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We summarize our recent results about monogamy and polygamy of entanglement
in multipartite quantum systems. We also consider convex-roof extended negativity
as a strong candidate for bipartite entanglement measure for general monogamy and
polygamy relations for multipartite quantum systems.
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1 Introduction

One distinct property of quantum entanglement from other classical correlations is that
multipartite entanglements cannot be freely shared among the parties: If two parties in a
multi-party system share a maximally entangled state, then they cannot share any entan-
glement with the rest. This is known as monogamy of entanglement (MoE) [1], which is a
key ingredient for secure quantum cryptography [2, 3], and it also plays an important role
in condensed-matter physics such as the N -representability problem for fermions [4].

Whereas MoE is the restricted sharability of multipartite entanglement, quantifying en-
tanglement itself is about bipartite entanglement among the parties in multipartite systems.
Thus, it is important and necessary to have a proper way of quantifying bipartite entangle-
ment for a good description of the multipartite entanglement monogamy. For this reason,
certain criteria of bipartite entanglement measure were recently proposed for a good de-
scription of the monogamy nature of entanglement in multipartite quantum systems [5]:

1. Monotonicity: the property that ensures entanglement cannot be increased under lo-
cal operations and classical communications.
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2. Separability: capability of distinguishing entanglement from separability.
3. Monogamy: upper bound on a sum of bipartite entanglement measures thereby show-

ing that bipartite sharing of entanglement is bounded.

Using concurrence [6] as a bipartite entanglement measure, MoE was first shown to
have a mathematical characterization in three-qubit systems as an inequality [1], and it was
generalized for arbitrary multi-qubit systems [7]. As a dual concept of MoE, a polygamy

inequality of multi-qubit entanglement was also established later in terms of Concurrence

of Assistance (CoA).
However, multi-qubit monogamy inequality using concurrence is known to fail in its

generalization for higher-dimensional quantum systems [8, 9], and this exposes the im-
portance of having proper entanglement measure for general MoE in higher-dimensional
quantum systems.

2 Concurrence-Based Monogamy and Polygamy Inequalities

For any bipartite pure state |φ〉AB , its concurrence is defined as [6]

C(|φ〉AB) =
√

2(1 − trρ2
A), (2.1)

where ρA = trB(|φ〉AB〈φ|), and for any mixed state ρAB , it is defined as

C(ρAB) = min
∑

k

pkC(|φk〉AB), (2.2)

where the minimum is taken over all possible pure state decompositions, ρAB =∑
k pk|φk〉AB〈φk|.
As a dual quantity to concurrence, CoA is defined as

Ca(ρAB) = max
∑

k

pkC(|φk〉AB), (2.3)

where the maximum is taken over all possible pure state decompositions of ρAB [10],
Concurrence and CoA are known to have an analytic formula for two-qubit systems [6,

10]: For any two-qubit mixed state ρAB in B (
C

2 ⊗ C
2
)
, its concurrence and CoA are

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4},
Ca(ρAB) = λ1 + λ2 + λ3 + λ4, (2.4)

where λi’s are the eigenvalues, in decreasing order, of
√√

ρAB ρ̃AB
√

ρAB and ρ̃AB =
σy ⊗ σyρ∗ABσy ⊗ σy with the Pauli operator σy .

In three-qubit systems, monogamy inequality in terms of concurrence was first pro-
posed as [1],

C2
A(BC) ≥ C2

AB + C2
AC , (2.5)
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for a pure state |ψ〉ABC , where CA(BC) = C(|ψ〉A(BC)) is the concurrence of a 3-qubit state
|ψ〉A(BC) with respect to the bipartite cut between A and BC, and CAB and CAC are the
concurrences of the reduced density matrices onto subsystems AB and AC respectively.
Later, Eq. (2.5) was generalized into arbitrary multi-qubit systems as

C2
A1(A2···An) ≥ C2

A1A2
+ · · · + C2

A1An
, (2.6)

for an n-qubit state ρA1···An
[7].

As a dual inequality to Eq. (2.6), a polygamy inequality for multi-qubit systems in terms
of CoA was also introduced as,

C2
A1(A2···An) ≤ (Ca

A1A2
)2 + · · · + (Ca

A1An
)2, (2.7)

for an n-qubit pure state |ψ〉A1···An
[11].

Although concurrence is a good entanglement measure for multi-qubit systems sat-
isfying the criteria in [5], it is also known that there are some counter examples in
higher-dimensional quantum systems violating concurrence-based monogamy inequality
in Eq. (2.6) [8, 9].

