Hurwitz Type Results for Sum of Two Triangular Numbers

Chandrashekar Adiga*, M. S. Surekha and A. Vanitha

Department of Studies in Mathematics, University of Mysore, Manasagangotri. Mysore 570 006, India

Received: 25 May 2015, Revised: 2 Jun. 2015, Accepted: 3 Jun. 2015
Published online: 1 Jul. 2015

Abstract: Let $t_2(n)$ denote the number of representations of n as a sum of two triangular numbers and $t_{(a,b)}(n)$ denote number of representations of n as a sum of a times triangular number and b times triangular number. In this paper, we prove number of results in which generating functions of $t_2(n)$ and $t_{(1,3)}(n)$ are infinite product. We also establish relations between $t_{(1,3)}(n)$, $t_{(1,12)}(n)$, $t_{(3,4)}(n)$, $t_2(n)$ and $t_{(1,4)}(n)$.

Keywords: Representation of triangular numbers, generating functions, theta functions

Throughout the paper, we employ the standard notation

$$ (a; q)_\infty := \prod_{n=0}^\infty (1 - aq^n), \quad |q| < 1. $$

Ramanujan’s general theta function is defined as

$$ f(a, b) := \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1. $$

For convenience, we denote $f(q, q^3)$ by $\varphi(q)$, $f(q, q^4)$ by $\psi(q)$ and $f(-q, -q^2)$ by $f(-q)$. The Jacobi triple product identity [1] is defined by

$$ f(a, b) = (-a; ab)_\infty (-b; ab)_\infty (ab; ab)_\infty. $$

By Jacobi identity each $\varphi(q)$, $\psi(q)$ and $f(-q)$ is a product. In fact

$$ \varphi(q) = (-q; q^2)_\infty^2 (q^2; q^2)_\infty, $$

$$ \psi(q) = (-q; q^4)_\infty (-q^3; q^4)_\infty (q^4; q^4)_\infty, $$

$$ f(-q) = (q; q^3)_\infty (q^2; q^3)_\infty (q^3; q^3)_\infty. $$

Let $r_k(n)$ denote the number of representations of n as a sum of k squares and $t_k(n)$ denote the number of representations of n as a sum of k triangular numbers. Let $t_{(a,b)}(n)$ denote the number of solutions in non negative integer of the equation

$$ a \frac{x_1(x_1 + 1)}{2} + b \frac{x_2(x_2 + 1)}{2} = n. $$

There is a remarkable relation between $r_k(n)$ and $t_k(n)$ [2]:

$$ r_k(8n + k) = 2^{k-1} \left(2 + \left(\frac{k}{4} \right) \right) t_k(n), \quad \text{for } 1 \leq k \leq 7. $$

A. Hurwitz [4] proved several results in which generating function of $r_3(an + b)$ is a simple infinite product. For example

$$ \sum_{n \geq 0} r_3(4n + 1)q^n = 6\varphi^2(q)\psi(q^2), $$

$$ \sum_{n \geq 0} r_3(4n + 2)q^n = 12\varphi(q)\psi^2(q^2), $$

$$ \sum_{n \geq 0} r_3(8n + 1)q^n = 6\varphi^2(q)\psi(q). $$

These results have been proved by S. Cooper and M. D. Hirschhorn [3] and they have also established eighty infinite families of similar results.

The main purpose of this paper is to prove number of results in which generating functions of $t_2(n)$ and $t_{(1,3)}(n)$, when n is restricted to an arithmetic sequence are infinite products.

In fact, we prove the following results.

* Corresponding author e-mail: c_adiga@hotmail.com
Theorem 1. We have
\[
\sum_{n=0}^{\infty} t_2(8n+1)q^n = 2\psi(q)f(q^3, q^9),
\] (1)
\[
\sum_{n=0}^{\infty} t_2(8n+3)q^n = 2\psi(q)f(q^5, q^{11}),
\] (2)
\[
\sum_{n=0}^{\infty} t_2(8n+5)q^n = 2\psi(q)f(q, q^{15}),
\] (3)
\[
\sum_{n=0}^{\infty} t_2(8n+7)q^n = 2\psi(q)f(q^3, q^{13}).
\] (4)

Putting \(a=q\) and \(b=q^2\) in (17), we obtain
\[
\psi(q) = \psi(q^4) + 2q\psi(q^8).
\] (18)

Employing (18) in (16), we see that
\[
\sum_{n=0}^{\infty} t_2(n)q^n = \psi(q^2)\{\psi(q^4) + 2q\psi(q^8)\}.
\] (19)

