponding to minimum detectable doses between 1.064 and 2.703 mGy. The linear regression analysis of the I-V
characteristics produced correlation coefficients ranging from 0.966 to 0.998, with regression errors between 0.0006 and
0.0025. These findings suggest that (Zn0O)o.2(TeO2)o.s thin films are promising candidates for high-dose X-ray detection,

particularly in clinical radiotherapy using Linac systems.
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1 Introduction

In recent years, there has been growing interest in
developing advanced materials for the precise detection of
ionizing radiation, particularly in healthcare, industry, and
environmental protection. One of the critical needs in
medical imaging and radiotherapy is the ability to
accurately monitor X-ray doses, ensure effective treatment
outcomes, and promote patient safety. [1-4]. Compared to
conventional radiation detectors, thin-film-based
dosimeters offer significant advantages such as flexibility,
affordability, and suitability for integration into
miniaturized systems [2, 5-8].

Zinc oxide (ZnO) and tellurium dioxide (TeO:) are two
promising compounds that have been widely explored for
their complementary optical and electrical characteristics.
Among these, zinc oxide (ZnO), a wide-bandgap
semiconductor (~3.4 eV), is known for strong radiation
responsiveness, which provides excellent electrical
performance [2, 9-13]. TeOs, on the other hand, enhances

the material’s optical and structural qualities, making it
suitable for dosimetric applications [14- 16]. By combining
these two oxides in specific proportions, it becomes
possible to engineer thin films with improved sensitivity
and dose response behavior under X-ray exposure.

Semiconducting thin films have emerged as promising
candidates for radiation detection due to their tunable
electrical properties, ease of fabrication, and compatibility
with low-cost deposition techniques. Among these, zinc
oxide (ZnO), a wide-bandgap semiconductor (~3.4 eV), is
known for its high radiation sensitivity, chemical stability,
and nontoxicity [17- 19]. Tellurium dioxide (TeO2), with a
relatively lower bandgap (~2.8 eV), complements ZnO by
enhancing the optical and electronic response of the
composite material. When combined, ZnO and TeO: can
form a hybrid thin film with improved electrical
conductivity, enhanced sensitivity, and stable response
under ionizing radiation. The performance of such a
composite material depends significantly on the ratio of its
components and the method of deposition [[7, 20-25].

“Corresponding author e-mail: idrismustapham@nsuk.edu.ng

© 2025 NSP
Natural Sciences Publishing Cor.



270 NS

I. M. Mustapha, et al Dose-Response Characterization Of ...

Spray pyrolysis, a simple, cost-effective, and scalable
technique, offers several advantages for thin-film
fabrication, including uniform coating, controllable
thickness, and suitability for large-area applications. It
ensures uniform film deposition across substrates and is
particularly effective for preparing multi-component oxide
films with consistent stoichiometry [26-29].

This work investigates (Zn0O)o.2(TeOz2)o.e thin films
produced using the spray pyrolysis method. The study is
aimed at evaluating the electrical response of the films to
high-energy X-ray radiation, such as that encountered in
medical linear accelerators (Linacs). Key performance
metrics—including sensitivity, linear dose response, and
minimum detectable dose—are analyzed to assess the
feasibility of using these films in practical radiation sensing
environments.

2 Experimental Procedure

2.1 Chemical Synthesis

To prepare the precursor solutions for ZnO and TeO-, 0.863
g of zinc acetate di-hydrate was dissolved in 60 ml of
methanol, and 0.638 g of tellurium dioxide powder was
dissolved in 40 ml of hydrochloric acid (concentration to
43% w). The ZnO solution was stirred with a magnetic
stirrer until a clear, homogeneous solution was obtained.
For the TeO- solution, stirring was carried out under mild
heating conditions (67°C) for 12 minutes, until
transparency was achieved. 20 ml of methanol was added to
the TeO. solution to prevent precipitation and enhance
solubility. Before film deposition, the ZnO and TeO:
solutions were combined in an 8:2 volumetric ratio. The
resulting mixture was stored at ambient temperature for
about 36 hours to allow chemical stabilization before
deposition.

