
Appl. Math. Inf. Sci.8, No. 4, 2005-2016 (2014) 2005

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080459

Mining Approximate Keys based on Reasoning from
XML Data
Yijun Liu1,∗, Feiyue Ye1,∗, Jixue Liu2 and Sheng He1

1 Key Laboratory of Cloud Computing & Intelligent Information Processingof Changzhou City, Jiangsu University of Technology,
Changzhou, 213001, China

2 School of Computer and Information Science, University of South Australia, Adelaide, Australia

Received: 28 Aug. 2013, Revised: 30 Nov. 2013, Accepted: 1 Dec.2013
Published online: 1 Jul. 2014

Abstract: Keys are very important for data management. Due to the hierarchical structure and syntactic flexibility of XML, mining
keys from XML data is a more complex and difficult task than from relational databases. In discovering keys from XML data there are
some challenges in practice such as unclearness of keys, storage of enormous keys, efficient mining algorithms, etc. In this paper, in
order to fill the gap between theory and practice, we propose a novel approximate measure of the support and confidence for XML keys
on the basis of the number of null values on key paths. In the mining process, inference rules are used to derive new keys. Through the
two-phase reasoning, a target set of approximate keys and its reduced set are obtained. Our research conducted experiments over ten
benchmark XML datasets from XMark and four files in the UW XML Repository. The results show that the approach is feasible and
efficient, with which effective keys in various XML data can be discovered.

Keywords: XML, keys, support and confidence, key implication

1 Introduction

The eXtensible Markup Language (XML) is a common
form of semi-structured documents and data on the World
Wide Web, and XML databases usually store
semi-structured data integrated from various types of data
sources. Considered to be one of the most important and
challenging areas in the XML studies, integrity
constraints attract much attention [1,2,3]. Much work has
been done in applying traditional integrity constraints in
relational databases to XML databases over the last
decade, such as keys [4,5], functional dependencies [6,7,
8,9], path constraints [10], inclusion constraints [11] and
numerical constraints [12]. As the unique identifiers of
records, keys are significantly important for database
design and data management [13]. There are various
forms of key specification for XML in the XML Standard
and XML Schema [14,15,16], and more forms of key
constraints are proposed and investigated in [17,18,19,
20].

Though key definitions and their implication are
suggested and researchers have analyzed their
expressiveness and computational properties in theory
and experiments [21,22], there are still some challenges

encountered in the practical mining of XML keys, as
pointed out in [23]. Firstly, due to the reason that the
semi-structured XML data is usually integrated from
multiple heterogeneous data sources and provides a high
degree of syntactic flexibility, there could be no clear
keys, that is, keys can not be expected to be satisfied at
100% in the data. Secondly, an XML database may have a
large number of keys and therefore we should consider
how to store them appropriately. Thirdly, it’s important to
find out the keys holding in a given XML dataset in an
efficient way. Currently there is not much work in the
literature in practical mining of keys from XML data.
Gösta Grahne et al. in [23] address this topic adopting a
data mining point of view. To over the first obstacle they
propose discovering approximate keys which need not be
satisfied in the whole XML data and allow a violation in a
small part. The approximation of a key expression is
measured by the support and confidence similar to those
of association rules. For the second and third problem, a
partial order on the set of all keys is defined and finally a
reduced set of approximate keys are obtained. In this
paper, we also investigate the issue of mining
approximate keys from XML data. Considering the

∗ Corresponding author e-mail:yijunliu@vip.sina.com, yfy@jsut.edu.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080459

2006 Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

characteristics of XML data, we present an alternative
general approach for mining keys. We use the most
influential proposal for XML keys by Buneman et al. in
[19,20]. On the basis of an XML tree model, they
propose not only the concepts of absolute keys and
relative keys independent of schema, which are in
keeping with the hierarchically structured nature of XML,
but also a sound and complete axiomatization for key
implication. By using these inference rules, the keys can
be reasoned about efficiently.

The rest of this paper is organized as follows. Section
2 recalls and discusses some basic notions of XML keys
used through this work. Section 3 proposes the
approximate measures for XML keys and Section 4
exploits the target set of keys and its minimal cover.
Section 5 contains our implementation of the mining
method and the essential ideas of our algorithms. Section
6 contains details of experiments that were performed
over publicly available XML data to asses the
effectiveness and efficiency of our approach. In Section 7
we conclude this paper highlighting the contributions and
future enhancements.

2 Preliminary definitions

2.1 The tree model for XML

An XML document is typically modeled as a labeled tree.
A node of the tree represents an element, attribute or
text(value), and edges represent the nested relationships
between nodes. Node labels are divided into three
pairwise disjoint sets:E the finite set of element tags,A
the finite set of attribute names, and the singleton{S},
where S represents text (PCDATA). An XML tree is
formally defined as follows.

Definition 2.1. An XML tree is a 6-tuple
T = (r,V, lab,ele,att,val), where (1)r is the unique root
node in the tree, i.e. the document node, andr ∈V. (2) V
is a finite set containing all nodes inT. (3) lab is a
function fromV to E∪A∪ {S}. For eachv ∈ V, v is an
element if lab(v) ∈ E, an attribute iflab(v) ∈ A, and a
text node if lab(v) = S. (4) Both ele and att are partial
functions fromV to V∗. For eachv ∈ V, if lab(v) ∈ E,
ele(v) is a sequence of elements and text nodes inV and
att(v) is a set of attributes inV; For eachv′ ∈ ele(v) or
v′ ∈ att(v), v′ is the child ofv and there exists an edge
from v to v′. (5) val is a partial function fromV to string,
mapping each attribute and text node to a string. For each
v∈V, if lab(v) ∈ A or lab(v) = S, val(v) is a string ofv.

