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Abstract: Keys are very important for data management. Due to the hierarchioatige and syntactic flexibility of XML, mining
keys from XML data is a more complex and difficult task than from relatidatabases. In discovering keys from XML data there are
some challenges in practice such as unclearness of keys, storaggrimioes keys, efficient mining algorithms, etc. In this paper, in
order to fill the gap between theory and practice, we propose a nquebamate measure of the support and confidence for XML keys
on the basis of the number of null values on key paths. In the mining gsptgerence rules are used to derive new keys. Through the
two-phase reasoning, a target set of approximate keys and its tedetcare obtained. Our research conducted experiments over ten
benchmark XML datasets from XMark and four files in the UW XML Repayitdhe results show that the approach is feasible and
efficient, with which effective keys in various XML data can be discosere

Keywords: XML, keys, support and confidence, key implication

1 Introduction encountered in the practical mining of XML keys, as
] i pointed out in R3]. Firstly, due to the reason that the
The eXtensible Markup Language (XML) is @ common semj-structured XML data is usually integrated from
form of semi-structured documents and data on the W0”dmultiple heterogeneous data sources and provides a high
Wide Web, and XML databases usually store gegree of syntactic flexibility, there could be no clear
semi-structured data integrated from various types of datfkeys, that is, keys can not be expected to be satisfied at
sources. Considered to be one of the most important angggos in the data. Secondly, an XML database may have a
challenging areas in the XML studies, integrity |arge number of keys and therefore we should consider
constraints attract much attentioh 2,3]. Much work has o to store them appropriately. Thirdly, it's important to
been done in applying traditional integrity constraints in find out the keys holding in a given XML dataset in an
relational databases to XML databases over the lasgfficient way. Currently there is not much work in the
decade, such as key4,§], functional dependencie$[7, |iterature in practical mining of keys from XML data.
8,9], path constraints1(0], inclusion constraintslil] and  Gpsta Grahne et al. ir?p| address this topic adopting a
numerical constraintslp]. As the unique identifiers of  gata mining point of view. To over the first obstacle they
reco_rds, keys are significantly important for da.tabasepropose discovering approximate keys which need not be
design and data managemert3] There are various gatisfied in the whole XML data and allow a violation in a
forms of key specification for XML in the XML Standard gmal| part. The approximation of a key expression is
and XML Schema 14,15,16], and more forms of key measured by the support and confidence similar to those
constraints are proposed and investigated i, 18,19, of association rules. For the second and third problem, a
20]. o o partial order on the set of all keys is defined and finally a
Though key definitions and their implication are requced set of approximate keys are obtained. In this
suggested and researchers have analyzed thefaper, we also investigate the issue of mining

expressiveness and computationall properties in theor}épproximate keys from XML data. Considering the
and experiments2[l,22], there are still some challenges
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characteristics of XML data, we present an alternativeXML-Schema, Buneman et a2Q] have proposed an
general approach for mining keys. We use the mostlternative syntax. For identifying nodes in an XML tree,
influential proposal for XML keys by Buneman et al. in we use their path languages call@ds, PL, and PL,
[19,20]. On the basis of an XML tree model, they wheree¢ represents the empty pathjs a node label in
propose not only the concepts of absolute keys andE UAU {S}, and “” is the concatenation of two path
relative keys independent of schema, which are inexpressions. IfPLs, a valid path is the empty path or the
keeping with the hierarchically structured nature of XML, sequence of labels of nodd3L,, allows the symbol
but also a sound and complete axiomatization for keywhich can match any node labé&lL includes the symbol
implication. By using these inference rules, the keys can‘_«" matching any sequence of node labels. The notation
be reasoned about efficiently. P C Q denotes that the language definedmis a subset
The rest of this paper is organized as follows. Sectionof the language defined bY. For the path expression
2 recalls and discusses some basic notions of XML keysand the node, the notatiom[P] denotes the set of nodes
used through this work. Section 3 proposes thein T that can be reached by following a path that
approximate measures for XML keys and Section 4conforms toP from n. The notatior[P] is the abbreviation
exploits the target set of keys and its minimal cover.for r[P], wherer is the root inT. The notatior|P| denotes
Section 5 contains our implementation of the mining the number of labels in the patfg| is 0, and “” and “_x"
method and the essential ideas of our algorithms. Sectioare both counted as labels with length 1. The paths which
6 contains details of experiments that were performedare merely sequences of labels are called simple paths.
over publicly available XML data to asses the
effectiveness and efficiency of our approach. In Section 7
we conclude this paper highlighting the contributions and2_3 Definitions on keys
future enhancements.