Immediately, it follows that
\[
\sum_{n=0}^{\infty} t_2(2n+1)q^n = 2\psi(q)f(q^4).
\] (20)

Theorem 2. We have
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+2)q^n = 2\psi(q^3)f(q^3, q^{11}),
\] (5)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+3)q^n = 2\psi(q)f(q^{21}, q^{27}),
\] (6)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+6)q^n = 2\psi(q^3)f(q^7, q^9),
\] (7)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+7)q^n = 2q^2\psi(q)f(q^9, q^{39}),
\] (8)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+10)q^n = 2\psi(q^5)f(q^5, q^{11}),
\] (9)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+11)q^n = 2q^4\psi(q)f(q^3, q^{45}),
\] (10)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+14)q^n = 2q\psi(q^3)f(q, q^{15}),
\] (11)
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n+15)q^n = 2\psi(q)f(q^{15}, q^{33}).
\] (12)

Putting \(a=q\) and \(b=q^3\) in (17), we obtain
\[
\psi(q) = f(q^6, q^{10}) + qf(q^2, q^{14}).
\] (21)

Employing (21) in (20) and then extracting those terms in which the power of \(q\) is 0 \((\text{mod} \ 2)\) and replacing \(q^2\) by \(q\), we find that
\[
\sum_{n=0}^{\infty} t_{(1,3)}(4n+1)q^n = 2\psi(q^3)f(q^3, q^5).
\] (22)

Putting \(a=q^3\) and \(b=q^5\) in (17), we get
\[
f(q^3, q^5) = f(q^{14}, q^{18}) + q^3f(q^2, q^{30}).
\] (23)

Employing (23) in (22), it immediately follows that
\[
\sum_{n=0}^{\infty} t_{(1,3)}(2n+1)q^n = 2\psi(q)f(q^7, q^9)
\] and
\[
\sum_{n=0}^{\infty} t_{(1,3)}(8n+5)q^n = 2q\psi(q)f(q, q^{15}).
\]

This completes the proofs of (1) and (3). The proofs of (2) and (4) are similar.

1 Proof of Theorem 1

From [1, Entry 25(iv), p. 36], we have
\[
\sum_{n=0}^{\infty} t_2(n)q^n = \psi^2(q)
\] (16)
\[= \psi(q^2)\psi(q).
\]
Adding Entries 30(ii) and 30(iii) in [1, p. 43], we obtain
\[
f(a, b) = f(a^3b, ab^3) + af(b/a, a^2b^3).
\] (17)
Extracting the terms in which the power of q is 0 (mod 2) and replacing q^2 by q, we obtain
\[
\sum_{n=0}^{\infty} t_{(1,3)}(2n)q^n = \varphi(q^3)\psi(q^2)
\]
\[
= \psi(q^2)\{\varphi(q^{12}) + 2q^3\psi(q^{24})\}. \quad (26)
\]
Again, extracting those terms in which the power of q is 1 (mod 2), divide by q and replacing q^3 by q, we find that
\[
\sum_{n=0}^{\infty} t_{(1,3)}(4n + 2)q^n = 2q\psi(q)\psi(q^{12}). \quad (27)
\]
Employing (21) in (27), we immediately see that
\[
\sum_{n=0}^{\infty} t_{(1,3)}(8n + 2)q^n = 2q\psi(q^6)f(q, q^7),
\]
\[
= 2q\psi(q^6)\{f(q^{10}, q^{12}) + qf(q^6, q^{26})\}.
\]
Hence,
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n + 2)q^n = 2q\psi(q^3)f(q^3, q^{13}),
\]
\[
\sum_{n=0}^{\infty} t_{(1,3)}(16n + 10)q^n = 2\psi(q^3)f(q^5, q^{11}).
\]
This completes the proofs of (5) and (9). The proofs of remaining identities are similar to the proofs of (5) and (9).

3 Proof of Theorem 3

By (27), we have
\[
\sum_{n=0}^{\infty} t_{(1,3)}(4n + 2)q^n = 2q\psi(q)\psi(q^{12})
\]
\[
= 2q \sum_{n=0}^{\infty} t_{(1,12)}(n)q^n.
\]
Now, comparing the coefficients of q^n in both sides of the above identity, we get (13).

Proofs of (14) and (15) are similar to that of (13).

Acknowledgement

The first author is thankful to the University Grants Commission, Government of India for the financial support under the grant F.510/2/SAP-DRS/2011. The second author is thankful to UGC-BSR fellowship. The third author is thankful to DST, New Delhi for awarding INSPIRE Fellowship [No. DST/INSPIRE Fellowship/2012/122], under which this work has been done.

References