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Abstract: A Runge-Kutta type eighth algebraic order two-step methdt phase-lag and its first, second and third order derigativ
equal to zero is produced in this paper. We will also invegédiow the above described elimination of the phase-lagtaddrivatives
effects on the efficiency of the method. More specifically wi study the following: (1) the production of the method) ¢ae local
truncation error of the new obtained method and a comparddiwal truncation error analysis using other similar mdthof the
literature, (3) the interval of periodicity i.e the stabjilof the developed method using frequency for the scalareigsation for the
stability analysis different than the frequency used indtalar test equation for phase-lag analysis and (4) thetfaess of the new
obtained method applying it on the resonance problem ofab&f Schrodinger equation. Based on the last study weshiiv the
efficiency of new method.
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1 Introduction with solutions which have periodical and/or oscillatory
behavior.
As it is shown from the mathematical model
A new two-step eighth algebraic order Runge-Kutta typepresented above, the main characteristic of the above
method is introduced in this paper. It is known from the problems is that their models consist of systems of
literature (see 48]) than in order one to achieve high ordinary differential equations of second order in which

algebraic order needs many steps or stages. This increagge first derivativey does not appear explicitly.
the computational problems considerably since the

approximate solution must be started using unstable

methods (for problems with periodical and /or oscillating Analysis of the Phase-lag Analysis for

solutions) like Runge-Kutta or Runge-Kutta-Nystom . .. .
methods. Consequently, this has a great cost on th(.Symm(':'t”c2mFInlte Difference Methods

accuracy. We solved this problem with the new proposed

method since it is two-step. The proposed method had he following finite difference methods

also other very important properties like vanished m

phase-lag and its derivatives. S Gilnii= h? z bi f (Xnci, Onsi) )

The proposed method will be used for the approximate i=—m i=—m
solution of special second order initial value problems of gre ysed for the the approximate solution of the initial
the form: value problem 1). The above mentioned methods are
used as following: the integration interval b] is divided

qd'(x) = f(x,9), qX) =go and d(x0) =qo (1)  into mequally spaced intervals i.¢x }!" . € [a,b] and

* Corresponding author e-maitesmile1983@ 163.com; tsimos.conf@gmail.com

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090541

2560 N SS

J. Ma, T. E. Simos: Runge-Kutta Type Eighth Algebraic Ordetihbd with...

within each interval we apply the metho®)( The  Definition 4.[2] A method is calledphase-fitted if its
quantity h, called stepsize of integration, is given by phase-lag is equal to zero

h=|xit1—X|, i=1—m(1)m— 1. For the specific finite

difference method the number of steps, which are used folTheorem 1[14] The symmetric2Zm-step method with
the integration, is equal tor@ (and for this reason is characteristic equation given by) has phase-lag order

called multistep method).

RemarkThe method %) is called symmetric multistep

method if and only ift_j = ¢; andb_; = b, i =0(1)m.
RemarKThe linear operator
m
L) = cigx+ih)—h? z bi g’ (x+ih) (3)
i=—m i=—k

is associated with the Multistep Metha?) (whereq € C?.

Definition 1.[1] The multistep method 2) is called
algebraic of ordek if the associated linear operatbr
given by @) vanishes for any linear combination of the
linearly independent functions, £, X2, ..., x<1.

We apply the symmetric rstep method,
—m(1)m), to the scalar test equation

—¢°q )

The above application leads to the following difference
equation:

(i

Am(V) Gngsm+ - +A1(V) Ong1 4+ Ao(V) On
+A1(V)On-1+ ... + An(V)Gn-m =0 (5)

wherev = @h, h is the stepsize andj(v) j = 0(1)m are
polynomials ofv.
An equation is associated witB)(

An(V)A™+ .+ Ar(V) A + Ag(v)
FAIVA T L AR(VATM=0.

This equation is called as characteristic equation.

(6)

Definition 2.[16] A symmetric 2m-step method with
characteristic equation given by6) is said to have an
interval of periodicity (0,v3) if, for all v € (0,v3), the
rootsA;,i = 1(1)2m of Eq. 6) satisfy:

A =€V 2 =e %) and|A| < 1,i=3(1)2m (7)

wheref(v) is a real function of v.

Definition 3.[14], [15] For any finite difference method
which is corresponded to the characteristic equatiéh (
the phase-lag is defined as the leading term in the

expansion of
t=v—0(v) (8)

The order of phase-lag is p, if the quantity
t = O(vP1) asv— o is hold.

p and phase-lag constant c given by

—cWT2 L O(vPTY) = i
1

9)

where

Po = 2Am(v) cogmv) + ... +2Aj(v) cogjV) + ... + Ag(V)
PL= 2P An(V) 4 ... + 22 A) (V) 4 ... + 2A1 (V).

RemarkThe formula @) is used for the direct
computation of the phase-lag for any symmetrio-&tep
finite difference method.

Remarli-or the purpose of the present paper , a
symmetric two-step method, with characteristic
polynomials Aj(v) j = 0,1, has phase-lag ordegr and
phase-lag constantgiven by:

2A1(v) cogv) + Ao(V)
2A1(V)

—cWr2 L Oo(vPH) = (10)

3 The New High Algebraic Order Hybrid
Two-Step Method with Vanished Phase-Lag
and lIts First and Second Derivatives

Consider the family of two-step methods

Yol = (3Yn+1 +20yn+ 29yn—1
h2
* 4992

V
1
n—3

2

52
(41fn+1 682fy— 271f, 1

SYni1+ 146yn—47yn 1

)
)

104( )
( 591+ 1438f, + 253fn,1)
aoh? (fn+1

- 4 f;,% + fnfl)

Yn=Yn—

_4fn+%+6fn

Yl — 2¥n+Yn-1= h? [bl (far1+ fno1)

)

wheref; =y (x;,yi),i = —1(%)1 anday, bj j = 0(1)2 are
free parameters.