We firstly recall and discuss definitions on keys for XML

. . from [19,20] and further propose definitions of the stron
2 Preliminary definitions key a[nd the] minimal key_p P J

Definition 2.2. A key constraint¢ for XML is an

expression (Q,(Q,{P,...,R})) where @, Q and
. . P (1 <i < k) are path expression& is called the context
An XML document is typically modeled as a labeled tree.géth,Q is c)alledQ[he target path, arRl is called the key

2.1 The tree model for XML

A node of the tree represents an element, attribute of ,.." o 6. If @ — ¢ ¢ is called an absolute key,
text(value), and edges represent the nested relationshi herwiseg is called a relative key. The expressit@, )

between nodes. Node labels are divided into thre o _
pairwise disjoint setsE the finite set of element tagé, fis the abbreviation ofe, (Q. ), whereS= {P,...,Rd).

the finite set of attribute names, and the singlef@),  Definition 2.3. Let ¢ = (Q,(Q,{P.,....R})) be a key
where S represents text (PCDATA). An XML tree is €xpression. An XML treeT satisfies ¢, denoted as
formally defined as follows. T |= ¢, if and only if for everyn € [Q'], given any two
Definition 2.1. An XML tree is a 6-tuple nodesny.np € n[Q), if for all i, 1 <i <k, there exist

T = (,V,lab,ele att,val), where (1)r is the unique root .Zrlhitr}ls[m andz, € np[R] such thaty =y 2, thenm = .

node in the tree, i.e. the document node, amV. (2) V vn ’n € n(Q)

is a finite set containing all nodes ifi. (3) lab is a 12

function fromV to EUAU{S}. For eachv € V, vis an

element iflab(v) € E, an attribute iflab(v) € A, and a ((

text node iflab(v) = S. (4) Bothele and att are partial

functions fromV to V*. For eachv € V, if lab(v) € E,

ele(v) is a sequence of elements and text nodeg and The definition 2.3 of keys is quite weak. The key

att(v) is a set of attributes iv; For eachv' € elegv) or expression could hold even though key paths are missing

V € att(v), V' is the child ofv and there exists an edge at some nodes. This definition is consistent with the

from v to V. (5) val is a partial function fronV to string,  semi-structured nature of XML, but does not mirror the

mapping each attribute and text node to a string. For eachequirements imposed by a key in relational databases,

veV, if lab(v) € Aorlab(v) = S val(v) is a string ofv. i.e. uniqueness of a key and equality of key values. The
definition 2.4 meets both two requirements.

Definition 2.4. Let ¢ = (Q,(Q,{Py,...,R})) be a key
2.2 Path expressions expression. An XML tred satisfiesg, if and only if for

any n € [Q], (1) For anyn’ in n[Q] and for all
In the XML tree, a node is uniquely identified by a path B(1 <i < k), B exists and is unique at. (2) For any two
of node sequence. Because the concatenation operatiorodesns,n; € n[Q], if n1[R] =, nz[R] for all i, 1 <i <Kk,
does not have a uniform representation in XPath used ithenn; = n,.

/\ 3z € m[R]3z € n2[R](z1 =y 22)) — = n2>

1<i<k
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The definition 2.4 of keys is stronger than the andn; certainly cannot have identical values on key paths.
definition 2.3, and the key paths are required to exist andHowever, XML data is flexibly organized, and different
be unique. Note that there probably are empty tags imodes may indicate the same entity in real-world. In the
XML documents. A consequence is that some nodes irexample in Figurel, both theteachernodes represent Li
n'[R] are null-valued, which is allowed in the definition Wen. Node equality needs more consideration especially
2.4. However the attributes of the primary key in when discovering absolute keys in the large range of the

relational databases are not allowed null. Here we explorentire document.

a strong key definition which captures this requirement.

Definition 2.5. Let ¢ = (Q,(Q,{Py,...,”})) be a key
expression. An XML tred satisfiesg, if and only if for

any n € [Q], (1) For anyn’ in n[Q] and for all

R(1<i<Kk), R exists and is unique af, and all nodes in
n'[R] are not null valued. (2) For any two nodes,

ny € n[Q], if ni[R] =y n2[R] for all i, 1 <i <k, then

Ny = nNo.

In the definition 2.5 of strong keys, the key paths are
required to exist, be unique and not have a null value. Note
that in relational databases, a tuple can be identified by
more than one group of key attributes. Analogously, given
a context pattQ’ and a target patlp in the XML treeT,
there exist probably multiple se®of key paths such that
T (Q.(Q.9).

Definition 2.6. Let ¢ = (Q,(Q,S)) be a key expression
satisfied in the XML tred'. If for any key expressiog’ =
(Q,(Q,9)) satisfied inT, |§ < |S|, then¢ is called the
minimal key.

