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Abstract: In this work, we propose an exponential-type discretizatibthe well-known Fisher’s equation from population dynesn
Only non-negative, bounded and monotone solutions ardgailysrelevant in this note, and the discretization thatprevide is able to
preserve these properties. The method is a modified exgkipinential technique which has the advantage of requérsrgall amount
of computational resources and computer time. It is worilaato notice that our technique has the advantage over ettgnential-
like methodologies that it yields no singularities. In agfi, the preservation of the properties of non-negatiliyundedness and
monotonicity are distinctive features of our method. Assaauences of the analytical properties of the techniquentathod is
capable of preserving the spatial and the temporal mongtgf solutions. Qualitative and quantitative numerisihulations assess
the convergence properties of the finite-difference schaemgosed in this manuscript.
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1 Introduction Let k be a positive number. It is well-known that the

one-dimensional Fisher’s equation has non-negative and
Throughout, we lef2 be an open and bounded interval of bounded solutions. In fact, some of those solutions are
R. Letu=u(x,t) be a real function defined on the closure traveling waves that connect monotonically and
of Q x RT, which is twice differentiable in the interior of asymptotically the constant solutions of Fisher’s equmatio
its domain and which satisfies the initial-boundary-value[1]. In view of this fact, we will restrict our attention to

problem solutions satisfyingi(x,t) > 0 for eachx € Q andt > 0.
After dividing both sides of 1) by the nonnegative
2 . . . .
%(th) _ %(x,t) Fu(xt) (1= u(x0)), functionu(x,t) + k and using the chain rule, we obtain
— 2
u(x,0) = p(x), vx€ Q, (1) dnuxb+k)  FFXD UKD (L-uxD) o
du ot B u(x,t) + K ’

S0 =0, vxedQt e RTU{0},

for eachx € Q and eacht € R". Associated to this
for some continuous functiop : @ — R that satisfies differential equation, ~we consider the same
0< @x) <1 at eachx € Q. Clearly, the partial initial-boundary conditions as in the problerf) (for a
differential equation of 1) is the classical Fishers Ccontinuousand nonnegative functign

equation, which was investigated simultaneously and N the present work, we are interested in developing a
independently in 1937 by R. A. Fishet and A. N. numerical method to approximate the solutionBf (vith

Kolmogorov, I. G. Petrovsky and N. S. Piscoundw]j ~ the following characteristics:
Many generalizations of Fisher’s equation are available in —The non-negativity and the boundedness of
the literature nowaday45,20,21,22,23,24]. approximations are preserved.
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—The technique is computationally fast.

—The method is easy to implement in any computer
language

—The computational implementation allows to employt
fine grid meshes. kit

. . . . t o o o
More precisely, we are interested in developing a

variation of the exponential approach proposed4yb]|
That family of exponential methods required for the
approximations to be strictly positive at all times.
Moreover, those techniques were sensitive to solutions
close to zero and they exhibited instabilities in those
circumstances. The correction proposed in the present
work saves those shortcomings. In fact, we show that our
modified exponential technique is capable of preserving
the non-negativity, the boundedness and the monotonicity
of the approximations. It is important to point out that
these analytical characteristics of the solutions areddde Fig. 1: Forward-difference stencil of the finite-difference metho
present in many mathematical modelg,[16], especially  (7) at the timety around the nodgmn. The black circles represent
in some traveling-wave solutions of nonlinear partial the known approximations to the exact solution at tigeand
differential equationsZ5,12]. the cross denotes the unknown approximation at timge

This note is sectioned as follows. In Secti@nwe
introduce the discrete nomenclature employed in this
work and present the modified method of interest. An ) ) .
explicit presentation of our finite-difference scheme is €dual to At and (Ax), respectively. Finally, we will
proposed in that stage. Sectiris devoted to prove the IMPOse exact discrete conditions at the time 0, and
most relevant properties of the method, namely, thediscrete homogenepus Neumann conditions at the
preservation of the non-negativity, the boundedness anffoundary of the spatial domain.
the monotonicity. Some qualitative and quantitative et me {1,....M—1} andk € Z" U {0}, and let
simulations are presented in Sectirin that section, we  (Kk)i_o b€ @ sequence of positive numbers. We discretize
provide numerical results in support of the convergentthe partial differential equatiorg) at the point(xm, tx) as
character of our technique. Finally, we close this work follows:
with a section of concluding remarks and directions of