2.2 Path expressions

In the XML tree, a node is uniquely identified by a path
of node sequence. Because the concatenation operation
does not have a uniform representation in XPath used in

XML-Schema, Buneman et al.[20] have proposed an
alternative syntax. For identifying nodes in an XML tree,
we use their path languages calledPLs, PLw and PL,
whereε represents the empty path,l is a node label in
E ∪ A∪ {S}, and “.” is the concatenation of two path
expressions. InPLs, a valid path is the empty path or the
sequence of labels of nodes.PLw allows the symbol “”
which can match any node label.PL includes the symbol
“ ∗” matching any sequence of node labels. The notation
P ⊆ Q denotes that the language defined byP is a subset
of the language defined byQ. For the path expressionP
and the noden, the notationn[P] denotes the set of nodes
in T that can be reached by following a path that
conforms toP from n. The notation[P] is the abbreviation
for r[P], wherer is the root inT. The notation|P| denotes
the number of labels in the path.|ε | is 0, and “” and “ ∗”
are both counted as labels with length 1. The paths which
are merely sequences of labels are called simple paths.

2.3 Definitions on keys

We firstly recall and discuss definitions on keys for XML
from [19,20] and further propose definitions of the strong
key and the minimal key.

Definition 2.2. A key constraint ϕ for XML is an
expression (Q′,(Q,{P1, ...,Pk})) where Q′, Q and
Pi(1≤ i ≤ k) are path expressions.Q′ is called the context
path,Q is called the target path, andPi is called the key
path of ϕ. If Q′ = ε, ϕ is called an absolute key,
otherwiseϕ is called a relative key. The expression(Q,S)
is the abbreviation of(ε ,(Q,S)), whereS= {P1, ...,Pk}.

Definition 2.3. Let ϕ = (Q′,(Q,{P1, ...,Pk})) be a key
expression. An XML treeT satisfies ϕ, denoted as
T |= ϕ, if and only if for everyn ∈ [Q′], given any two
nodesn1,n2 ∈ n[Q], if for all i, 1 ≤ i ≤ k, there exist
z1 ∈ n1[Pi] andz2 ∈ n2[Pi] such thatz1 =v z2, thenn1 = n2.
That is,

∀n1,n2 ∈ n[Q]

((

∧

1≤i≤k

∃z1 ∈ n1[Pi]∃z2 ∈ n2[Pi](z1 =v z2)

)

→ n1 = n2

)

The definition 2.3 of keys is quite weak. The key
expression could hold even though key paths are missing
at some nodes. This definition is consistent with the
semi-structured nature of XML, but does not mirror the
requirements imposed by a key in relational databases,
i.e. uniqueness of a key and equality of key values. The
definition 2.4 meets both two requirements.

Definition 2.4. Let ϕ = (Q′,(Q,{P1, ...,Pk})) be a key
expression. An XML treeT satisfiesϕ, if and only if for
any n ∈ [Q′], (1) For any n′ in n[Q] and for all
Pi(1≤ i ≤ k), Pi exists and is unique atn′. (2) For any two
nodesn1,n2 ∈ n[Q], if n1[Pi] =v n2[Pi] for all i, 1≤ i ≤ k,
thenn1 = n2.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2005-2016 (2014) /www.naturalspublishing.com/Journals.asp 2007

The definition 2.4 of keys is stronger than the
definition 2.3, and the key paths are required to exist and
be unique. Note that there probably are empty tags in
XML documents. A consequence is that some nodes in
n′[Pi] are null-valued, which is allowed in the definition
2.4. However the attributes of the primary key in
relational databases are not allowed null. Here we explore
a strong key definition which captures this requirement.

Definition 2.5. Let ϕ = (Q′,(Q,{P1, ...,Pk})) be a key
expression. An XML treeT satisfiesϕ, if and only if for
any n ∈ [Q′], (1) For any n′ in n[Q] and for all
Pi(1≤ i ≤ k), Pi exists and is unique atn′, and all nodes in
n′[Pi] are not null valued. (2) For any two nodesn1,
n2 ∈ n[Q], if n1[Pi] =v n2[Pi] for all i, 1 ≤ i ≤ k, then
n1 = n2.

In the definition 2.5 of strong keys, the key paths are
required to exist, be unique and not have a null value. Note
that in relational databases, a tuple can be identified by
more than one group of key attributes. Analogously, given
a context pathQ′ and a target pathQ in the XML treeT,
there exist probably multiple setsSof key paths such that
T |= (Q′,(Q,S)).

Definition 2.6. Let ϕ = (Q′,(Q,S)) be a key expression
satisfied in the XML treeT. If for any key expressionϕ ′ =
(Q′,(Q,S′)) satisfied inT, |S| ≤ |S′|, thenϕ is called the
minimal key.

In other words, a minimal key has the least number of
key paths with the determinedQ′ andQ. Note that there
are probably multiple minimal keys with the fixedQ′ and
Q.

2.4 Node equality and value equality

The key definition involves node equality and value
equality.