In other words, a minimal key has the least number of
key paths with the determineg@ and Q. Note that there

Lroots
L£oourse
<cnox> 009 </chno=
<chame>Data 3tructure</chames
<teacher>
<namex Li Wen </name-
<gender> Male </genders
Cagex 35 <fages
<jteacher>
LFCOULSex
<Coursel
<cnox 010 </ cnos
<eonamerOperating Systens /chname’-
<teacher>
hname> Li Wen </namne-
<gender> Male </gender>
</teachers
LAcoursex
Liroots

are probably multiple minimal keys with the fix&l and

Fig. 1: An example of XML document

2.4 Node equality and value equality

The key definition involves node equality and value  We redefine the node equality. If one of the two nodes
equality. ny andny contains all information of the other, the two

1. Value equality nodes are considered to represent the same entity, and

Value equality in XML-Schema is restricted to text consequently they are equal. In XML trees, &) be
describing value equality by using tree equality. The€ntity if and only if T(ny) is the subgraph oT (nz), or
example they provided is that as a key firsonnodes, ~ Vice versa, where; matchesn,.
name may have a complex structure consisting of
first-nameand last-namesubelements. However, sin&
in (Q,(Q,9)) is the set consisting of multiple key paths,
the key with a complex structure can be decomposed t@ Approximate measures for keys
several simple key paths. Fpersonnodes, the union of
name.first-name and name.last-name can substitute for
name Hence in this paper we use the equality of text Due to the unclearness of keys in XML datapsta
nodes but not tree qualityiy = np denotes tham; andn, Grahne et al. 23] propose approximate keys with
are value equal. measures of their support and confidence similar to those

2. Node equality of association rules2d]. The support and confidence is

In an XML tree, a path starting from the root uniquely defined respectively according to the number of branches
identifies a node. The nodegsandn, are equal, denoted as of key paths and the number of distinct values on key
ny = Ny, indicating thath; andn, represent one node inthe paths. Here we give the measures in another way. For
tree. In a relational database, the key uniquely identifies a&onvenience we consider every element node having a
record. In XML data, the key is analogously considered tochild of text node. In particular, if the element has no text,
uniquely identify a node, that is, the two distinct noags its child text node is treated as null-valued.
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3.1 The support of keys

Given a noden, let sizgn) be the number of child nodes
of n, indicating the size oh. For a key expressiofp =
(Q,(Q,9) in an XML tree, the size op in the treeT is

sizeT,¢) = max{sizgn) | ne [Q.Q]} 1)

The size of¢ is the maximum size of nodes reached
by Q'.Q of ¢ from root. For those nodes i) .Q] with
extremely small size, e.g. those leaf nodes without childre
whose size is zero, it becomes meaningless to find thei
key paths. Thereforenin_sizeis set to be the minimum
threshold of node size. The supportoin the whole XML
treeT is

0 if sizgT,¢) < min_size

SUDPOI’(T, ¢) = {ZH/E[Q’] |n/[QH otherwise
2)
The support ofp is assigned to 0 when the size @f
is less thaimin_size Consequently, the category of nodes
with too small size is abandoned. When the siz¢ &f not
less thammin_size the support of is the number of nodes

in[Q.Ql.

3.2 The confidence of keys

Section 2.3 gives several definitions on keys for XML,
among which the definition 2.3 is the weakest, the
definition 2.4 is stronger, and the definition 2.5 is the
strongest. The choice of key definitions will affect the
final mining results and thus should be ultimately

determined by practice. In the process of mining keys,
when choosing the strong key definition, probably some
meaningful keys are not discovered due to missing

information in the XML documents. While the weak key
definition probably results in meaningless key paths.
Therefore we utilize the confidence for a compromise.

Given a key expressiopp = (Q',(Q,S)) in an XML
treeT, S= {P,P,...,R}. Define a two-valued function
valg(n,P), wheren is a node and® a path expression. If
there existz € n[P] andzis not null valuedyalg(n,P) is
assigned to 1, and otherwise 0. The confidencg of the
treeT is

MiN{¥ v e (@) Zner[q VAISN,R) R €S}
suppor{T,9)
3)

In particular, we setconfidencéT,¢) = 1 when

suppor(T,¢)=0.
The support of¢ is defined associated with target

confidenceéT,¢) =

but confine their number. In particular, with
min.conf = 0, null values or missing paths have no
impact on satisfaction of, and withmin.conf =1, they
are not allowed.

3.3 The measures of absolute keys

An absolute key is a special case of a relative key. Given
an absolute key expressign= (Q,S) in the XML treeT,
where Q' is £ and omitted. The size, support and
confidence ofp are

siz€T, ¢) = max{siz&n)|n e [Q]} (4)

0
[Ql

if sizeT,$) < min_size
otherwise

suppor(T, ¢) = { )

min{ he(q vals(n,R)|R € S}

confidenc€T,¢) = suppor(T,¢)

(6)

3.4 An illustration of approximate measures

We now illustrate the approximate measures by an
example. Tablel shows the support and confidence of
some key expressions in the XML document in Fig@re
by using two measures. Theup and confy are
calculated as discussed above, andsting andcont, are
calculated as introduced bydGta Grahne et alf].