©)
©)
©)
©)
©)
©)
©)
©)

| |

Xm-1  Xmt1

2

S W (1 —wk)

future research. & IN(WE, + ki) = W, . 7)
. Equivalently,
2 Exponential method " Lk
Aty SoxWi, + Atwiy (1 — wyy)
+1 Kk OxxWm kWm m |
Let M be a positive integer and suppose that= [a,b] C Wi = (W + ki) exp WK+ K Ko
R, wherea < b. Fix a uniform partition{xn}M_,, of [a, b], (8)

with step-size equal tdx. Also, let{tx}y_, be a partition
of the temporal intervgD, »). For eactk € Z* U {0}, let

Aty =t —t, 3)
_ Aty
Re= Taw2- (4)

Let wK, represent an estimation to the valu@m, ty),
foreachme {0,1,...,M} andk € Z* U{0}. Throughout,
we use the following operators:

Wi L wk
der(n = mTkm’ %)
WK — 2wk 4wk
5xth(-n = ml (AXI;;— m717 (6)

foreachme {1,...,M — 1} andk € Z* U{0}. Obviously,
these operators approximate the values of the functipns
and uyx at the point(xm,tx) with order of consistency

which evinces the explicit nature of); For convenience,
the forward-difference stencil of this technique is
presented in Figurd. An alternative expression of this
method is readily at hand if we consider the following
notation. Let

Ak - _Atka (9)
B« = Aty — 2Ry, (10)
Clw = Re(Wiy 1+ Wy ). (11)

Clearly, the method?) can be rewritten iteratively as

Wi = P (W), (12)
where
W2+ Brw +CK,,
Fw(W) = (W Ki) exp A W:V:k Cm — K.
(13)
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Before closing the present section we would like to inequality (L6) implies that R, < 1. Moreover,
highlight the easiness to implement the finite-difference
scheme 7) in a computer program. There are reports in ~ Gw(0) = Ki(1— 2Re) + Kt — Re(WE,  +WE, 1)
the literature which describe discretizations similartis t > k(12 _ At
method, most notably3[13]. However, those approaches 2 Ki(1— 2R + | K (Ax)Z) X
use values ofkx = 0 for eachk € Z* U {0}. Those (19)
techniques become unstable when the numerical solutionand
are close or equal to zero at any point of the grid. Indeed,

notice that {3) becomes ghaw(l) = 1—Ra(why g + W, 1) — (1+ ki) Atk
+K(1—2Ry)
k > (1+ 1—2R¢— At 20
P (W) = wexp AW + Bw + CI (14) > (1+ ki) (1— 2R« 5) (20)
, w = (1+kKy) [1_Atk<w+l>}

in that case. So, values @f too close or equal to zero
may result in the well-known computatione?l instabilities. Undgr the hypthesgs botg‘fw(O) a.n_d g.hlw(l) ar.e
From that perspective, the inclusion of the positive POsitive, and this implies thaf,,, is positive in the entire
parameterski in the finite-difference discretizatiori7)  interval [0,1]. Note now that the derivative oﬁ:nﬁw in

avoids divisions by zero when the approximatiost§ [0,1] is given by

may take on that value.