1. Value equality
Value equality in XML-Schema is restricted to text

nodes. Buneman et al.[19] propose a more general way of
describing value equality by using tree equality. The
example they provided is that as a key forpersonnodes,
name may have a complex structure consisting of
first-nameand last-namesubelements. However, sinceS
in (Q′,(Q,S)) is the set consisting of multiple key paths,
the key with a complex structure can be decomposed to
several simple key paths. Forpersonnodes, the union of
name.first-name and name.last-name can substitute for
name. Hence in this paper we use the equality of text
nodes but not tree quality.n1 =v n2 denotes thatn1 andn2
are value equal.

2. Node equality
In an XML tree, a path starting from the root uniquely

identifies a node. The nodesn1 andn2 are equal, denoted as
n1 = n2, indicating thatn1 andn2 represent one node in the
tree. In a relational database, the key uniquely identifies a
record. In XML data, the key is analogously considered to
uniquely identify a node, that is, the two distinct nodesn1

andn2 certainly cannot have identical values on key paths.
However, XML data is flexibly organized, and different
nodes may indicate the same entity in real-world. In the
example in Figure1, both theteachernodes represent Li
Wen. Node equality needs more consideration especially
when discovering absolute keys in the large range of the
entire document.

Fig. 1: An example of XML document

We redefine the node equality. If one of the two nodes
n1 and n2 contains all information of the other, the two
nodes are considered to represent the same entity, and
consequently they are equal. In XML trees, LetT(n) be
the subtree rooted at noden. n1 andn2 represent the same
entity if and only if T(n1) is the subgraph ofT(n2), or
vice versa, wheren1 matchesn2.

3 Approximate measures for keys

Due to the unclearness of keys in XML data, Gösta
Grahne et al. [23] propose approximate keys with
measures of their support and confidence similar to those
of association rules [24]. The support and confidence is
defined respectively according to the number of branches
of key paths and the number of distinct values on key
paths. Here we give the measures in another way. For
convenience we consider every element node having a
child of text node. In particular, if the element has no text,
its child text node is treated as null-valued.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2008 Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

3.1 The support of keys

Given a noden, let size(n) be the number of child nodes
of n, indicating the size ofn. For a key expressionϕ =
(Q′,(Q,S)) in an XML tree, the size ofϕ in the treeT is

size(T,ϕ) = max{size(n) | n∈ [Q′
.Q]} (1)

The size ofϕ is the maximum size of nodes reached
by Q′.Q of ϕ from root. For those nodes in[Q′.Q] with
extremely small size, e.g. those leaf nodes without children
whose size is zero, it becomes meaningless to find their
key paths. Thereforemin size is set to be the minimum
threshold of node size. The support ofϕ in the whole XML
treeT is

support(T,ϕ)=

{

0 if size(T,ϕ)< min size

∑n′∈[Q′] |n
′[Q]| otherwise

(2)
The support ofϕ is assigned to 0 when the size ofϕ

is less thanmin size. Consequently, the category of nodes
with too small size is abandoned. When the size ofϕ is not
less thanmin size, the support ofϕ is the number of nodes
in [Q′.Q].

3.2 The confidence of keys

Section 2.3 gives several definitions on keys for XML,
among which the definition 2.3 is the weakest, the
definition 2.4 is stronger, and the definition 2.5 is the
strongest. The choice of key definitions will affect the
final mining results and thus should be ultimately
determined by practice. In the process of mining keys,
when choosing the strong key definition, probably some
meaningful keys are not discovered due to missing
information in the XML documents. While the weak key
definition probably results in meaningless key paths.
Therefore we utilize the confidence for a compromise.

Given a key expressionϕ = (Q′,(Q,S)) in an XML
treeT, S= {P1,P2, ...,Pk}. Define a two-valued function
vals(n,P), wheren is a node andP a path expression. If
there existsz∈ n[P] andz is not null valued,vals(n,P) is
assigned to 1, and otherwise 0. The confidence ofϕ in the
treeT is

con f idence(T,ϕ) =
min{∑n′∈[Q′] ∑n∈n′[Q] vals(n,Pi)|Pi∈S}

support(T,ϕ)
(3)

In particular, we setcon f idence(T,ϕ) = 1 when
support(T,ϕ) = 0.

The support ofϕ is defined associated with target
paths and the confidence associated with key paths. The
key paths ofϕ are computed ifϕ satisfies the specified
support thresholdmin sup. Specify the confidence
thresholdmin con f, allowing null values or missing paths

but confine their number. In particular, with
min con f = 0, null values or missing paths have no
impact on satisfaction ofϕ, and withmin con f = 1, they
are not allowed.

3.3 The measures of absolute keys

An absolute key is a special case of a relative key. Given
an absolute key expressionϕ = (Q,S) in the XML treeT,
where Q′ is ε and omitted. The size, support and
confidence ofϕ are

size(T,ϕ) = max{size(n)|n∈ [Q]} (4)

support(T,ϕ) =

{

0 if size(T,ϕ)< min size
|[Q]| otherwise

(5)

con f idence(T,ϕ) =
min{∑n∈[Q] vals(n,Pi)|Pi ∈ S}

support(T,ϕ)
(6)

3.4 An illustration of approximate measures

We now illustrate the approximate measures by an
example. Table1 shows the support and confidence of
some key expressions in the XML document in Figure2
by using two measures. Thesup1 and con f1 are
calculated as discussed above, and thesup2 andcon f2 are
calculated as introduced by Gösta Grahne et al [23].