The measure results for the third and fifth key
expression are significantly different. The confidences of
(_x.course, {tutor}) are 40% and 100% receptively.
Considering elements afitor only exist in two elements
of course it is not reasonable to regatdtor as the key of
course and hence the first result is more acceptable. For
the relative key expression (courses.course, (teacher,
{nam&)), two confidences vary significantly. ltonf is
the minimum confidence of all subtrees rooted at the
nodes in [courses.course], while in our measure all
subtrees contribute to the ultimate confidenoenf.
Hence our measure of the confidence is more
comprehensive and anti-noise.

In addition, the second key expressionx.¢ourse,
{cname, dep!) also has distinct measure values. The
second support is the number of key path branches in
those subtrees rooted at the nodes _indourse], while
the support in our measure depends on the number of

paths and the confidence associated with key paths. Thiarget path branches but not key path branches. As a
key paths of¢ are computed i satisfies the specified consequence, our approach needn’'t compute the support
support thresholdmin.sup Specify the confidence for every key path combination and hence has a smaller
thresholdmin_conf, allowing null values or missing paths time cost.
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<COUrsess
L£O0Urse:
Lono= 009 < /cno-
Lohame>Data Structure</cnamnes
<dept>= C3E < /dept>
<teacher>
<hame> Li Hongwel </hame>-
<title>x Prof. </titlex
<agex 35 <fage>
<jteacher>
<tutor>Cai Qiurus /tutors
<tutor>-Luo Ye /tutor>-
<tutorrLi Bing=hang</tutor>

<Course
<crnox 011 </ chnox
<chnamne=Numerical Methods < fchamnes-
<dept> C3E < /dept>
<teacher>

<hname> Lin Chengsen </name’

< /teacher>

Lfoourses

£oourse
<cnox 012 </ chnox
<chame>Conmunications< /chane>
<dept> «/dept>
<teacher>

<fcoursels <name> Li Wen </name
<Coursel <title> A4.P. <ititle>
<cnox 010 </cna- <j/teacher>
<chamer(perating 3Systens /chamne>- <teacher>
<dept> C3E < /deptl- <hname>x Zh Lin </name-
<teacher> </teachers>
<namel> Wang Wei < /namel <jfcourses
<title> Prof. </ titlel <Course
<fteacher> <chno> 110 < /fcho-
<Lteacher> <chamne=Nunerical Methods</chnane>
<hame> Liu Daoya </hane>- <dept> MATH </dept>
< /teacher:- <teacher:-
<tutorrJiang Hongfens /ftutors <namel< fnane
Ltutor>Wang Bo<stutors <title>= Prof. </title>
<tutor>Chen Dan</tutor> <j/teacher>
<Ffcourses Lfcourses
Lfocoursess
Fig. 2: An example of XML document
Table 1: The support and confidence by two measures
no. key expression sup conf; sup, confp
1 (-*.course{cno}) 5 5/5 5 5/5
2 (_x.course{cname,def) 5 4/5 10 9/10
3 (x.courseftutor}) 5 2/5 6 6/6
4 (-x.teachefname) 7 6/7 7 6/7
5  (courses.course, (teachéname)) 7 6/7 7 0/1

4 The target set of keys and its minimal cover

space consuming to store all of them. Here we suggest a

%N = =) 2009

target set of keys and its reduced representation, i.e. its
Philosophically, if a tuple is treated as representing somenon-redundant cover.
real world entity, the key provides an invariant connection
between the tuple and entity. In relational databases, the
key uniquely identifies a tuple and is the link between the4.1 The target set of keys to be mined
tuple and entity 19]. In XML databases, the node set of
n[Q](n € [Q]) is analogous to a set of tuples in a relation Due to the flexibility of XML data, the nodes associated
and the key paths to the key attributes of the relation. Inwith a special category of entities may appear at an
an empirical study of mining keys, we wish to find out the arbitrary position in the XML tree. The keys that can
accurate and meaningful link between the tuple and itsaccurately and globally identify those nodes are the
corresponding entity. Moreover, an XML document absolute keys in form of_x.l,S), wherel is an element
possibly has enormous number of keys and thus it idabel.

@© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2010

Y. Liu et. al. : Mining Approximate Keys based on Reasoning...

Proposition 4.1.1f T = (_x.1,S), and for the pairwise
context pathQ’ and target patk in T, Q has the suffix of
| thenT |= (Q.(Q.S)).

[Q.Q] C [-*.1] sinceQ has the suffix of. Obviously,
Scan certainly identify thé nodes in the scope within the
subtree if it can identify them in the entire XML tree. The
absolute keys of_x.l,S) are of special significance.