L+ f (11)

+bofn+bz( 1

1
2

N
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1 1574 978618

We require the above methodl) to have vanished by = —— —
phase-lag and its first, second and third derivatives. 60 2129400 184164%(?016
Therefore, we have the following system of equations: 42456803° 56038333¥
1T 478826764416006 98039780014176000
Phase- Lag(PL) = > ?0 =0 (12) n 2209279109582
1 433335827662657920000
_ o T N 13873480473277344
FirstDerivative ofthe PhaselLag = T, =0 (13) 69811319488795123599360000
N 889893652697594° N
Second Derivative ofthe Phasd_ag = % =0 (14) 12100628711391154757222400000
5

4 1574 645075

T b2 = 15" 532350 7193911725
Third Derivative ofthe Phase Lag = ?6 =0 (15 _16698133%  26474663'°
. o [ 29926672776000 765935781360750
whereTj, j = 0(1)7 are given in the Appendix A. 19261525624¢12
If we solve the above system of equatioA®)¢(15), -
we will obtain the coefficients of the new proposed hybrid 21666791383132%1960000
method : N 34742917493598"
3708726347842240941216000
bo _ oo N 2210605374155624° 17
Ti1 756289294461947172326400060' ’
1 T T
by = —3 #, 2 = Tl4 (16) In Figure 1 we present the behavior of the coefficients
13 15 _ _ of the new method.
whereTy, k= 8(1)15 are given in the Appendix B.
If the above formulae given bylg) are subject to
heavy cancellations for some values M then the
following Taylor series expansions should be used : 3.1 The Local Truncation Error of the New
Method
2 — 2 n 1572
423893/ 1223573681-1?(,)3‘;110 The local truncation error of the new obtained hybrid
+ 4 method (1) (mentioned aExpTwoStepHY) with the
N 3943434838
1025682841386403200
14485575062335448° 157 e
LT EExpTWOStepHEK 76"
~ 3665349431493208883424000 20442240
B 655046577305670643%
329544236686691424290884992000 +4¢Pan’ +6¢ o’ +4¢°ap
7656308823584908802%

 128522252307809655473445146880000
N 5347067736337178560829448 N
1846395916486805859530239632769781760000

bo — 3_ 157V 560641 4 Comparative Error Analysis
30 354900 76735058400

+¢° q§12>> +0(h'?) (18)

4191774%° 44902610 o
+ 3 Considering the test problem
79804460736000 742725606168000
283846665372 B

" 48148425295850880000 A = (Vx) =Ve+G) alx) (19)
4497551069057354 whereV(x) is a potential functionV, a constant value

197798738551586183531520000 approximation of the potential for the specifig,
145613186684778G/%° G =V, — E andE is the energy, we will investigate the

- 14693620578117830776627200(?60' : local truncation error of the following methods
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behavior of the coefficienta_0
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Fig. 1. Behavior of the coefficients of the new proposed
method given by16) for several values of = @h.
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>

4.1 Classical Method (i.e. the methddly with
constant coefficients)

157

10 ~(10) 12
s0aa2z400" o TOM)

LTEcL = (20)

4.2 The New Proposed Method with Vanished
Phase-Lag and its First, Second and Third
Derivatives Produced in Section 3

157

LT EExpTwoStepHX = m

n

6]10 <q(10)

+4¢?q¥ + 60 Y +4¢°qy)

+¢? qﬁ@) +0(h'?) (21)

The procedure contains the following stages

—Expressions of the derivatives which are included in
the formulae of the Local Truncation Errors based on
the test problem 19). The expressions of some
derivatives are presented in the Appendix C.

—Based on the above step, production of the new form
of the formulae of the Local Truncation Error for each
method. These formulae are dependent from the
energykE.

—Based on the above step, formulae of the Local
Truncation Error which contain the parame@i(see
(19)) are produced. Our investigation is based on two
cases for the parametér:

1.The Energy and the potential are closed each
other. ThereforeG =V, — E ~ 0 i.e. the value of
the parameteG is approximately equal to zero.
Consequently, all the terms in the expressions of
the local truncation error with terms of several
power of G are approximately equal to zero.
Therefore, we consider only the terms of the
expressions of the local truncation error for which
the power toG is equal to zero i.e. the terms
which are free fronG. In this case (free fronG
terms) the local truncation error for the classical
method (constant coefficients) and the methods
with vanished the phase-lag and its first, second
and third derivatives are the same since the
expressions of the terms of the local truncation
errors which are free fror® in both cases are the
same. Consequently, for these values@fthe
methods are of comparable accuracy.

2.G>>00rG << 0. Then|G| is a large number. In
these cases we wish to have expressions of the local
truncation error with terms with minimum power
of G.
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—Finally the asymptotic expansions of the Local 5 Stability Analysis
Truncation Errors are calculated.