Let us first consider a pure state |ψ〉 in 3 ⊗ 3 ⊗ 3 quantum systems [8] such that

|ψ〉ABC = 1√
6

(|123〉 − |132〉 + |231〉 − |213〉 + |312〉 − |321〉) . (2.8)

Then, we can easily check C2
A(BC) = 4

3 , while C2
AB = C2

AC = 1, and therefore we have

C2
AB + C2

AC = 2 ≥ 4
3 = C2

A(BC), (2.9)

which is a violation of the inequality in Eq. (2.6) for higher-dimensional quantum systems.
Now, let us consider a pure state |ψ〉 in 3 ⊗ 2 ⊗ 2 quantum systems such that

|ψ〉ABC = 1√
6
(
√

2|010〉 +
√

2|101〉 + |200〉 + |211〉). (2.10)

Again, it can be easily seen that C2
A(BC) = 12

9 whereas C2
AB = C2

AC = 8
9 , which implies

the violation of the inequality in Eq. (2.6).
In other words, the concurrence-based monogamy inequality in Eq. (2.6) only holds for

multi-qubit systems, and even a tiny extension in any of the subsystems leads to a violation.

3 Convex-Roof Extended Negativity

Besides concurremce, another well-known quantification of bipartite entanglement is
the negativity [12, 13], which is based on the positive partial transposition (PPT) crite-
rion [14, 15]. For a bipartite pure state |φ〉AB , its negativity is defined as

N (|φ〉AB) =
∥∥∥|φ〉AB〈φ|TB

∥∥∥
1
− 1, (3.1)
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where |φ〉AB〈φ|TB is the partial transpose of |φ〉AB〈φ|, and ‖·‖1 is the trace norm.
However, for a mixed state ρAB , its negativity,

N (ρAB) =
∥∥ρAB

TB
∥∥

1
− 1, (3.2)

does not even give us a separability criterion because there exist some entangled states with
PPT [15, 16].

To overcome this lack of separability criterion, a modified version of negativity was
introduced, and it is called Convex-Roof Extended Negativity (CREN) [12].

For a bipartite mixed state mixed state ρAB , CREN is defined as

Nc(ρ) ≡ min
∑

k

pkN (|φ〉k), (3.3)

where the minimum is taken over all possible pure state decompositions of ρ =∑
k pk|φk〉〈φk|. Unlike usual negativity of bipartite mixed states in Eq. (3.2), CREN pro-

vides a perfect discrimination of PPT bound entangled states and separable states in any
bipartite quantum system.

Now, let us consider the relation between CREN and concurrence. For any bipartite
pure state |φ〉AB with Schmidt rank 2,

|φ〉AB =
√

λ0|00〉AB +
√

λ1|11〉AB , (3.4)

we have

N (|φ〉AB) =
∥∥∥|φ〉〈φ|TB

∥∥∥
1
− 1 = 2

√
λ0λ1 = C(|φ〉AB), (3.5)

where ρA = trB(|φ〉〈φ|). In other words, negativity is reduced to concurrence for any
pure state with Schmidt rank 2, and consequently, for any 2-qubit mixed state ρAB =∑

i pi|φi〉〈φi|, we have

Nc(ρAB) =C(ρAB). (3.6)

Similar to the duality between concurrence and CoA, we can also define a dual to
CREN by taking the maximum value of average negativity over all possible pure state
decomposition, namely Negativity of Assistance (NoA). Furthermore, for a two-qubit state
ρAB , we have

N a(ρAB) = max
∑

i

piN (|φi〉) = max
∑

i

piC(|φi〉) = Ca(ρAB), (3.7)

where N a(ρAB) is the NoA of ρAB , and the maxima are taken over all pure state de-
compositions of ρAB . Thus, the monogamy and polygamy inequalities in Eqs. (2.6) and
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(2.7) based on concurrence can be rephrased in terms of negativity: For any n-qubit state
ρA1···An

, we have

NcA1(A2···An)
2 ≥ NcA1A2

2 + · · · + NcA1An

2, (3.8)

and for any n-qubit pure state |ψ〉A1···An
,

NcA1(A2···An)
2 ≤ (Nc

a
A1A2

)2 + · · · + (Nc
a
A1An

)2, (3.9)

where NcA1(A2···An) = N (|ψ〉A1(A2···An)), NcA1Ai
= Nc(ρA1Ai) and Nc

a
A1Ai

=
Nc

a(ρA1Ai) for i = 2, . . . , n. In other words, multi-qubit monogamy and polygamy rela-
tion can be well-characterized in terms of CREN and NoA.