This paper aims to find out the sétg of key
expressions holding if. Kg contains all absolute keys of
(Q,S and relative keys of (Q,(Q,S), where
S={P,...,R}. The paths of keys are restricted to simple
paths and the key paths f@ andQ can globally identify

1. Phase I: InfeK from K;

K can be inferred fronk, with R;. The context path
Q' in Ry is € sinceK; andK contain only absolute keys.

The ruleRy is complete forK. That is, for every key
expressionp € K, ¢ is inferable fromK; by applyingR;.
For a key expressiofQ,S) in K, Q is a simple path and
has the suffix of node labél Becaus€_x.1,S) € K| and
Q C _«.1, (Q,S) can be inferred fron{_x .|, S) by using
R;.

It should be noted that if we set the thresholds of
support and confidence, the keys inferred frim are
probably fake keys which don’t satisfy the specified

a special category of nodes. More precisely, we have thehresholds.

following requirements:

(1) The path expressions @, QandR (1 <i <k) are
all in PLs.

(2) Let | be the suffix node label ofQ.
TE(Q,(Q9)orT = (Q.S), thenT |= (x I.S).

LetK, be the set of key expressions in form(ok.I, S)
satisfied inT, that isK; = {(_*.1,S) | T = (_x.1,9}. Kg
can be obtained by two-phase reasoning starting om

If

4.2 The selected inference rules

For convenience we recall some terminology about
logical implication on keys by Gsta Grahne et al.[23].
Given two key expressiong; and ¢, if every XML tree

T that satisfiesp; also satisfiesp,, then ¢, logically
implies ¢,, denoted asp; = ¢». Given a setk of key
expressions and a key expressipnif every XML treeT
that satisfies all key expressionskralso satisfieg, then

K logically implies¢, denoted a¥ = ¢. K™ denotes the
set of key expressions implied byK, that is
Kt ={¢ |KE ¢}, andK" is called the closure oK.
For a key expressio € K, if K\{¢} = ¢, that is
{K\{¢}}" =K+, ¢ is called a redundant key id. For
the target seKg of key expressions, we wish to find a
non-redundant setK of key expressions such that
K™ =Kg. K is called a minimal cover foKg.

Buneman et al40] propose the sound and complete
axiomatization, solving the problem of key implication
for XML. In order to compute th&g starting from the
initial set K; of absolute keys, only two inference rules
are needed.

Ri:(Q,(Q1,9),Q0 < Q= (Q,(Q,9)

Ro: (Q,(Q1.Q2,9) = (Q.Q1,(Q2,9)

Ry is the rule of target-path-containment aRglis the
rule of context-target. Le be the set of absolute keys in
K. We firstly computeK from K, by applying ruleR;, and
thenKg can be obtained frord by applying ruleRy.

4.3 The minimal cover and reasoning

Now we are concerned with showing thEg can be
inferred fromK;, by the rules ofR; andR;. A two-phase
inference process for keys is as follows.

2. Phase II: infeKg from K
Here we prove thak is a minimal cover for the target
setKg of key expressions by usirigp.

Proposition 4.2.By applying the ruleR,, K is a minimal
cover forKg.

Proof. We will show that Kt = Kg and K
non-redundant.

(1) KT = Kg. The setkg contains absolute keys and
relative keys. In the following, we distinguish two differte
cases.

Case 1. For any absolute ké.9), (Q,S) € Kg iff.
(Q,S) € K due to the fact that the subdétof Kg contains
all absolute keys ofg.

Case 2. Consider the keys d@f = (Q.Q,S) and
2 = (Q,(Q,9)). ¢ can be inferred frong; by usingRy.
Due to the definitions of support and confidence it follows
that suppor(T, $1) suppor(T, ¢7) and
confidencéT, ¢1) = confidencéT, ¢,). Hence, no fake
key is generated in reasoning by the ridg Here that
¢1 € K iff. ¢2 € Kg results from the following reasons.
On the one hand, if¢; = (Q.Q,S), equivalent to
(£,(Q.Q,9), is in K, by the rule R, we obtain
92 = (£.Q.,(Q9) = (,(Q.9). Q.Q is in PLs, and
then@Q andQ are both inPLs. Henceg, is in Kg by the
requirements of keys iKg. On the other hand, i, is in
Kg, by the ruleRy, ¢, can be inferred frong,, equivalent
to (&,(Q.Q,9)). @ andQ are both inPLg, and thenQ'.Q
is also inPLs. Hencegs is in K.