AkW2+BkW+C,I§~,YW

W+ Ki

dF¥ K
mw _ gm7w(W) exp
dw W Ki

, (@D

3 Dynamical properties
] ) ) and that this function is positive {0, 1]. We conclude that
The present section is devoted to showing that theie functionFX,, is increasing in that interval.
finite-difference method7) is a dynamically consistent '
technique in the Mickens’ sense, that is, that the method The following is the main result on the existence and
presented in this work preserves many mathematicaliniqueness of positive and bounded solutions7pf (
features of some relevant solutions of the classical N
Fisher's equationd, 18,19]. More precisely, we establish PVOPOSZ't'On llet 0 < w® < 1, and suppose that
conditions that guarantee the preservation of theKk(4X)* > 2 and(16) hold for each ke Z* U {0}. Then
non-negativity, the boundedness and the monotonicity ofhere exists a unique sequer(@g),_, satisfying(7) with
approximations obtained througlv)( To that end, it discrete homogeneous Neumann boundary conditions,
suffices to bound the range of the function Such that .
FXw:[0,1] — R of Equation (3) within [0,1]. We will 0<w'<1 (22)
usewX to represent the ordered vector of approximationsfor each ke Z* U {0}.

at each timey, that is, we let ) . o
ProofBy hypothesis, the conclusion of the proposition is

W= (WS, wE, . wE)) (15)  valid for k = 0. Suppose then that the conclusion is true
for somek € Z* U{0}. By Lemmal, the functionF,'Tﬁ!W is
for eachk € Z* U {0}. increasing if0, 1] foreachme {1,...,M — 1}. Moreover,

eachCk is nonnegative, so
Lemma 1Letke Z* U{0}, and letd < wk < 1. Then the mw g

function FK, is increasing in [0,1] for each k k
) ’ Frw(0) = Kk exp(Chw/Kk) — Kk > 0. 23
me {1,...,M — 1} whenkg(Ax)? > 2 and mw(0) = Kic XP(Cry/ i) = Hic = (@3)
On the other hand,

2
Al ((Ax)z * 1) <t (16) R(2— Wk, — v, )

Fiw(1) = (1+ K exp| - ———"L ~ K
ProofFor eachme {1,...,M — 1} and eachw € [0, 1], we < (k) Kke=1 k
define the function = k)7 Rk = =
(24)
V= ghuw(W) = AW+ (14 2KA0W+Dfy,,,  (17)  AS@consequence,
where 0 < Fyw(0) <FiywW) <FRu(1) <1 (25)

DK\, = Kk(1—By) —CK .. 18
mw = K1 =B =G (18) hold for eachw € [0,1]. So 0< wki! < 1 for each
Graphically, the functiona\qﬁlW are parabolas in tha-v me {1,...,M — 1}, and the conclusion follows now by

plane that open in the negative direction of thaxis. The  induction.
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We wish to establish now that the finite-difference Corollary 2.Let 0 < w® < 1 be spatially increasing
scheme 7) is actually a monotonicity-preserving method (decreasing), and suppose tha{Ax)? > 2 and(16) hold
under the same hypotheses of the previous theorem. In thier each ke Z* U {0}. Let (wy)y_, be the respective
next result, we will employ the notation < w to solution of (7) with discrete homogeneous Neumann
represent two real vectovsandw of the same dimension, boundary conditions, such tha&d < wX < 1 for each
such that each of the components/a$ less than orequal k € Z* U {0}. Then wK is spatially increasing
to the corresponding componentvef (decreasing) for eachk Z* U{0}. O

Proposition 2Let 0 < v? <wP < 1, and letk(Ax)? > 2 As we will see below, the conditions proposed in the
and (16) hold for each ke Z* U {0}. Let (vw)g_, and  propositions of the present section are only sufficient
(Wk)g_o be the unique solutions of7) with discrete  conditions to guarantee the non-negativity, the
homogeneous Neumann boundary conditionsvfoand ~ boundedness and the monotonicity of approximations.
w0, respectively. Then The numerical experiments described in Sec#ogive
testimony of this fact.
o<vk<wk<i (26)