2.2 Thin Film Deposition

The (ZnO) and (TeO:) were mixed in a 2:8 volumetric
ratio, and the thin films were fabricated using an ultrasonic
spray pyrolysis approach. A benchtop automated spray
system (U-spray USP 1500) was employed to atomize and
spray the ZnO-TeO. composite solution onto pre-heated
soda-lime glass substrates. Compressed air acted as the
carrier gas. For each deposition cycle, 10 ml of the mixed
precursor solution was loaded into the system’s dispensing
tank, and the substrate temperature was held constant at
300°C. The flow parameters included a solution feed rate of
0.15 ml/min, air pressure of 0.2 kg/cm?, and a nozzle-to-
substrate distance of 3.0 cm. The spray nozzle consisted of
a coaxial design with an inner solution tube and an outer
airflow channel, enabling effective atomization by air
suction. Spraying continued until 1.2 ml of the precursor

was deposited onto 10 mm x 10 mm glass substrates for
clarity. After deposition, the coated substrate was removed
and allowed to cool naturally at room temperature. A thick
graphite-based interdigitated electrode (IDE) pattern with
0.3 mm spacing was printed onto the film surface. Copper
contacts, spaced 10 mm apart, were also attached at both
edges of the graphite layer to serve as electrical terminals.
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Fig. 1: Fabricated (Zn0O)q»(TeO,)q¢ thin film sensor.

2.3 Current-Voltage Characteristics During X-
ray Irradiation

The (Zn0O)o.2(TeO2)o.s thin film’s X-ray dose response was
evaluated using a linear accelerator delivering 6 MV X-ray
photon beams at doses of 0, 50, 100, 150, 200, and 250
cGy, all delivered at a constant dose rate of 400 cGy/min.
During exposure, the thin film sensor was positioned
perpendicular to the beam to ensure uniform irradiation.
The setup featured a beam field size of 5 x 5 cm? and a
source-to-surface distance (SSD) of 100 cm. To achieve
build-up region compensation and maximize surface dose
deposition, a 10 mm thick bolus was placed directly on top
of the sample.

As the irradiation proceeded, the resulting electrical current
induced in the sensor was monitored in real-time using an
electrometer connected to the sample. The readings were
simultaneously transmitted and displayed on a computer
screen located in the control room, using CCTV footage
from inside the treatment bunker. The current—voltage (I-
V) characteristics were recorded at each radiation dose for
applied bias voltages of 0 to 6 V in 1 V increments. A
schematic diagram illustrating the entire experimental setup
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for measuring the 1-V response of the thin films during
irradiation is shown in Figure 2.

3 Results and Discussion

The 1-V characteristics of the fabricated thin film sensors
are presented in Figure 4. The plots display clear evidence
of semiconducting behavior across all tested samples. The
observed variations in electrical sensitivity suggest that an
appropriate compositional balance of ZnO to TeO:
significantly improves the overall conductivity of the
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composite film, as previously reported [28, 29]. Among the
tested films, D5, fabricated with a higher ZnO ratio than the
standard (ZnO)o.2(TeO2)o.s, demonstrated the poorest charge
transport characteristics. This reduced conductivity is likely
due to defect states, film morphology, crystallinity, and the
relatively wide bandgap of ZnO, approximately 3.4 eV, in
contrast to the narrower 2.8 eV bandgap of TeO.. The
enhanced conductivity observed in TeO.-rich compositions
likely results from improved charge transport facilitated by
increased density of available energy states and reduced
recombination losses.
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Fig.2: Schematic view of the experimental setup.

Table 1: Summary of the sensitivity, minimum measurable
dose, regression linearity, and regression error of the thin
film devices.