. . . The scalar test equation for the study of the stability of the
The following asymptotic expansions of the Local q\y proposed method, given by :

Truncation Errors are obtained based on the analysis
resented above :
p q// — _wz q (24)
has as characteristio # ¢, i.e. the frequency of the scalar
4.3 Classical Method test equation for the phase-lag analy { investigated
above - is different with the frequency of the scalar test
equation used for the stability analysis.
If we apply the new proposed methods to the scalar test

B 157 10 5 equation 24), we have the following difference equation:
LTEeL = 504422200 (q )G
A1(S.V) (On+1+0Gn-1) +Ao(S,V) O =0  (25)
+> +0(h*?) (22)  where
S S
A (SV) = —, SV) =2— 26
1(s,V) S, Ao (s,V) S (26)

4.4 The New Prqpoged Method with Van.ISh?d whereS, i = 0(1)2 are given in the Appendix D. We note
Phase-Lag and its First and Second Derivativesnats — ¢)h andv — gh

Produced in Section 3 Based on the analysis presented in Section 2, we have
the following definitions:

Definition 5.(see [L6]) We call P-stable a multistep

LT 10 157 (%g (x))zq (X) method with interval of periodicity equal {0, ).
EExpTWOStepHEK— 17035200 o '
Definition 6.We call singularly almost P-stable a

157g(x)q(x)%g(x) multistep method With. interval of periodicity equal to

12776400 (0,00) — S, The term singularly almost P-stable method
3 is used only in the cases when the frequency of the scalar
157(&9(’0) Fa(%) test equation for the phase-lag analysis is equal with the

25552800 frequency of the scalar test equation for the stability

analysis, i.ew = @.

4
157(L9(9)am)y
+ 7300800 G Thes— v plane for the method obtained in this paper

is shown in Figure 2.

+-- [ +0(h?) (23)  RemarkFrom the presented in Figures2 v region we can

see the following:

From the above equations we have the following ;1 The method is stable within the shadowed area,
theorem: 2.The method is unstable within the white area.

Theorem 2. -Classical Method (i.e. the method 1
with constant coefficients): For this method the error
increases as the fifth power of G.

—Eighth Algebraic Order Two-Step Method with
Vanished Phase-lag and its First, Second and Third
Derivatives developed in Section 3: For this method
the error increases as the Second power of G.

So, for the approximate integration of the time
independent radial Scbdinger equation the New
Obtained High Algebraic Order Method with Vanished
Phase-Lag and its First, Second and Third Derivatives is
the most efficient from theoretical point of view, espegiall

for large values ofG| = |V. — E|. 1 whereSis a set of distinct points

RemarkThere are mathematical models of real problems
in Sciences, Engineering and Technology where the
observation ofhe surroundings of the first diagonal of

the s— v plane is necessary. Such cases are the
mathematical models which have only one frequency per
differential equation in the model. In these cases the
frequency of the scalar test equation used for the
phase-lag analysis is equal with the frequency of the
scalar test equation used for the stability analysis. An
example is the time independent radial Schrodinger
equation.

(@© 2015 NSP
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6.1 The Mathematical Model of the Radial
Time-Independent Sdabdinger Equation

The model of the radial time independent Schrodinger
equation is given by :

q'(r) =[0(0+21)/r*+V(r)—K]q(r). (27)
where

~The functionW(r) = 1(1 +1)/r2+V(r) is calledthe
effective potentialThis satisfiedV(r) — 0 asr — o,

—The quantityk? is a real number denotirthe energy

—The quantityl is a given integer representing the
angular momentum

-V is a given function which denotes tpetential

Since the problem27) is belong to the category of the
boundary value problems, then we need the boundary
conditions. The initial condition is given by:

sitpotan)

Fig. 2: s—vplane of the new obtained two-step high order q(0) =0 (28)
method with vanished phase-lag and its first and second
derivatives while the final condition, for large values ofdetermined
by physical properties and characteristics of the specific
problem.
The new proposed method is a frequency dependent
method. Consequently we have to determine the parameter
@ (frequency) of the coefficients of the methad ¢h).
Based on the above remark, we investigate the cas&or the category of problems like the radial Schrodinger
where the frequency of the scalar test equation used fogquation, the parameter(for | = 0) is given by :
the phase-lag analysis is equal with the frequency of the
scalar test equation used for the stability analysis, ie. w @=1/|V(r)—k =/|V(r)—E]| (29)
investigate the case whese- v (i.e. see the surroundings
of the first diagonal of thes— v plane). Based on this whereV (r) is the potential ané& is the energy.
investigation we extract the results that the new obtained
methods has interval of periodicity equal t@; ), i.e. is

P-stable. 6.1.1 Woods-Saxon potential
The above study leads to the following theorem: For our numerical experiments we use the Woods-Saxon
potential which is given by :
V()= 2l (30)

149 a+q’
Theorem 3The proposed method developed in section 3:
prop P with g = exp[ 22, U= ~50, a= 0.6, andXo = 7.0.
The Woods-Saxon potential is shown in Figure 5.
For the use of the potential we can follow two

—is of eighth algebraic order, procedures:

—has the phase-lag and its first, second and third _To approximate at every pointhe potential and based
derivatives equal to zero on this to find the parameter. This procedure creates
—has an interval of periodicity equals t@0, ), i.e. is big computational cost
P-stable when the frequency of the scalar test _Toapproximate the potential using some critical points
equation used for the phase-lag analysis is equal with  of the potential. We use these critical points in order to

the frequency of the scalar test equation used for the  determine the value of the paramegefsee for details
stability analysis [43)]).

(@© 2015 NSP
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The Woods-Saxon Potential Therefore, this differential equation has linearly
0 L~ independent solutionskrj; (kr) and krn, (kr), where
Y A : ji (kr) andn; (kr) are the spherical Bessel and Neumann
functions respectively. Thus, the solution of equatidr) (
1N (whenr — ), has the asymptotic form
-~ q(r) = Akrj (kr) — Bkrny (kr)
. It It
~ AC |sin kr—? + tand, cos kr—? (33)
0]
whereg is the phase shift that may be calculated from the
formula
0]
tang = Y(2)S(r1) —y(r1) S(r2) (34)

y(r1)C(r1) —y(r2)C(r2)

Fig. 3: The Woods-Saxon potential. for ry andr, distinct points in the asymptotic region (we
chooser; as the right hand end point of the interval of
integration andr, = r1 —h) with S(r) = krj, (kr) and
C(r) = —krny (kr). Since the problem is treated as an
d'nitial-value problem, we neey, j = 0,1 before starting

a two-step method. From the initial condition, we obtain
Vo. The valuey; is obtained by using high order
Runge-Kutta-Nystrom methods(se4] and [47]). With
these starting values, we evaluate abf the asymptotic

For our numerical experiments we use the secon
procedure.