(2) K is non-redundant. The sKtcontains no relative
keys. For any key expressignin K, ¢ is an absolute key
and is not inferable fromK\{¢} by applying R..
ThereforeK is non-redundariil

is

5 Key mining process in detail

5.1 A sketch of key mining process

There could be a large number of key expressionsdn
Due to thatK is a compact representation féiz by
proposition 4.2 in Section 4, this paper only discovers the
setK and hence solves the storage problem of enormous
keys. Here we propose the procedure to obtain the
minimal coverK of Kg. A two-step key mining process is

© 2014 NSP
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followed, consisting of discovery and inference. In By the definition of confidence,
practice, the measures of support and confidence can beonfidencéT,¢) > minconf if and only if S C Cp.
used if needed. ThereforeS can be generated by checking whether the

1. The discovery step. We find olt, the original set  subsets o€p are the set of key paths fgr. The algorithm
of key expressions in form df .1, S) which hold in the  KeySetgen of discovering the key s&f = {(_x.l;,S)} is
XML tree T. This step is divided into two phases. In the summarized in Figurd. Note that the keys produced by
first phase, the target paths of .| satisfying the support this algorithm are minimal keys.
threshold are generated. In the second phase, for each
target path, the se$ of key paths which satisfies the
confidence threshold is generated. Note that here only; Experimental study
minimal keys are discovered.

2. The inference step. The d¢tis inferable fromkK,
with Ry. Apply the rule Ry to every key expression
(_*.1,9) in K. By traversing the XML tree, the path set
of QS={Q1,Qz,...,Qn} is generated, wher®; is in PLg
andQ; C _x.l, that is,Q; is a simple path with the suffix
of 1. The key expressions ofQ;,S)(1 <i < n) are
obtained. Here we mine approximate keys with the
support and confidence thresholds, and therefore need
examine whether the keys ¢®;, S) satisfy the thresholds
and remove those fake keys.

In this section, we perform experiments on two categories
of XML datasets to evaluate our approach. The first
category of datasets is from XMark which is an XML
benchmark project, and the second is from UW XML
Repository. The algorithms are implemented in the
C/C++ language and programs are executed on Microsoft
t\ﬁsual C++ 6.0. All experiments are conducted on
gomputers with an INTEL Core 2DuoProcessorG630 and
3G memory, running Windows XP.

5.2 Algorithm 6.1 Experiments on the XMark datasets
Here we give the algorithms of finding target paths andXML data generatoxmlgenproduces scaled documents
finding key path sets in the discovery step. according to the DTD specified in the project of XMark.
Further details are provided on
) http://www.xml-benchmark.org. Ten XML documents
5.2.1 Generation of target paths D1-D10 with different size are generated as benchmark

fdatasets for our experiments.

Here some experiments have been performed to
monitor the time needed to discover the keys in thekset
and infer new keys frornk; to construct the seé, i.e. the
minimal cover for Kg. Figure 5 shows the empirical
results obtained on the ten benchmark XML documents
with different size, given the minimum support threshold
minsup = 30 with minsize= 2 and the minimum
confidence thresholdnin.conf = 80%. The discovery
time and the inference time indicate the running time of
discovering the keys iK; and inferring the sek from K|
respectively, and their sum is the total time. These results
indicate the good scalability of our mining approach since
the total running time is nearly linear in the size of the
XML document. The increase of the inference time is
5.2.2 Generation of key path sets slight while that of the discovery time is much steeper.

The discovery step of finding, is much more time
Generation of key path sets for a fixed target path has tw@gonsuming, compared with which the time cost of
major steps. The first step is to find candidate key pathsinference is negligible.
The second step is to check whether a set of key Figure6 shows the performance of the total mining
expressions are satisfied in an XML document and selecime on the documents D1, D5 and D10 with various
those suitable subsets of candidates. confidence thresholds, givenin.sup= 30. All the three

For an key expressiof = (Q,S) with the fixed target time curves are downward generally. The curves seem
pathQ in the XML treeT, let Cp be the set of candidate Smooth whemminconf is less than 85%. The reason is
key pathsCp = {P},P,...,Ph}. P’ € Cp if and only if: that almost all the keys with confidence greater than 50%

have a confidence not less than 85%. But the mining time
Y nejq valsin, R < mi ¢ decreases slightly whemin.conf is greater than 85%,
suppor(T,¢) — n-eon because the keys with confidence not satisfying the

To discover those absolute key expressions in form o
(_x.1,9), S= {P,P,...,P}, it needs to find all target
paths with support larger thamin_supfirstly. The symbol
“_" matches any path and the list of node labels is
obtained by traversing the whole tree preorderly. Let
L ={li}, C={c} andS= {s} be three lists, wherg
denotes the label of element nodgsjenotes the number
of nodes with label;, ands denotes the maximum size of
the element nodes with labkl Let sizde) be the size of
the element node, i.e. the number of children & The
algorithm TargetPatlyen of finding target paths is
outlined in Figure 3, where for each target path
_x.l; € TP, the support of_x .I;,S) issup, sup € SP.
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Input: 3L tree T, node size threshold min_size, support
threshold min_sup. Input: XL tree T, the set 7P of target paths, the set 5P of
Output: the set TF of target paths, the set 87 of supports. suppotts, confidence threshold min conf
Begin Output: the key set &7.
initialize £, C and S'to @, Begin
=1, for each target path * e TF
for each node element ¢ read from T Hfgp 15 the support corresponding to _*/, gp e 5P
if there exists §; €L, such that § = lab(z) Cr=find_candidate_kevpath(T, _*/ sp_ min_conf);
citt; initialize the set £F to &
5 = max{s, size{e)}; =1
else while (£P= @ and k<|Cs])
add h=lablz) to L, o1, = 1 to O and &, = sizeiz) to 5, for each k-subset § of Cp
ket if & is a set of key paths for _*.J
for each label X2 add Sto KP;
support = (5 < min_size)? 0oy, o
if support < min_sup for each key path set S e XF
delete § from L, ¢ from C and & from 5, add the key expression (_*1, 5 to &1,
veturn TFP={ *}| 4 el} and SF={sup; | supi=c; and c; e }; return £3;
End End