Absorbed Sensitivity Minimum Regression
Dose (mA/(cm®.Gy)) | Measurable | Linearity (%)
(cGy) x 1072 Dose (MGy)

0.00 NA NA 99.8
50.00 94.000 1.064 98.7
100.00 53.000 1.887 97.8
150.00 41.000 2.439 97.7
200.00 42.000 2.381 96.9
250.00 37.000 2.703 96.6

NA=Not Applicable

Figure 3 presents the current-voltage (I-V) characteristics
of the (ZnO)o.2(TeO2)o.s thin film sensors under varying X-
ray doses from 0.0 to 2.5 Gy. Current was measured at each
applied voltage within the 0-6 V range, corresponding to
the different radiation dose levels. Linear regression was
applied to the I-V data, and key performance parameters —
including sensitivity, correlation coefficient (R?), and
regression error—are summarized in Table 1. The R?
values, which reflect the linearity of the response, were
found to range between 0.966 and 0.998, confirming a
strong linear relationship between induced current and X-
ray dose at all applied voltages The data show a
proportional increase in current with radiation dose. This
linear trend aligns with findings reported by Maity et al.
[28], Shamma et al. [29], Amal et al. [25], and Gryzinski et
al. [30], in comparable oxide-based thin-film sensors. The
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sensitivity of the thin film devices to X-ray dose was found
to vary between 0.37 and 0.94 mA/cm2/Gy across the
measured voltage range. Additionally, regression error
values remained low, falling between 0.0006 and 0.0025,
further confirming the reliability of the measurements.
Notably, these sensitivity values compare favorably with
those of some existing commercial dosimeters [22, 31, 32],
supporting the potential of the (ZnO)o.2(TeOz2)o.s thin film
sensors for practical radiation sensing applications.
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Fig. 3: Typical 1-V characteristics plot at different X-ray
doses for (Zn0),2(TeO,)og thin film device.
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Fig. 4: Current versus X-ray Dose (I-D) plot at different
applied Voltages for (Zn0)q,(TeO,)q g thin film sensor.

The operational range for employing the (ZnO)o.2(TeO2)o.s
thin film sensor in real-time X-ray dosimetry is defined by
the region in which the measured current exhibits a
consistent linear increase with radiation dose, demonstrated

up to 2.5 Gy (250 cGy). ). Integrated into a dosimetric
system comprising the thin film sensor, a 6 MV medical
linear accelerator delivering doses between 0.5 and 2.5 Gy,
and an electrometer with a detection threshold of 0.1 pA,
the device is capable of detecting minimum measurable X-
ray doses ranging from 1.064 to 2.703 mGy at an applied
bias of 1.0 V.

These results highlight the sensor’ s suitability for high-
dose X-ray monitoring in clinical radiotherapy
environments, where precise dose measurement is critical
for patient safety and treatment efficacy [33-39].

4 Conclusions

This study demonstrated that (ZnO)o.2(TeO2)o.s thin films,
fabricated via spray pyrolysis, are promising for high-dose
X-ray monitoring. The thin films, prepared via spray
pyrolysis, exhibited clear semiconducting behavior and a
strong linear relationship between induced current and X-
ray radiation dose across the tested range of 0 to 250 cGy.
The I-V measurements revealed that the electrical response
of the sensors was dose-dependent, with sensitivity values
ranging from 0.37 to 0.94 mA/cm#Gy and high regression
linearity (R? between 0.966 and 0.998). The minimum
detectable dose was estimated to fall between 1.064 and
2.703 mGy at an applied voltage of 1.0 V, indicating
potential for low-dose X-ray detection.

These results indicate that the (ZnO)o.2(TeOz)o.s thin film
sensor possesses the essential qualities required for real-
time X-ray dosimetry, including high sensitivity, linear
response, and low measurement error. Its compatibility
with 6 MV photon beams from a medical linear accelerator
further supports its relevance for radiotherapy applications.
Therefore, this material system offers a promising and cost-
effective alternative for developing reliable dosimeters for
clinical and industrial use.
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