For the purpose of our tests, we choasas follows
(we use the methodology presented4d][and [45]) :

V=50+E, forre[0,6.5-2h], region the phase shif.
V=375+FE, forr=65—h For the case of positive energies we have the known as
o= “J25+E. forr=65 (31)  resonance problem. We have two forms for this problem:
\/—‘E12'54]: E, forgz 6'§h+1h5 1.finding the phase-shi& or
,  forref65+2n,19 2.finding thoseE, for E & [1,1000, at whichg = Z.

6 5thr ?§2T§|I§é|2f$%p)eﬂﬂ;ﬂ;he_lr;’tsgérit:zo nsrggvl\f)i We actually solve the latter problem, known the
oh=/—375+ Eh. In the point of the integration region "€S0nance problem _
r = 6.5— 3h, the value ofp is equal ton/—50 1 E, etc. The boundary conditions for this problem are:

g(0) =0, q(r) = cos(\/Er) for larger. (35)
6.1.2 Radial Schrodinger Equation - The Resonance
Problem We compute the approximate positive eigenenergies of

. ) . the Woods-Saxon resonance problem using:
Our test for the efficiency of the obtained new high order

hybrid method is the approximate solution of the radial _The eighth order multi-step method developed by

time independent Schrodinger equatic®?)( with the Quinlan and Tremaine4B], which is indicated as
Woods-Saxon potentiaB(). Method QTS8.

Since, by theory, the integration interval for this _The tenth order multi-step method developed by
problem is equal to € (O,oo),we have to approximate it Quinlan and Tremaine4p], which is indicated as

Method QT10.

—The twelfth order multi-step method developed by
Quinlan and Tremaine4p], which is indicated as
Method QT12.

—The fourth algebraic order method of Chawla and Rao
with minimal phase-lag0], which is indicated as
Method MCR4

by a finite one. For our numerical tests we use the
integration intervat € [0,15]. The domain of energies in
which we will solve the above problem is equal to:
E € [1,1000.

For the case of positive energids,= k?, the radial
Schradinger equation effectively reduces to:

, , 1(1+1) —The exponentially-fitted method of Raptis and Allison
y'(r)+ (k - —2) (r)=0 (32) [49], which is indicated adethod MRA
o —The hybrid sixth algebraic order method developed by
for r greater than some valuB. This is because the Chawla and Rao with minimal phase-la8f], which
potential decays faster than the teﬁﬁﬁ. is indicated adMethod MCR6
(@© 2015 NSP
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—The classical form of the eighth algebraic order two-
step method developed in Section 3, which is indicated
asMethod NMCL 2.

—The Phase-Fitted Method (Case 1) developedljn |
which is indicated aMethod NMPF1

—The Phase-Fitted Method (Case 2) developedljn |
which is indicated aMethod NMPF2

Err,,, for the resonance 939.701916
= Method QT8

| @=—@—® Method QT10

| Aeshe—sk. Method QT12

| WenBi¥ Viethod MICR4

Btk Method RA

—The Method developed in4p] (Case 2), which is (OB eoaczs
|nd|Ca.ted a$/|eth0d NMC2 4 - mm::::::::g
—The Method developed in4p] (Case 1), which is b wethod iz

| Method NMC1
|#==4=—4 Method NM258PL3DV

indicated asviethod NMC1

-The New Obtained Two-Step Hybrid Method :
developed in Section 3, which is indicatedMsthod e
NM2S8PL3DV ’

08 12 1.6
CPU time (in seconds)

Fig. 5. Accuracy (Digits) for several values 6PU Time

(in Seconds) for the eigenvalu®; = 989.701916. The
nonexistence of a value of Accuracy (Digits) indicates that
for this value of CPU, Accuracy (Digits) is less than 0

Err, ., for the resonance 341.495874
B Vethod QT8

©®—®—® Method QT10

Ae—d—A Method QT12

WX Method MCR4

Serferk Method RA

B—8—8 Method MCR6

©®—0—® Method NMCL

. P

7 Conclusions

Err ..

In this paper, we studied a family of two-step hybrid
methods. The main results of this investigation was:

IS

Method NMPFL
EB—8—Hl Method NMPF2
P—>—> Method NMC2
W—¥—¥ Method NMC1
@—0—# Method NM258P13DV

—The proposed method is of eighth algebraic order

—The obtained method has vanished phase-lag and its
first, second and third derivatives

—The obtained method is P-stable (fpe= w).

o 0.1 02 03 04 05
CPU time (in seconds)

From the numerical experiments mentioned above, we

Fig. 4. Accuracy (Digits) for several values 6PU Time have the following conclusions:

(in Seconds) for the eigenvalue = 341.495874. The
nonexistence of a value of Accuracy (Digits) indicates that
for this value of CPU, Accuracy (Digits) is less than 0

1.The tenth algebraic order multistep method developed
by Quinlan and Tremainetf], which is indicated as
Method QT10 is more efficient than the fourth
algebraic order method of Chawla and Rao with
minimal phase-lagq0], which is indicated aMethod
MCR4. TheMethod QT10 s also more efficient than