In fact, the states in Eqs. (2.8) and (2.10) are all known counterexamples showing the
violation of the concurrence-based monogamy inequality in higher-dimensional quantum
systems. However, they still have a monogamy relation in terms of CREN: For the state in
Eq. (2.8), it can be directly checked that NA(BC) = 2 and NcAB = NcAC = 1, and thus

NcA(BC)
2 = 4 ≥ 1 + 1 = NcAB

2 + NcAC
2. (3.10)

Similarly, we can also show NcA(BC)
2 = 4 and NcAB

2 = NcAB
2 = 8

9 for the state in
Eq. (2.10) [5].

In other words, the states in Eqs. (2.8) and (2.10) still show the monogamy of entan-
glement in terms of CREN, although they are counterexamples of the concurrence-based
monogamy inequality. Thus, CREN monogamy and polygamy inequalities in Eqs. (3.8)
and (3.9) are strong candidates for general monogamy and polygamy inequalities in multi-
partite higher-dimensional quantum systems without any known counterexample.

4 Monogamy and Polygamy of Entanglement in Higher-Dimensional
Quantum Systems

Multipartite entanglement is known to have many inequivalent classes, which are not
convertible to each other under stochastic local operations and classical communications

(SLOCC) [18]. For example, there are two inequivalent classes in three-qubit systems:
the Greenberger-Horne-Zeilinger (GHZ) class [17] and the W-class [18]. In terms of
monogamy and polygamy relations, W-class states saturate concurrence-based monogamy
and polygamy inequalities in Eqs. (2.6) and (2.7), while the differences between terms
in the inequalities can assume their largest values for GHZ-class states. In other words,
monogamy and polygamy of multipartite entanglement can also be used for an analytical
characterization of entanglement in multipartite quantum systems.

As the first step toward general CREN MoE studies in higher-dimensional quantum sys-
tems, we consider here a class of quantum states in higher-dimensional quantum systems,
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which are in partially coherent superposition of a generalized W-class state [9] and the vac-
uum. We further show that this class of states saturates CREN monogamy and polygamy
inequalities in Eqs. (3.8) and (3.9), regardless of the decoherency in the superposition.

A partially coherent superposition of a generalized W-class state and |0〉⊗n is given as

ρA1···An =p
∣∣W d

n

〉 〈
W d

n

∣∣ + (1 − p)|0〉⊗n〈0|⊗n

+ λ
√

p(1 − p)(| ∣∣W d
n

〉 〈0|⊗n + |0〉⊗n 〈
W d

n

∣∣), (4.1)

where
∣∣W d

n

〉
is the n-qudit W-class state [9],

∣∣W d
n

〉
A1···An

=
d−1∑
i=1

(a1i|i0 · · · 0〉 + a2i|0i · · · 0〉 + · · · + ani|00 · · · 0i〉), (4.2)

with
∑n

j=1

∑d−1
i=1 |aji|2 = 1, and λ is the degree of coherence for 0 ≤ λ ≤ 1.

By using the method introduced in [5,9], we can directly evaluate the average negativity
of the reduced density matrices ρA1Ai

for i = 2, . . . , n, and we can also show that the
average negativity is invariant for any possible choice of pure state decomposition of ρA1Ai .
Furthermore, after a tedious calculation, we obtain the following equalities;

n∑
i=2

NcA1Ai

2 = NcA1(A2···An)
2 =

n∑
i=2

(Nc
a
A1Ai

)2
, (4.3)

which is the saturation of CREN monogamy and polygamy inequalities in Eqs. (3.8) and
(3.9).

Besides the case of multi-qubit systems and the counterexamples in in Eqs. (2.8) and
(2.10), CREN also shows a strong possibility of general monogamy and polygamy relation
of entanglement by providing saturated inequalities for a large class of higher-dimensional
quantum states.

5 Conclusion

We have shown that CREN is a powerful candidate to characterize general monogamy
and polygamy relation of multipartite entanglement in higher-dimensional quantum sys-
tems. We have shown that multi-qubit monogamy and polygamy inequalities can be
rephrased in terms of CREN, and CREN monogamy inequality is also true even for the
counterexamples of concurrence-based inequalities in higher-dimensional quantum sys-
tems. We further tested the possibility of CREN monogamy and polygamy inequalities in
higher-dimensional quantum systems by showing its saturation for a large class of quantum
states in n-qudit systems that are in a partially coherent superpositions of a generalized W-
class state and the vacuum. Thus, CREN is a strong candidate for the general monogamy
relation of multipartite entanglement in higher-dimensional quantum systems with no ob-
vious counterexamples.
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