The measure results for the third and fifth key
expression are significantly different. The confidences of
(∗.course, {tutor}) are 40% and 100% receptively.
Considering elements oftutor only exist in two elements
of course, it is not reasonable to regardtutor as the key of
course, and hence the first result is more acceptable. For
the relative key expression (courses.course, (teacher,
{name})), two confidences vary significantly. Itscon f2 is
the minimum confidence of all subtrees rooted at the
nodes in [courses.course], while in our measure all
subtrees contribute to the ultimate confidencecon f1.
Hence our measure of the confidence is more
comprehensive and anti-noise.

In addition, the second key expression (∗.course,
{cname, dept}) also has distinct measure values. The
second support is the number of key path branches in
those subtrees rooted at the nodes in [∗.course], while
the support in our measure depends on the number of
target path branches but not key path branches. As a
consequence, our approach needn’t compute the support
for every key path combination and hence has a smaller
time cost.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2005-2016 (2014) /www.naturalspublishing.com/Journals.asp 2009

Fig. 2: An example of XML document

Table 1: The support and confidence by two measures
no. key expression sup1 conf1 sup2 conf2
1 (∗.course,{cno}) 5 5/5 5 5/5
2 (∗.course,{cname,dept}) 5 4/5 10 9/10
3 (∗.course,{tutor}) 5 2/5 6 6/6
4 (∗.teacher,{name}) 7 6/7 7 6/7
5 (courses.course, (teacher,{name})) 7 6/7 7 0/1

4 The target set of keys and its minimal cover

Philosophically, if a tuple is treated as representing some
real world entity, the key provides an invariant connection
between the tuple and entity. In relational databases, the
key uniquely identifies a tuple and is the link between the
tuple and entity [19]. In XML databases, the node set of
n[Q](n∈ [Q′]) is analogous to a set of tuples in a relation
and the key paths to the key attributes of the relation. In
an empirical study of mining keys, we wish to find out the
accurate and meaningful link between the tuple and its
corresponding entity. Moreover, an XML document
possibly has enormous number of keys and thus it is

space consuming to store all of them. Here we suggest a
target set of keys and its reduced representation, i.e. its
non-redundant cover.

4.1 The target set of keys to be mined

Due to the flexibility of XML data, the nodes associated
with a special category of entities may appear at an
arbitrary position in the XML tree. The keys that can
accurately and globally identify those nodes are the
absolute keys in form of(∗ .l ,S), wherel is an element
label.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2010 Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

Proposition 4.1. If T |= (∗ .l ,S), and for the pairwise
context pathQ′ and target pathQ in T, Q has the suffix of
l , thenT |= (Q′,(Q,S)).

[Q′.Q] ⊆ [∗ .l] sinceQ has the suffix ofl . Obviously,
Scan certainly identify thel nodes in the scope within the
subtree if it can identify them in the entire XML tree. The
absolute keys of(∗ .l ,S) are of special significance.

This paper aims to find out the setKG of key
expressions holding inT. KG contains all absolute keys of
(Q,S) and relative keys of (Q′,(Q,S)), where
S= {P1, ...,Pk}. The paths of keys are restricted to simple
paths and the key paths forQ′ andQ can globally identify
a special category of nodes. More precisely, we have the
following requirements:

(1) The path expressions ofQ′, Q andPi(1≤ i ≤ k) are
all in PLs.

(2) Let l be the suffix node label ofQ. If
T |= (Q′,(Q,S)) or T |= (Q,S), thenT |= (∗ .l ,S).

Let KI be the set of key expressions in form of(∗ .l ,S)
satisfied inT, that isKI = {(∗ .l ,S) | T |= (∗ .l ,S)}. KG
can be obtained by two-phase reasoning starting fromKI .

4.2 The selected inference rules

For convenience we recall some terminology about
logical implication on keys by G̈osta Grahne et al.[23].
Given two key expressionsϕ1 andϕ2, if every XML tree
T that satisfiesϕ1 also satisfiesϕ2, then ϕ1 logically
implies ϕ2, denoted asϕ1 |= ϕ2. Given a setK of key
expressions and a key expressionϕ, if every XML treeT
that satisfies all key expressions inK also satisfiesϕ, then
K logically impliesϕ, denoted asK |= ϕ. K+ denotes the
set of key expressions implied byK, that is
K+ = {ϕ | K |= ϕ}, and K+ is called the closure ofK.
For a key expressionϕ ∈ K, if K\{ϕ} |= ϕ, that is
{K\{ϕ}}+ = K+, ϕ is called a redundant key inK. For
the target setKG of key expressions, we wish to find a
non-redundant setK of key expressions such that
K+ = KG. K is called a minimal cover forKG.

Buneman et al.[20] propose the sound and complete
axiomatization, solving the problem of key implication
for XML. In order to compute theKG starting from the
initial set KI of absolute keys, only two inference rules
are needed.

R1 : (Q′,(Q1,S)),Q2 ⊆ Q1 ⇒ (Q′,(Q2,S))
R2 : (Q′,(Q1.Q2,S))⇒ (Q′.Q1,(Q2,S))
R1 is the rule of target-path-containment andR2 is the

rule of context-target. LetK be the set of absolute keys in
KG. We firstly computeK from KI by applying ruleR1, and
thenKG can be obtained fromK by applying ruleR2.

4.3 The minimal cover and reasoning

Now we are concerned with showing thatKG can be
inferred fromKI by the rules ofR1 andR2. A two-phase
inference process for keys is as follows.

1. Phase I: InferK from KI
K can be inferred fromKI with R1. The context path

Q′ in R1 is ε sinceKI andK contain only absolute keys.
The ruleR1 is complete forK. That is, for every key

expressionϕ ∈ K, ϕ is inferable fromKI by applyingR1.
For a key expression(Q,S) in K, Q is a simple path and
has the suffix of node labell . Because(∗ .l ,S) ∈ KI and
Q ⊆ ∗ .l , (Q,S) can be inferred from(∗ .l ,S) by using
R1.