We defined some reference values using the well
known two-step method of Chawla and R&si][ with
small step size for the integration. We then compared the
numerically calculated eigenenergies with these referenc
values. In Figures 4 and 5, we present the maximum
absolute erroErrmax= [logio(Err) | where

Err= |Ecalculated_ EaccurateJ (36)

of the eigenenergies E; 341495874 and

the eighth order multi-step method developed by
Quinlan and Tremaine4p], which is indicated as
Method QT8. The Method QT10 is also more
efficient than the classical form of the eighth algebraic
order two-step method developed in Section 3, which
is indicated asMethod NMCL @ Finally, theMethod
QT10 is more efficient than the hybrid sixth algebraic
order method developed by Chawla and Rao with
minimal phase-lagq1], which is indicated aMethod
MCR®6 for large CPU time and less efficient than the
Method MCR6 for small CPU time.

Es = 989701916 respectively, for several values of CPU 2.The twelfth algebraic order multistep method

time (in seconds). We note that the CPU time (in seconds)
counts the computational cost for each method.

developed by Quinlan and Tremainég], which is
indicated asviethod QT12 is more efficient than the
tenth order multistep method developed by Quinlan

2 with the term classical we mean the method of Section 3with 3 with the term classical we mean the method of Section 3 with

constant coefficients

constant coefficients
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and Tremaine 48], which is indicated asMethod —7987203ir(v)v6a0b0b1
QT10

3.The Phase-Fitted Method (Case 1) developedijn [ —84480 sir(v)v6aobob2
which is indicated asMethod NMPF1 is more 2 2
efficient than the classical form of the fourth algebraic +1198080/°agho + 230400,°a0%bo
order four-step method developed in Section 3, which 146432 sir(v) bo\?
is indicated as Method NMCL, the
exponentially-fitted method of Raptis and Alliso49] _ 1384448 sivév) by — 4992 sir(v)\/‘bz
and the Phase-Fitted Method (Case 2) developed in
[1], which is indicated aMethod NMPF2 _7744 sir(v)v4b22

4.The Method developed iM4P] (Case 2), which is
indicated asviethod NMC2 is more efficient than the -9 sin(v)v8b22 — 692224 sir(v) Vb2
classical form of the fourth algebraic order four-step
method developed in Section 3, which is indicated as —528 sir(v)vebzz— 104832°b;b,
Method NMCL , the exponentially-fitted method of
Raptis and Allison 49] and the Phase-Fitted Method +19968/ aghg” — 399360/°agho? — 2496v°bgb;
(Case 2) developed inl], which is indicated as ; 7
Method NMPF2 and the Phase-Fitted Method (Case +19968 SIr(V)V6a°b°+838656/ 2obobs
1) developed in {], which is indicated asviethod +124416/ aghgby — 798720°aghoby
NMPF1 .

5.The Method developed iMg] (Case 1), which is —798720’5aob0b2—144S'r(V)V12302b02
indicated asMethod NMC1, is the more efficient . .
than all the other methods mentioned above. +11520 sw(v) viag?by? — 230400 su(v)vsaozboz

6.The New Obtained Two-Step Hybrid Method
developed in Section 3, which is indicatedMsthod
NM2S8PL3DV, is the most efficient one.

All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with Ty = (12v6a0b0 — 480v*agbg — 3v*by
16 significant digits accuracy (IEEE standard).

—4992 sir(v)v6b1b2 798720 sir(v) boagV
146432 sir(v) V*bybs

2
—832v%h; — 88v2h, — 832)
Appendix A: Formulae T, j = 0(1)7 T, = 35143680%aghyb, — 28753920 coév) V103,22

~1728 cos{v) Vi8ag3hod 4 1727791104 co(S/)vzbl
To = 2(1+v2(b1+boaov2(

26 16230016 coév) V*b, — 4984012800020V
3V2 11
~08) *P2(7ea* 832) )) eos(v) +19329024 cofv ) V'by? -+ 1727791104 cofe) V*by?
15 632 3 2
_ +681472 co$v ) \Oh,® + 1317888 copv | Vo
2+V2(b°(1+a°\’2( 104)) é) ) é) 2
o 9_3 - GBVZ)) ~5759303640 + 575930368 cobv ) v,
5215 4136V2 —12460032Pagho?b; + 332267520%gho?by
T =1+ vz(bl + boaoV2(2 5 208) —62429184835hyb,2 — 2093285376%abgh; 2
o (11 3V 1359424 coév) vi4ay2by2by
+02( 105+ 533)) Sop.2
T, = 1384448,V + 1384448/ +19329024 cofv) Vi,
~199680,v° + 692224/ by ~49840128 cofv) Vaghobs
B 2_ :
15552/5h,2 — 692224 sn(v) © 11321856 2% bybib,
472 sin(v) V1%, bobs —690094088%aghob by
. +734822408°agbgb; b,
419968 sw(v) VBaghoby
~768 sir(v) VBaphobs,
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+1296 co{v) V16302bg2b,

122464 co{v) V%, b,2

179712 Coév) V2agboby by

41916928 coév) VL%gbobs by
1210862080 coév) VBagbobyby
—6063882240%a0bob; + 2376 cos{v) Vi0p,3
122464 co{v)vsbz2

127 cos(v) V12h,% | 69696 co%v) V8,3

+1727791104%0yb,

+22164480°b,b,? + 87220224/b,°b,
+219648/bgh,?

—943488/b,b,? — 575078408%ay%by>
—22464,nyb,?