-+ . . .
for each ke Z™ U {0}. 4 lllustrative simulations

ProofLemmal guarantees that all the funcuoﬁ#w are

increasing, and Propositioi assures that there exist [N the present section, we provide numerical experiments
unique solutiong(vy)?_, and (wy)>_, of the numerical N which we verify the main characteristics of our

method for the initial conditions® andw?, respectively, Medified exponential method, namely, its capability to

such that 0< vk < 1 and 0< wK < 1 for each Preserve non-negativity, bounde_dngss and monotonicity,
ke 7Z+U {O}fTheiproposition is valid fork = 0 by as well as qualitative and quantitative numerical support

hypothesis, so let us suppose that it is true for some®n the convergence of the method. _
k € Z* U {0}. This implies that the following identities In our experiments, we will fix a spatial domai®,
and inequalities are satisfied for eanfe {1,...,M —1};  and consider the initial-boundary-value probleth ith
suitable parameters. For simplification purposes, the
VE o ER KDY < EX k) < EXC k) = wktL (27 constantsAty and kg will be all equal to fixed positive
mi1 = Fny(Vin) < Fin (W) < P (Win) = Win - (27) valuesAt andk, respectively, for eack € Z* U {0}. Our

As a consequence, simulations were carried out usin@Matlab 7.12.0.635
(R2011a) on g©Sony Vaio PCG-5L1P laptop computer
o<Vl <wktl <1, (28)  with Kubuntu 15.10 as operating system. In terms of

computational times, we are aware that better results may
and the conclusion of the proposition follows by induction. pe obtained with more modern high performance
quipment and more modest Linux/Unix distributions.
It is well known [2] that Fisher’s model has an exact
traveling-wave solution of the form

The following corollaries are easy consequences otE
Proposition2. The first of them indicates that the method
(7) is capable of preserving the temporal monotonicity of
approximations. This is an important characteristic of our 1 5 -2
finite-difference scheme in view that monotonicity is a u(x,t) = [1+exp{— <x— —t) H , (30)
feature present in some of the solutions of the classical V6 V6

Fisher’ tion. L "
shers equatio which is clearly positive, bounded and monotone. In our

Corollary 1.Suppose thab < wl < w! <1, and let experiments, we will letp(x) = u(x,0) for eachx € Q,

Kk Ax > 2 and (16) hold for each ke Z* U {0}. Let and f|>§ discrete homogeneous Neumann pond|t|ons at the
ko be solution of (7) with discrete homogeneous endpoints ofQ. The next examples provide qualitative

Neumann boundary conditions satisfyiigc wk < 1 for and quantitative comparisons against this exact solution

each ke Z*+ U {0}. Then of Fisher’s equation in order to assess numerically the
convergence of the method, and the capability to preserve
0<wX<wktl <1 (29)  the positivity, the boundedness and the monotonicity of
- - the approximations. Some qualitative comparisons are
foreachke Z"U{0}. O provided firstly.
A real vectorw = (wy,...,Wy) is spatially increasing  Example l.et Q = [-20,150, and fix the computational

if Wn < wpy1 for eachme {1,... .M —1}. If —w is constantAx = 2. Additionally, we letAt = 0.01 and
increasing, then we say that is spatially decreasing k = 1. Under these circumstances, Figu2e shows
The next corollary states that the finite-difference methodsnapshots of the exact solutioB{ and the approximate
(7) also preserves the spatial monotonicity of solution computed througl®) at the times 0, 10, 20, 30,
approximations. 40 and 50. In addition to the fact that the method
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Fig. 2: Graphs of the exact (solid) and the approximate (dashediiso$ of (1). The exact solution is given by3(Q), and the
approximations have been obtained throughat the times (aj =0, (b)t = 10, (c)t = 20, (d)t = 30, (e)t = 40 and (f)t = 50.
The following computer parameters were us@d= [—20,150, Ax= 2, At = 0.01, andk = 1. Meanwhile, the initial profile was given

by the exact solution at the tinte= 0.
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Fig. 3: Graphs of the exact (solid) and the approximate (dasheditiso$ of (). The exact solution is given by3(), and the
approximations have been obtained throughat the times (aj = 0, (b)t = 10, (c)t = 20, (d)t = 30, (e)t = 40 and (f)t = 50.
The following computer parameters were us@d= [-20,150, Ax= 1, At = 0.01, andk = 1. Meanwhile, the initial profile was given
by the exact solution at the tinte= 0.
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Table 1: Analysis of spatial convergence of the meth@}l (isingk = 1 and two fixed values of\t, namely, 0001 and 00005. The
calculation of the absolute error was performed using tlaetesolution 80) of the classical Fisher’'s equation.