Fig. 4: Algorithm KeySetgen
Fig. 3: Algorithm TargetPattgen
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size of the EML documents D1-D10{ME] confidence{™a)

Fig. 5: Performance on the ten XMark datasets(D1-D10)  Fig. 6: Performance on D1, D5 and D10, givetin.sup= 30

Table 2: Original keys discovered in D10

no. key support  confidence
1 (x.item,{id}) 2175 100%
2 (wx.mail, {from}) 2139 100%
3 (-x.mail, {text}) 2139 90%
4 (-x.category{id}) 100 100%
5 (_x.category{name) 100 100%
6 (-*.edge{from, to}) 100 100%
7 (-x.personfid}) 2550 100%
8 (-x.address{city, street) 1256 100%
9 (-x.address{street, zipcodp 1256 100%
10 (-x.openauction,{id}) 1200 100%
11 (-x.openauction,{itemref.iter}) 1200 100%
12 (.bidder,{date, increase, personref.person, fiine 6182 100%
13 (c.interval, {start, end) 1200 100%
14 (x.closedauction,{itemref.itent) 975 100%
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Table 3: The minimal cover for keys of D10

no. key support  confidence
(site.regions.africa.iten{id}) 55 100%
(site.regions.asia.iterdjd}) 200 100%
1 (site.regions.australia.iterfiid }) 220 100%
(site.regions.europe.iterfid}) 600 100%
(site.regions.namerica.iterfid}) 1000 100%
(site.regions.samerica.iterfid }) 100 100%
(site.regions.africa.item.mailbox.maffrom}) 53 100%
(site.regions.asia.item.mailbox.mgifrom}) 210 100%
2 (site.regions.australia.item.mailbox.méfitom}) 212 100%
(site.regions.europe.item.mailbox.mdilrom}) 590 100%
(site.regions.namerica.item.mailbox.médiom}) 986 100%
(site.regions.samerica.item.mailbox.m&ftom}) 88 100%
(site.regions.africa.item.mailbox.mafkext}) 53 89%
(site.regions.asia.item.mailbox.m&fitext}) 210 90%
3 (site.regions.australia.item.mailbox.mdilext}) 212 92%
(site.regions.europe.item.mailbox. méiéxt}) 590 91%
(site.regions.namerica.item.mailbox.matiext}) 986 90%
(site.regions.samerica.item.mailbox.métext}) 88 90%
4 (site.categories.categokyd}) 100 100%
5 (site.categories.categofgame) 100 100%
6 (site.catgraph.edgéfrom, to}) 100 100%
7 (site.people.persoRid}) 2550 100%
8 (site.people.person.addressity, street) 1256 100%
9 (site.people.person.addreséstreet, zipcodp) 1256 100%
10 (site.operauctions.operauction,{id}) 1200 100%
11 (site.operauctions.operauction,{itemref.itent) 1200 100%
12 (site.operauctions.operauction.bidder{date, increase, personref.person, fijne 6182 100%
13 (site.operauctions.operauction.interval{start, end) 1200 100%
14 (site.closedauctions.closeduction,{itemref.iter}) 975 100%

threshold are removed, saving a small amount ofmin.conf is set to 80% for SIGMODRecord, reed and
inference time. wsu and 50% for uwm.

Table2 tabulates the original s& of key expressions The time costs on the four test files are shown in
discovered in the XML file D10 and their support and Figure 7-10, where “-1” represents a unbounded depth,
confidence. Tabl8 tabulates the sé&€ of key expressions and the keys discovered and inferred are listed in Tédble
inferred from that in Table, i.e. the minimal cover for and Tableb. In each of these figures the curves rise at first
Ks. Due to the regularness of the data generated bynd then flatten with the depth bound increasing. In the
xmlgen most keys have confidence 100%. Comparing thecase of SIGMODRecord with max-depth 6 and avg-depth
document D10 with Tablg and Table3, it is obvious that  5.14107, the key paths discovered with unbounded depth
almost all meaningful keys in the file have been mined,are all have length 1, and therefore the depth bound 1 is
which shows that the key mining method presented in thissufficient to find out all key paths. From Figuresetting
paper is effective. the depth bound to a smaller value helps reduce the

discovery time significantly. Intuitively, this is due toath
the attribute or element nodes as keys are usually close to