It should be noted that if we set the thresholds of
support and confidence, the keys inferred fromKI are
probably fake keys which don’t satisfy the specified
thresholds.

2. Phase II: inferKG from K
Here we prove thatK is a minimal cover for the target

setKG of key expressions by usingR2.

Proposition 4.2.By applying the ruleR2, K is a minimal
cover forKG.

Proof. We will show that K+ = KG and K is
non-redundant.

(1) K+ = KG. The setKG contains absolute keys and
relative keys. In the following, we distinguish two different
cases.

Case 1. For any absolute key(Q,S), (Q,S) ∈ KG iff.
(Q,S) ∈ K due to the fact that the subsetK of KG contains
all absolute keys ofKG.

Case 2. Consider the keys ofϕ1 = (Q′.Q,S) and
ϕ2 = (Q′,(Q,S)). ϕ2 can be inferred fromϕ1 by usingR2.
Due to the definitions of support and confidence it follows
that support(T,ϕ1) = support(T,ϕ2) and
con f idence(T,ϕ1) = con f idence(T,ϕ2). Hence, no fake
key is generated in reasoning by the ruleR2. Here that
ϕ1 ∈ K iff. ϕ2 ∈ KG results from the following reasons.
On the one hand, ifϕ1 = (Q′.Q,S), equivalent to
(ε ,(Q′.Q,S)), is in K, by the rule R2 we obtain
ϕ2 = (ε .Q′,(Q,S)) = (Q′,(Q,S)). Q′.Q is in PLs, and
thenQ′ andQ are both inPLs. Henceϕ2 is in KG by the
requirements of keys inKG. On the other hand, ifϕ2 is in
KG, by the ruleR2, ϕ2 can be inferred fromϕ1, equivalent
to (ε ,(Q′.Q,S)). Q′ andQ are both inPLs, and thenQ′.Q
is also inPLs. Henceϕ1 is in K.

(2) K is non-redundant. The setK contains no relative
keys. For any key expressionϕ in K, ϕ is an absolute key
and is not inferable fromK\{ϕ} by applying R2.
ThereforeK is non-redundant.�

5 Key mining process in detail

5.1 A sketch of key mining process

There could be a large number of key expressions inKG.
Due to thatK is a compact representation forKG by
proposition 4.2 in Section 4, this paper only discovers the
setK and hence solves the storage problem of enormous
keys. Here we propose the procedure to obtain the
minimal coverK of KG. A two-step key mining process is

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2005-2016 (2014) /www.naturalspublishing.com/Journals.asp 2011

followed, consisting of discovery and inference. In
practice, the measures of support and confidence can be
used if needed.

1. The discovery step. We find outKI , the original set
of key expressions in form of(∗ .l ,S) which hold in the
XML tree T. This step is divided into two phases. In the
first phase, the target paths of∗ .l satisfying the support
threshold are generated. In the second phase, for each
target path, the setS of key paths which satisfies the
confidence threshold is generated. Note that here only
minimal keys are discovered.

2. The inference step. The setK is inferable fromKI
with R1. Apply the rule R1 to every key expression
(∗ .l ,S) in KI . By traversing the XML tree, the path set
of QS= {Q1,Q2, ...,Qn} is generated, whereQi is in PLs
andQi ⊆ ∗ .l , that is,Qi is a simple path with the suffix
of l . The key expressions of(Qi ,S)(1 ≤ i ≤ n) are
obtained. Here we mine approximate keys with the
support and confidence thresholds, and therefore need to
examine whether the keys of(Qi ,S) satisfy the thresholds
and remove those fake keys.

5.2 Algorithm

Here we give the algorithms of finding target paths and
finding key path sets in the discovery step.

5.2.1 Generation of target paths

To discover those absolute key expressions in form of
(∗ .l ,S), S= {P1,P2, ...,Pn}, it needs to find all target
paths with support larger thanmin supfirstly. The symbol
“ ∗” matches any path and the list of node labels is
obtained by traversing the whole tree preorderly. Let
L = {l i}, C = {ci} and S= {si} be three lists, wherel i
denotes the label of element nodes,ci denotes the number
of nodes with labell i , andsi denotes the maximum size of
the element nodes with labell i . Let size(e) be the size of
the element nodee, i.e. the number of children ofe. The
algorithm TargetPathgen of finding target paths is
outlined in Figure 3, where for each target path
∗ .l i ∈ TP, the support of(∗ .l i ,S) is supi , supi ∈ SP.

5.2.2 Generation of key path sets

Generation of key path sets for a fixed target path has two
major steps. The first step is to find candidate key paths.
The second step is to check whether a set of key
expressions are satisfied in an XML document and select
those suitable subsets of candidates.

For an key expressionϕ = (Q,S) with the fixed target
pathQ in the XML treeT, let CP be the set of candidate
key paths,CP = {P′

1,P
′
2, ...,P

′
m}. P′

i ∈CP if and only if:

∑n∈[Q] vals(n,P′
i)

support(T,ϕ)
≥ min con f

By the definition of confidence,
con f idence(T,ϕ) ≥ min con f if and only if S ⊆ CP.
ThereforeS can be generated by checking whether the
subsets ofCP are the set of key paths forϕ. The algorithm
KeySetgen of discovering the key setKI = {(∗ .l i ,S)} is
summarized in Figure4. Note that the keys produced by
this algorithm are minimal keys.