+43130880%y%hy® — 110592000 %a93by>
—1198080/*%ay%bg°

—8294400/ ay%b° + 3821076488°b; b,
+24920064/0gb,

+3987210240%aghy? — 207667200%agby?
+182747136”bgb,

+299040768"b1b, — 100638728 %y?by?

1182747136 co(w) b2

+2076672/°bgb; b, + 70287360 aghob,?
+66453504@%9bgb; 2

1575930368 co(w) 359424 coév) V12802bg?
—1150156800%a02by?b;

—1150156800%y2bg2b,
—498401288aghy?b;

11916928 coév) \Baghobs

+1368576/°b,% — 139968/°0,°

—2995200/°b,° + 76197888h,?
+36549427%2°b,° + 3455582208°h;
+49840128m,\2 — 1151860736, — 1151860736,

+182747136 coév) VBby2by

+32348160%agbgh,
11317888 coév) V3byby?

8294400 coév) Viag3hy3
4110592000 coév) V12a,3h,3

112460032 co(,v)v%lbz

+1679616/ %ghob,?
+269568/'%ybg’b,
+25436160%y%by’b,
— 488816640 %y%by?b;
—8156160/*%ay2by?by
—50319360%a9?by?by

24920064 cofv) Vagho
+365494272 co@/) Vbyby
+575078400 co@/) \Bag2bg?
+6230016 cofv ) Vi bz
+996802560 cofsv ) boaov*
+207360 coév) V630303
+1993605120 o) Vaoboby
—65664 cofv)v**aq?bo’by
—324 cos{v) viagbghy?
28753920 cofv) v*?a0?bo’by
—967680 cofv)v*?aq’bo’by
—6048 co{v) V2agbob,?
+575078400 cofsv ) v*%aq?bo?by
+11151360 cofv) Vagbobs?
+60825600 coév) Vi0a0bo2bs
—24920064 Coév) vi%ghob;?
+481536 cofv) v agbob,”
~179712 coév) Viagboby

1996802560 co(w) VBaghobs?

+7974420480%aghob,
+7974420480%aghob;
—1492008960%bgh,

+210862080 co(al)veaobobz
Ts = (12v6aobo
—480bpagV* — 3v*h,
~832%b; — 88by\2 — 832)3

Ts — — 27644657664 si(w)veaobo
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+38277218304000 ag’bo?b;
11602551808 si@v) Vi2agbgby by?
+5750088794112%gb; 2
+38277218304000 ag?bo?b;
598081536 siév) V2agbobiby

+81 sin(v) vith,?
132163495936 si(w)vsbl?bzz

+16586794598400,a0V°
120733493248 si(wv)vgblzbz

12267938816 siév)vablbz3

+19138609152000'a2bg>
+829339729920"aghgh,?
+2653887135744@Faghob,2

479174066176 s(n/)

—33173589196808Faghob;

690094080 siév) V162,303
—4140564480%%a43by*
+966131712035%bg° + 7907328°hob,>
5750784 si.{v) V18ap3bgd

1202427596800 s;(v) V12a02by2by by

+140349800448®aghy’b,
—33173589196808aghoby

1202727489536 si@)vsbf’bz
13189768192 si@v) v12a0boby2bs,

+1216364937216bgby b,
+747601920"bgb,?
—430618705920 aghgby
+2222630476185¢aghoby
+921205053849@aghgb,

1598081536 siév) V12a02by?
47846522880 si(w) V10,22

4956930457600 si(w) VBag2by?

—19138609152000 ag2bo?
—1658679459840Fagho?

+116107562188®agby® + 1674628300800ay°by?

+18341167104@%;b,2
+62200479744%b; b,

+37380096 sinﬁv)vgbz2
12192965632 si@v)v6b22

16911164416 siév)\/‘bz 1 797921288%;b,3

+519932215296@ aghgb1 b,
+8771862528°hyh,? + 13456834560 b, b,?
+280699600896Faghgb,?

1231948288 siév) V1%, b3

174760192 snﬁv) V1% b,?

+1104150528000ay3bo>
—1104150528000"a9by*
+16586794598¢h, b,
—162678177792%ay°by°

+2875044397056 s'(n/)v“bl2
132163495936 si<w)v4b22
+1916696264704 s(n/)vzbl
+202727489536 s;(w) b2
14385931264 si6v) \Bbb,?
1608182468608 si(u) \Bbs2b,

164326991872 si(w) Vbyby?

+26873856/1%aybgh,°®
—2208301056000"ay°bo>b;
—2208301056000"ay°bo>bs
—287079137280 " ay?bo>by

20127744 Silév) Vi4aghobyby?
+13932907462656b;°b,
+256138385817¢°h;b,2 — 5750088794112hb;

+64326991872%00b,?
—60818246860805b, — 1271654252544,

12267938816 si6v)v6b23

1916696264704 s'(n/)\ﬁbf
+398131200 %3y by*
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115925248000 %ag*bo* 13189768192 siév) \Baghobs
+86261760 'apbg* + 110415052800 %a0°%00* /N 10
269568 10gp 0 299040768 S|6v)v aoboby
141865707520 ay?hg® + 3139928064°%, %h,? 413563002880 %ay2by?b,?
—11321856h;b,® — 307413909504%a0bgb; b, —20736 sir(v) V2a,%003b,
+30239922585@%agbgb; bp? (N 20, 3, 3

+1779890651136agboby 2bs ~5750784 sif{v)v*%a0’bos

+41466986496%aby?b1by
+423257702400@aq?bg’b1 b,
—51066961920"'a3?by°b,
—2488019189760" ag’by’b,?
—152740823040a9?by?b,?
+393813688320"ay?hy?b,
—319168512agbg?b,?
—1806188544 Taghgh,®
+819486720 faghgh,?