6.2 Experiments on the UW datasets the target nodes in hierarchical XML data.

In mining keys from UW datasets, we set a minimum

length threshold for key paths. In other words, a depth7 Conclusions

bound is used to prevent the search process from running

away toward nodes of unbounded depth from the node aft present, many achievements have already been
the target path. We select four xml files of attained on the issue of XML keys. However further
SIGMODRecord, reed, uwm and wsu with various nodestudies are still necessary for some practical problems in
depth. Further details are provided on mining keys from real XML data. In this paper, we
http://www.cs.washington.edu/research/xmldatasd@isé  discuss definitions on keys for XML without considering
min_supis set to 5 withmin_size= 2 for all, while the  foreign keys and DTDs and have proposed a practical
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Table 4: Original keys discovered in four UW XML files
filename key support  confidence
(_x.issue,{number, volumeg) 67 100%
SIGMODRecord (_x.article,{endPage, initPage, tif 1504 100%
(-x.course{days, regnum}) 703 98%
reed (ux.time, {starttime, endtime}) 703 98%
(—.place {Building, room}) 703 93%
(_x.courselisting, {coursg) 2112 100%
uwm (x.hours,{start, end) 4575 53%
(x.bldg.and.rm, {bldg, rm}) 4575 74%
wsu (-x.course{sIn}) 3924 95%
(x.place {bldg, roon}) 3924 100%
Table 5: Minimal covers for keys in four UW XML files
filename key support  confidence
(SigmodRecord.issu¢number, volumé) 67 100%
SIGMODRecord (SigmodRecord.issue.articles.articjendPage, initPage, tif$ 1504 100%
(root.course{days, regnum}) 703 98%
reed (root.course.time{starttime, endtime}) 703 98%
(root.place{Building, room}) 703 93%
(root.coursdisting, {course) 2112 100%
uwm (root.coursdisting.sectionlisting.hours { start, end) 4575 53%
(root.coursdisting.sectionlisting.bldg and.rm, {bldg, rm}) 4575 74%
wsu (root.course{sin}) 3924 95%
(root.course.placgbldg, roont) 3924 100%
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approach for mining keys from XML data. Due to that [10] P. Buneman, W. Fan, J. Simon, S.Weinstein. Constraints for
keys are usually not be satisfied at 100% in XML data  semi-structured data and XML, SIGMOD Reco8, 47-54
which has a hierarchical and flexible structure and is (2001). _ _ _
usually integrated from heterogeneous sources, we applfi1] W. Fan, J. Sirgon. Integrity constraints for XML, J.
an improved approximate measure of the support and Comput. Syst. Scif6, 254-291 (2003). _ _
confidence for key expressions. To find out all satisfiable[12] Sven Hartmanna, Sebastian Link. Numerical constraints
absolute keys and relative keys with simple target and key " XML data, Information and Computatio08 521-544
paths in an XML tree, an initial set of keys are discovered (2010). _
firsty and then two phases of reasoning are used. A13] Dayld M. Kroenke. Da_tabase P_rocessmg: Fundamentals,
reduced set of all target keys are obtained after the firs 4]DTeS|ggrgnd '?plegirl‘itat";:’ dPregt'{;e Hg”éigrlo_)w Oueen
phase of reasoning. The results of our experiments on te L ooray ' M- oP g :
. Extensive Markup Language (XML) 1.0. World

benchmark datasets of XMark and the four chosen files of . :

. . s Wide Web Consortium(W3C), Feb. (1988).
UW repository show the effectiveness and feasibility of

. L http://www.w3.0rg/TR/REC-xml
our approach. A point worth noting is that new keys can 15]A. Layman, E. Jung, E. Maler, and Henry S.

be reasoned about efficiently during the mining process Thompson. XML-Data. W3C Note, January (1998).
while the discovery of initial keys is time consuming. In http:/Aww.w3.0rg/ TR/1998/NOTE-XML-data
the future we wish to improve computational efficiency of [16] Henry S.  Thompson, David Beech, Murray
the discovery stage with alternative approaches and Maloney, and Noah Mendelsohn. XML Schema Part
further tunings. 1:Structures, W3C Working Draft, April  (2000).
http://www.w3.0rg/TR/xmlschema-1/
[17] Md. Sumon Shahriar and Jixue Liu. On Defining Keys for
XML, IEEE 8th International Conference on Computer and
Acknowledgement Information Technology Workshops, 86-91.
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This Wo_rk IS supp_orted by National Naturql SC|enc_e[ ]notion of an XML key, in: SDKB, Lecture Notes in Cgmputer
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