6 Experimental study

In this section, we perform experiments on two categories
of XML datasets to evaluate our approach. The first
category of datasets is from XMark which is an XML
benchmark project, and the second is from UW XML
Repository. The algorithms are implemented in the
C/C++ language and programs are executed on Microsoft
Visual C++ 6.0. All experiments are conducted on
computers with an INTEL Core 2DuoProcessorG630 and
3G memory, running Windows XP.

6.1 Experiments on the XMark datasets

XML data generatorxmlgenproduces scaled documents
according to the DTD specified in the project of XMark.
Further details are provided on
http://www.xml-benchmark.org. Ten XML documents
D1-D10 with different size are generated as benchmark
datasets for our experiments.

Here some experiments have been performed to
monitor the time needed to discover the keys in the setKI
and infer new keys fromKI to construct the setK, i.e. the
minimal cover for KG. Figure 5 shows the empirical
results obtained on the ten benchmark XML documents
with different size, given the minimum support threshold
min sup = 30 with min size= 2 and the minimum
confidence thresholdmin con f = 80%. The discovery
time and the inference time indicate the running time of
discovering the keys inKI and inferring the setK from KI
respectively, and their sum is the total time. These results
indicate the good scalability of our mining approach since
the total running time is nearly linear in the size of the
XML document. The increase of the inference time is
slight while that of the discovery time is much steeper.
The discovery step of findingKI is much more time
consuming, compared with which the time cost of
inference is negligible.

Figure 6 shows the performance of the total mining
time on the documents D1, D5 and D10 with various
confidence thresholds, givenmin sup= 30. All the three
time curves are downward generally. The curves seem
smooth whenmin con f is less than 85%. The reason is
that almost all the keys with confidence greater than 50%
have a confidence not less than 85%. But the mining time
decreases slightly whenmin con f is greater than 85%,
because the keys with confidence not satisfying the

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2012 Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

Fig. 3: Algorithm TargetPathgen

Fig. 4: Algorithm KeySetgen

Fig. 5: Performance on the ten XMark datasets(D1-D10) Fig. 6: Performance on D1, D5 and D10, givenmin sup= 30

Table 2: Original keys discovered in D10
no. key support confidence
1 (∗.item,{id}) 2175 100%
2 (∗.mail,{from}) 2139 100%
3 (∗.mail,{text}) 2139 90%
4 (∗.category,{id}) 100 100%
5 (∗.category,{name}) 100 100%
6 (∗.edge,{from, to}) 100 100%
7 (∗.person,{id}) 2550 100%
8 (∗.address,{city, street}) 1256 100%
9 (∗.address,{street, zipcode}) 1256 100%
10 (∗.openauction,{id}) 1200 100%
11 (∗.openauction,{itemref.item}) 1200 100%
12 (∗.bidder,{date, increase, personref.person, time}) 6182 100%
13 (∗.interval,{start, end}) 1200 100%
14 (∗.closedauction,{itemref.item}) 975 100%

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2005-2016 (2014) /www.naturalspublishing.com/Journals.asp 2013

Table 3: The minimal cover for keys of D10
no. key support confidence

1

(site.regions.africa.item,{id}) 55 100%
(site.regions.asia.item,{id}) 200 100%

(site.regions.australia.item,{id}) 220 100%
(site.regions.europe.item,{id}) 600 100%

(site.regions.namerica.item,{id}) 1000 100%
(site.regions.samerica.item,{id}) 100 100%

2

(site.regions.africa.item.mailbox.mail,{from}) 53 100%
(site.regions.asia.item.mailbox.mail,{from}) 210 100%

(site.regions.australia.item.mailbox.mail,{from}) 212 100%
(site.regions.europe.item.mailbox.mail,{from}) 590 100%

(site.regions.namerica.item.mailbox.mail,{from}) 986 100%
(site.regions.samerica.item.mailbox.mail,{from}) 88 100%

3

(site.regions.africa.item.mailbox.mail,{text}) 53 89%
(site.regions.asia.item.mailbox.mail,{text}) 210 90%

(site.regions.australia.item.mailbox.mail,{text}) 212 92%
(site.regions.europe.item.mailbox.mail,{text}) 590 91%

(site.regions.namerica.item.mailbox.mail,{text}) 986 90%
(site.regions.samerica.item.mailbox.mail,{text}) 88 90%

4 (site.categories.category,{id}) 100 100%
5 (site.categories.category,{name}) 100 100%
6 (site.catgraph.edge,{from, to}) 100 100%
7 (site.people.person,{id}) 2550 100%
8 (site.people.person.address,{city, street}) 1256 100%
9 (site.people.person.address,{street, zipcode}) 1256 100%
10 (site.openauctions.openauction,{id}) 1200 100%
11 (site.openauctions.openauction,{itemref.item}) 1200 100%
12 (site.openauctions.openauction.bidder,{date, increase, personref.person, time}) 6182 100%
13 (site.openauctions.openauction.interval,{start, end}) 1200 100%
14 (site.closedauctions.closedauction,{itemref.item}) 975 100%

threshold are removed, saving a small amount of
inference time.

Table2 tabulates the original setKI of key expressions
discovered in the XML file D10 and their support and
confidence. Table3 tabulates the setK of key expressions
inferred from that in Table2, i.e. the minimal cover for
KG. Due to the regularness of the data generated by
xmlgen, most keys have confidence 100%. Comparing the
document D10 with Table2 and Table3, it is obvious that
almost all meaningful keys in the file have been mined,
which shows that the key mining method presented in this
paper is effective.