Spatial convergence analysis

At = 0.001 At = 0.0005
AX Eax.At PAx At AX Eax.At PAx At
4x29 ] 9.2300x 101 — 2x29 [ 51511x 101 —

4%x271 | 51284x10°1 | 08478 | 2x2°1 | 1.5089x 101 | 1.7713
4x272 | 1.4748x10°1 | 1.7980 | 2x 272 | 3.6257x 102 | 2.0571
4x273 | 32588x10°2 | 21781 | 2x 273 | 7.7696x 103 | 2.2223

preserves the positivity, the boundedness and thé Conclusions and perspectives

monotonicity of approximations, a good qualitative

agreement between the exact and the numerical solutions

is readily noted from the graphs. Figuas a repetition |, this work, we designed a discrete exponential scheme
of the same experiment withx = 1. In this case, a better to approximate the solutions of the classical
quallta'nve agreement between the exact and theone-dimensional Fisher’'s equation. The method preserves
numerical solutions is found.O the positivity and the boundedness of the solutions, and it

| der t id titati t of th is a variation of some exponential methods available in
n order to provide a quantitative assessment of &o - jieratyre which are computationally sensitive to

Fherforman(_:e oI'our methoci,t\r/]ve will ctomf)a;.rgﬁnugencally approximate solutions that are close or equal to zero. The
e approximations against the exact solutié)(Given inclusion of a positive parameter to avoid singularities

. - . K -
a numenca] approximatiom” at the t|me_T, and the results in a family of new methods that present various
corresponding ordered set of exact solutiaffson the advantages over other standard approaches in the

same grid, we define trebsolute erroras literature. The following are some of the distinctive

features of our method:
Eaxar = max{|wh —uf| :m=0,1,....M}.  (31)

We define the spatial and temporal rate of convergence, —Itis an explicit technique.

respectively, as —Its computational implementation is relatively easy.
—Itis computationally fast.

s E2x.At 32 —It contemplates the presence of a parameter to avoid

Paxat =108 | — |, (32) ; . ; : P
Eax, At singularities. This feature clearly improves similar
approaches reported in the literatudel[3].

Lo = log, [ Ex2at 33 It requi I f

Paxat = 109, Uk (33) —It requires a smaller amount of computer memory.
X,

—It preserves the non-negativity and the boundedness of

The next example offers a brief quantitative analysis of ~ aPProximations.

the convergence property of the meth@j (

Of course, many research problems open after this
Example 2.et us fix nowQ = [-20,100. Tablel shows  work. For instance, a thorough analysis of convergence of
the calculated spatial rate of convergencekor 1 and  the explicit exponential method proposed in this
two fixed values ofAt, namely, 0001 and Q0005. The manuscript is a topic that deserves attention. This
results indicate that the method has a quadratic order oihvestigation would be motivated by the fact that the
convergence in the spatial variable. A similar analysis ofnumerical simulations suggest that our technique
temporal convergence confirms that the method has lineaconverges to the exact solution. Another interesting
orderintime. O problem would be the extension of this technique to more

general parabolic partial differential equations, like th
Before we close this section, we would like to note Burgers-Fisher and the Burgers-Huxley mod8I26]. In

that the simulations shown in the present section suggeshose cases, the respective discretizations may be
that the method @) is capable of preserving the obtained by applying the approach described in the
non-negativity, the boundedness and the monotonicity opresent report, but the preservation of the non-negativity
the numerical approximations even when the conditionghe boundedness and the monotonicity are properties
established in the propositions of Secti@ are not  which are difficult to establish. In particular, extensiarfs
satisfied. From that point of view, the hypotheses of thosehis approach would be interesting in the context of more
results are only sufficient conditions to guarantee thecomplicated systems of partial differential equatiori i
preservation of these mathematical features of thehose describing the growth of biological films that
numerical solutions. interact with substrates of nutrien® §,11].
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