~27603763200i{w ) v*a0°bo’
+231948288 sifiv) Vb’
+20733493248 si(w) VBby b,
+1105786306560's{(v) boaov*
+608182468608 si{V ) Vb1,
+59969536 silév)\lsbz“
+479174066176 (V) by
+8177664 sifv)viby*

)

V)

+418176 sirfv) v'2by*

+9504 sw(v) Vip,t

—10366746624%bgh,
1078272 sin{v) V18aphoby by?

17907328 sn( v1%,3

189856 S|r( Vi2h,3

3220439040 siév) V!4ay2by2bs by
299040768 siév) vi4apboby 2b,

+29345867366400Fagbgb1 by
13317358919680 s(n/) VBaghoby

1350874501120 si(m) VBaghob,

82933972992 si(nv) VBaghoby

11880064 sin{v) Va0,
17776 sir(v) V2%202bo2h,2
+690094080 siév) V18a03b03by
26542080 Silév) V8a%ho b,
165888 sir(v) VA8ag2ho2hy?
1296 sir(v) V8aghob,®
27603763200 si(.v) V*8a,®hohy
1592524800 siév) V*8a%hoCh,
+598081536 si@v) V16202bg2b; 2
17362944 si»ﬁv) V16a02hy2by?
14313088 sin{v) V28a2bo2b,
62208 sir(v) V6aghob,3
+368050176000 si(m) VHag3bo3by
138928384000 si(nv) VMas®bob,
47846522880 si(w) VEag2bg2by 2
+194641920 si@v) Viag2bg2b,2
11196163072 siév) VMa2bo2by
218529792 siév) Va2bo2b,
11216512 si.(v) VHaghob,®
1078272 si.{v) VEaghgby?
+956930457600 s;(v) V2a52h52by 2
+10705305600 si(w) V2802bg2b,2
95693045760 si(nv) V}2a52b2by
3220439040 siév) V}2a2b02b,

27644657664 si(vv) v12a0bgby 3
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+101105664 siév) v12a0bgh,3
—20127744 Silév) v'2a0bgb,?
+1913860915200 s(n/) V1%,2by2b;

+2760376320"b,°3
1202427596800 s@) V1%,2by2b,

+1105786306560 s(n/) VEaghghy 3
+1308426240 si@v) VEaghoh, 3
82933972992 si(nv) V0agbgb; 2
11602551808 siév) Vagbgby?
+3317358919680 s(’v)vsaoboblz

437111726080 si(vv)vgaobobzz

+49268736°°b,* — 53913606°,°
—115001775882¢b;>

—12163649372160,% — 1679616/ 10,*

+17543725056°h,°
+11500177588220,°
+12865398374¢°h,°
—82933972992B,v
+29904076800°h,?
—119616307200%h,2
—1086898176°ay?by?b1by
+158031544320"ay?bg?b b,
+181149696™3a9byb; by?
—1357185024000'ag2by?b1 b,
—1794244608"agby?b;1 b,

— 75358273536 agbgh1?by

— 22859366400 agbgh:by?
+4313088/ %ahy?h,?
—4485611520"3332bg’b,

+701749002240 si@)vgaoboblbz
16379536384 siév) VEagboby by
+37111726080 si(w) V10gbgby by?
1350874501120 si(u) VFagboby 2y
12192965632 siév) VA0, 2,2

16911164416 siév) v1%;3b,

—1473672904704Fay2bo’b,
+1710513192960 a%by?b;

218529792 siév) V18a02by2by by

+4313088 si.(v) V18ay2by2bs by

+502388490240"3%ay2by?b;2
+2645360640%35%bo%b,
+11961630720%3a°bo%b;
+220830105600%a5°by3b,
+2208301056003a53by3b;
—161243136°35%bg2h,?
—25878528"°a,2byb,
+3397386240°35%by°%b,
+102133923840°35°by°b;
+637009920" "ay3byb,
+3622993920ay3byb;

17907328 sin(v) V20,3
+37380096 si»ﬁv) V12, 2h,?
+368050176000 su@) V2803003
189856 sir(v) Vpb,°
+53084160000 si(w) V16aghg?

—53084160005i6v V18ayhg?

+199065600 siév) 0ay%bg?

3317760 sir(v) vP2a, by’

120736 sir(v) V4ap*b?

+829339729992%hyb; by
+1326943567872Faghg?b;

+13269435678720 aghghb;2

+239232614400 agbg?b, + 74760192°bgb; by?

— 67951263744 agbgh,? — 10167386112%0bgy?b,
+16194207744%aghob,° + 348322686566Waghob, 3
+3458138112%hy?b,? + 82933972992%by?b;2
—5848317296640a,2byh, -+ 404855193600%°by>b,?

+3827721830400%ap?by’b1? + 20242759680%ay?bg b,
+1913860915200agho°b;

T, = (12v6a0bo — 480bgagV* — 3v'b,

4
—832v%h; — 88b,\2 — 832)
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Appendix B: Formulae Ty, k= 8(1)15

Tg = 104 (cos(v )) sm(v
—520(cos(V))?V?
+312(cos(v

) %
+4576 cogv) v2sin(v

(

(

+312(cos(v))?sin(v)
+10920(cos(V))?v+ 1560 sin(v)
—1040v3 — 6864 cogv)sin(v)
—7176vcos(v) + 6552 sinv) — 405

To = —178560/ — 45672(cos(v))?sin(v)
4173694 co$v) V*sin(

—524976 coév) v2sin(v)

+1329(cos(V))?sin(v) v*

—5796v°sin(v) cos(v)