6.2 Experiments on the UW datasets

In mining keys from UW datasets, we set a minimum
length threshold for key paths. In other words, a depth
bound is used to prevent the search process from running
away toward nodes of unbounded depth from the node at
the target path. We select four xml files of
SIGMODRecord, reed, uwm and wsu with various node
depth. Further details are provided on
http://www.cs.washington.edu/research/xmldatasets/. The
min sup is set to 5 withmin size= 2 for all, while the

min con f is set to 80% for SIGMODRecord, reed and
wsu and 50% for uwm.

The time costs on the four test files are shown in
Figure 7-10, where “-1” represents a unbounded depth,
and the keys discovered and inferred are listed in Table4
and Table5. In each of these figures the curves rise at first
and then flatten with the depth bound increasing. In the
case of SIGMODRecord with max-depth 6 and avg-depth
5.14107, the key paths discovered with unbounded depth
are all have length 1, and therefore the depth bound 1 is
sufficient to find out all key paths. From Figure7, setting
the depth bound to a smaller value helps reduce the
discovery time significantly. Intuitively, this is due to that
the attribute or element nodes as keys are usually close to
the target nodes in hierarchical XML data.

7 Conclusions

At present, many achievements have already been
attained on the issue of XML keys. However further
studies are still necessary for some practical problems in
mining keys from real XML data. In this paper, we
discuss definitions on keys for XML without considering
foreign keys and DTDs and have proposed a practical

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://www.cs.washington.edu/research/xmldatasets/

2014 Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

Fig. 7: Performance on SIGMODRecord.xml Fig. 8: Performance on reed.xml

Fig. 9: Performance on uwm.xml Fig. 10: Performance on wsu.xml

Table 4: Original keys discovered in four UW XML files
filename key support confidence

SIGMODRecord
(∗.issue,{number, volume}) 67 100%

(∗.article,{endPage, initPage, title}) 1504 100%

reed
(∗.course,{days, regnum}) 703 98%

(∗.time,{start time, endtime}) 703 98%
(∗.place,{Building, room}) 703 93%

uwm
(∗.courselisting, {course}) 2112 100%

(∗.hours,{start, end}) 4575 53%
(∗.bldg and rm, {bldg, rm}) 4575 74%

wsu
(∗.course,{sln}) 3924 95%

(∗.place,{bldg, room}) 3924 100%

Table 5: Minimal covers for keys in four UW XML files
filename key support confidence

SIGMODRecord
(SigmodRecord.issue,{number, volume}) 67 100%

(SigmodRecord.issue.articles.article,{endPage, initPage, title}) 1504 100%

reed
(root.course,{days, regnum}) 703 98%

(root.course.time,{start time, endtime}) 703 98%
(root.place,{Building, room}) 703 93%

uwm
(root.courselisting, {course}) 2112 100%

(root.courselisting.sectionlisting.hours,{start, end}) 4575 53%
(root.courselisting.sectionlisting.bldg and rm, {bldg, rm}) 4575 74%

wsu
(root.course,{sln}) 3924 95%

(root.course.place,{bldg, room}) 3924 100%

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2005-2016 (2014) /www.naturalspublishing.com/Journals.asp 2015

approach for mining keys from XML data. Due to that
keys are usually not be satisfied at 100% in XML data
which has a hierarchical and flexible structure and is
usually integrated from heterogeneous sources, we apply
an improved approximate measure of the support and
confidence for key expressions. To find out all satisfiable
absolute keys and relative keys with simple target and key
paths in an XML tree, an initial set of keys are discovered
firstly and then two phases of reasoning are used. A
reduced set of all target keys are obtained after the first
phase of reasoning. The results of our experiments on ten
benchmark datasets of XMark and the four chosen files of
UW repository show the effectiveness and feasibility of
our approach. A point worth noting is that new keys can
be reasoned about efficiently during the mining process
while the discovery of initial keys is time consuming. In
the future we wish to improve computational efficiency of
the discovery stage with alternative approaches and
further tunings.

Acknowledgement

This work is supported by National Natural Science
Foundation of China (no.61142007), Applied Basic
Research Program of Jiangsu University of Technology
(no.KYY10059) and the Key Laboratory of Cloud
Computing & Intelligent Information Processing of
Changzhou City under Grant No. CM20123004.
Furthermore, we are indebted to the support and
encouragements received from the staff and colleagues of
the school of computer engineering.

References

[1] D. Suciu, On database theory and XML, SIGMOD Record,
30, 39-45 (2001).

[2] W. Fan, L. Libkin. On XML integrity constraints in the
presence of DTDs, J. ACM,49, 368-406 (2002).

[3] W. Fan. XML constraints, in: DEXA Workshops, (2005).
[4] S. Hartmann, S. Link. Expressive, yet tractable XML keys,

in: EDBT, ACM International Conference Proceeding Series,
ACM, 360, 357-367 (2009).

[5] S. Hartmann, S. Link. Efficient reasoning about a robust XML
key fragment, ACM Trans. Database Syst.,34, (article 10)
(2009).

[6] M. Arenas, L. Libkin. A normal form for XML documents,
ACM Trans. Database Syst.,29, 195-232 (2004).

[7] S. Hartmann, S. Link. More functional dependencies for
XML, in: AdBIS, Lecture Notes in Computer Science,
Springer, Berlin,2798, 355-369 (2003).

[8] M. Vincent, J. Liu, C. Liu. Strong functional dependencies
and their application to normal forms in XML, ACM Trans.
Database Syst.,29, 445-462 (2004).

[9] S. Hartmann, T. Trinh. Axiomatising functional dependencies
for XML with frequencies, in: FoIKS, Lecture Notes in
Computer Science, Springer, Berlin,3861, 159-178 (2006).

[10] P. Buneman, W. Fan, J. Simon, S.Weinstein. Constraints for
semi-structured data and XML, SIGMOD Record,30, 47-54
(2001).

[11] W. Fan, J. Siḿeon. Integrity constraints for XML, J.
Comput. Syst. Sci.,66, 254-291 (2003).

[12] Sven Hartmanna, Sebastian Link. Numerical constraints
on XML data, Information and Computation,208, 521-544
(2010).

[13] David M. Kroenke. Database Processing: Fundamentals,
Design and Implementation, Prentice Hall, (2010).

[14] T. Bray, J. Paoli, and C.M. Sperberg-McQueen.
Extensive Markup Language (XML) 1.0. World
Wide Web Consortium(W3C), Feb. (1988).
http://www.w3.org/TR/REC-xml.

[15] A. Layman, E. Jung, E. Maler, and Henry S.
Thompson. XML-Data. W3C Note, January (1998).
http://www.w3.org/TR/1998/NOTE-XML-data.

[16] Henry S. Thompson, David Beech, Murray
Maloney, and Noah Mendelsohn. XML Schema Part
1:Structures, W3C Working Draft, April (2000).
http://www.w3.org/TR/xmlschema-1/.

[17] Md. Sumon Shahriar and Jixue Liu. On Defining Keys for
XML, IEEE 8th International Conference on Computer and
Information Technology Workshops, 86-91.

[18] S. Hartmann, H. Koehler, S. Link, T. Trinh, J.Wang, On the
notion of an XML key, in: SDKB, Lecture Notes in Computer
Science, Springer, Berlin,4925, 103-112 (2008).

[19] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem
Hara and Wang-Chiew Tan. Keys for XML, Comput.
Networks,39, 473-487 (2002).

[20] P. Buneman, S. Davidson, W. Fan, C. Hara, W. Tan.
Reasoning about Keys for XML, Inform. Syst.,28, 1037-
1063 (2003).

[21] Flavio Ferrarotti, Sven Hartmann, Sebastian Link, etc.
Performance analysis of algorithms to reason about XML
keys, Database and Expert Systems Applications, Lecture
Notes in Computer Science,7446, 101-115 (2012).

[22] Md. Sumon Shahriar and Jixue Liu. On the Performances
of Checking XML Key and Functional Dependency
Satisfactions, On the Move to Meaningful Internet Systems:
OTM 2009, Lecture Notes in Computer Science,5871, 1254-
1271 (2009).

[23] Gösta Grahne and Jianfei Zhu. Discovering Approximate
Keys in XML Data. CIKM, 453-460 (2002).

[24] Jiawei Han, Micheline Kamber and Jian Pei. Data Mining:
Concepts and Techniques, 3rd ed[M]. Morgan Kaufmann
Publishers. July (2011).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/1998/NOTE-XML-data
http://www.w3.org/TR/xmlschema-1/

2016 Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

Yijun Liu got her
bachelor’s degree in
engineering from
Nanjing University in
2000, her Master’s degree
in engineering from Nanjing
University in 2003. She
currently works in School
of Computer Engineering
of the Jiangsu University of

Technology. Her research interests include machine
learning, data mining and intelligent information system.

Feiyue Ye received
the PhD degree from College
of Information Science
and Technology, Nanjing
University of Aeronautics
and Astronautics, in June
2006 and his Masters degree
(by research) in engineering
from Xi’an University of
Architecture and Technology

in 1997 and he got his bachelor’s degree in engineering
from Xian University of Architecture and Technology in
1984. He currently works in the Jiangsu University of
Technology. He worked in School of Computer and
Information Science, the University of South Australia as
a visiting scholar from 07 Mar 2009 to 08 Sept. 2009. His
current research interests include data mining and
intelligent information system. Feiyue Ye has published
more than 30 papers in journals and conference in
databases and data mining (DKE, Control and Decision,
LNCS, etc).

Jixue Liu got his
bachelor’s degree in
engineering from Xian
University of Architecture
and Technology in 1982,
his Master’s degree (by
research) in engineering from
Beijing University of Science
and Technology in 1987, and
his PhD in computer science
from the University of South

Australia in 2001. He currently works in the University of
South Australia. His research interests include view
maintenance in data warehouses, the transformation of
data, constraints, and queries between XML and
relational data, XML data and integrity constraint
integration and transformation, data privacy, trust
management on the internet, and integrity constraint
discovery from data. Jixue Liu has published in world’s
top journals in Databases (TODS, JCSS, TKDE, Acta
Informatica, etc).

Sheng He received
the Ph.D. degree from
Jiangnan University, China.
Currently he is employed
as associate professor
at School of Computer
Engineering of Jiangsu
University of Technology,
China. He is mainly engaged
in teaching and research in
the fields of data mining and

bioinformatics. He has produced a new network
visualization algorithm named “Fast Grid Layout” which
has been proved to be an efficient network layout
algorithm in the field of bioinformatics.

c© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	Preliminary definitions
	Approximate measures for keys
	The target set of keys and its minimal cover
	Key mining process in detail
	Experimental study
	Conclusions