—129(cos(V))?sin(v) v

+9633v° + 630V + 407952(cos(V))* V3

—89280(cos(v))3v+5706487sin(v)

+178560 cos$v) sin(v) + 267840/cos(v)

—158040 cosv) V3 — 3195/8sin(v) — 3267 cogv) v5
—8703v*sin(v) + 315(cos(V))?v

417640(cos(v)

+144(cos(v)

—35535(cos(v)

—351(cos(v)

—89280(cos(v))?sin(v)

—89280 sin(v) — 267696/

Tio = —59520v — 15224(cos(v))?sin(v) v

457898 cogv) V*sin(v)

—174992 cos$v) V?sin(v)

+443(cos(v))?sin(v) v*

—19328sin(v) cos(v)

—43(cos(V))?sin(v)V®

+3211v° 4 210v7 + 135984(cos(v))* v

—29760(cos(v))3v

4190216/sin(v) + 59520 cogv) sin(v)

)

v)

ov
VIV2
)

\Y

s(v))*v®
(v)*v®
(v))*v
s(v))*v®

+89280vcos(v
—52680 cogv) v> — 1065/°sin(v
—1089 cogv)\°
—2901v*sin(v) + 105(cos(v)) %V
+5880(cos(v))*v?

+48(cos(v))*V® — 11845(cos(v))?v®

—117(cos(v))3V®

—29760(cos(v))?sin(v)

—29760 sinv) — 892327

T = v5(— (cos(v))2sin(v) V3

+3(cos(v))3V?

—84 coqv)V3sin(v)

+3(cos(v))?sin(v)v

+200(cos(V))?Vv?

—435v3sin(v) — 126vcos(v) sin(v)
—1329 cogv) V2 + 600(cos(v))?
+1323vsin(v) +526v* — 60

9

Ti2 = 21120v+ 1144(cos(v))?sin(v) V2
—17010 cogv) V*sin(v)

430352 cogv) v?sin(v)
—327(cos(v))?sin(v) v*
—516v°sin(v) cos(v)
—9(cos(V))?sin(v)
+6293/° 4 30V — 42192(cos(v))?
+10560(cos(v))“v
—31496/sin(v)

—21120 cogv)sin(v)
—31680vcos(V) + 97224 cogv) v
—1395/8sin(v) — 11547 cogv) v°
43389Asin(v)
+15(cos(v))?V/
—120(cos(V))*v®
+685(cos(v))?v°

+9 (cos(v))*V?

+10560(Cos( v))?sin(v)
+10560 sirf(v) — 54912/

Tiz = v5(— (cos(v))?sin(v)v?

+3(cos(v))*V?

—84 coqVv)V3sin(v)

+3(cos(V))?sin(v)v

+200(cos(v))?Vv2 — 435v3sin(v)
—126vcos(V) sin(v) — 1329 cogv) v2
+600(cos(v))? + 1323vsin(v) + 5262 — 600)

\ﬁ
v3

3
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Tia = 2496(cos(v))zsin(v)\/4 Formulae of the derivatives which presented in the
—8320(cos(v))?V® formulae of the Local Truncation Errors:
+2496(cos(v))3V® + 109824 cosv) V' sin(v)
—10816(cos(v))%sin(v) V2
+374400(cos(v))? v

+37440/*sin(v) — 16640/° — 99840(cos(v))3v
—627328 co$v) V2 sin(v) — 57408 cogv) v
—99840(cos(v))?sin(v) + 638144/2sin(v)
—319488/°+ 199680 co$v) sin(v)
+299520/cos(v) — 99840 sin(v) — 199680/

Tis — 3v5(— (cos(v))2sin(v) V3

13 (cosv)*? 909 +6) S ak
T (S
o o ()
~ 1329 cogv)\? + 600(cos(v))? +(g() +G6)*a)
+1323vsin(v) + 526v2 — 600) q) = <:—jg (x)) q(x)

2

Appendix C: Formulae of the derivatives ofqgy

+11(g()+G)q(X) 59(¥)
Expressions of the derivatives are necessary since they are d
included in the formulae of the Local Truncation Errors +15 &9 (X)> a(x)

based on the test problern9).
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2
(5a09) G909
+22(9(x) +G)*q(x)

d2
59(0+28(g() +G)

d
at (oot)
+12(g(x) +G)?
(5:09) 5909
+(0(0+G)*a(x)

Appendix D: Formulae S, i =0(1)2

S = —126vPsin(v) cos(v)
+3 (cos(v))?sin(v) Ve — 600v°
+526v +1323/sin(v)
+200(cos(v))V’
+600(cos(v))?v°
+69 cogv) sV + 3849 cogv) SV°
—4200(cos(v))?s*v
+864(cos(v))? AV
—1367 sinv) s'v? — 12619 sin(v) s2V*
42400 cogv)sin(v)s*
42400 cogv) s*v — 30384 cogv) szv3
—12000sin(v)s?
— (cos(v))2sin(v >
—5(cos(v))?v?
+10(cos(v))?s™V®
—5(cos(v))2 &V
+3(cos(v))3sv
—3(cos(v))3s
—3(cos(v))3<
—84 coqv)sin(v
+3(cos(v))?sin
+105(cos(v)
—250(cos(v))*s™?
+65 (cos(V))?s2V°
+15 sin(v) V2 — 45 sin(v) s'v*
1465 sin(v) \°
—48(cos(v))3v?
—66 cogV)sin(v)®
—69 cogV) v+ (cos(v )) sm(v ov?

(v
)2y
2

—27(cos(v))?sin(v) s
+21 (cos(v))?sin(v) sv*

(
)
)
)
)s°
)s*
)
)
)
—1006 co$v) sin(v) shv?
)
)
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