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Abstract: We obtain the bound energy spectrum and the corresponding generalized hypergeometric wave functions of the Dirac
equation for modified-Hylleraas potential under spin and pseudospin symmetry limits within the framework of the Alhaidari-formalism.
This is accomplished by approximating the spin-orbital term in the Dirac equation rather than the orbital term in the resulting
Schr?dinger-like equation using the modified parametric generalization ofthe Nikiforovmethod.
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1 Introduction

Within the frame work of the relativistic Dirac equation,
the concepts of exactpseudospin symmetry occurs when
the Lorentz scalar potentialS(r) and the vector
potentialV(r) are equal but opposite in sign i.e.S(r)=-V(r).
However, approximate pseudo spin symmetry is when the
sum of the potential is
Σ(r) = S(r)+V (r) =Cps =Cons. 6= 0 [1,2]. The
pseudospinsymmetry is used to establish effective shell
model [3]. On the other hand, exact spin symmetry arises
if thescalar potentialS(r) and vectorV(r) are equal i.e
S(r)=V(r) .However, in nuclei the difference
potential∆(r) =V (r)−S(r) =Cs =Cons. 6= 0 [4]. The
spin symmetry is relevant in meson [5]. Recently, many
authors have investigated the Dirac equation
approximately with spin and pseudospin symmetries for
different potential models such as the Hulthen potential
[6], generalized Morse potential [7], the Dirac-Hulthen
problem [8], Hulthen potential including Coulomb-like
tensor potential [9], the Woods-Saxon [10], Relativistic
Morse potential [11] and others [12]. The bound state
solution of the Dirac equation under spin and pseudospin
symmetries have been obtain using various methods such
as the supersymmetric quantum mechanics (SUSY) [13],
the Nikiforov-Uvarov method [14] and others [15]. Ikot
[16]has investigated the Dirac equation with Hyperbolical

potential including Coulomb-like tensor potential under
spin symmetry for any spin-orbit and the wave functions
and the corresponding energy eigenvalue have been
calculated using the improved approximation scheme for
the centrifugal termκ(κ±1)

r2 . Different authors have found
the bound state energy spectrum of some physical
quantities whose behaviour depends on the behaviour of
the system near the singularity [17]. The energy spectrum
for instance, depends strongly on the angular momentum
resulting from 1

r2 singularity of the orbital term even for

high excited states [17]. However, because1
r2 is too

singular, the validity of such approximation is limited to
very few of the lowest energy states. In order to extend
the approximation to higher energy states, Alhaidari [18]
for the first time evaluated the Dirac equation with
coupling to 1

r singular potential for all angular
momenta.Now, the solution of Dirac equation with
Hylleraas potential is very difficult to evaluate because of

the nature of its potential ,V (r) = V0(a+eλ r)

(b+eλ r)
,wherea, b are

the Hylleraas parameters witha 6= b Moreover, this
potential is singular atr = r0 , whereb = −eλ r0 , and the
singularity is r−1 type which is compatible with
Alhaidari’s approach. Nevertheless, with the formalism of
Dirac equation proposed by Alhaidari [17] and the
generalized parametric Nikiforov-Uvarovmethod, we
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attempt to find analytical approximate solution of Dirac
equation with Hylleraas potential including the energy
spectrum and the corresponding wave functions within
spin and pseudospin limits. Since Hylleraas proposed this
potential [25] no much work has been reported on the
bound state solution. Recently, we first attempt to report
on the bound state solution of this potential [26]. In this
paper, we are motivated by this success and attempt to
solve the modified Hylleraas potential under spin and
pseudospin symmetry using the parametric NU method.
The results obtained in this work whenb ≈ −1 , or
equivalently,r0 = 0 is more accurate over a wider range
as claimed by Alhaidari [17] The organization of the
paper is as follows. In section 2, we review the NU
method. Bound state solution of Dirac equation is
presented in section 3.Finally; we give a brief conclusion
in section 4.

2 Parametric Generalization of
Nikiforov-Uvarov Method

The concept of NU method [14] was proposed to solve the
second-order linear differential equation by reducing it to
a generalized equation of hypergeometric-type of the form

d2Ψ(s)
ds2 +

τ̃(s)
σ(s)

dΨ(s)
ds

+
σ̃(s)
σ2(s)

Ψ(s) = 0, (1)

where the prime denote the differential with respect to
s,σ(s), σ̃(s) are polynomials at most second degree and
τ̃(s) is the first-degree polynomials. The solution of Eq.
(1) is obtain by using a common ansatz for the wave
function as

Ψ(s) = ϕ(s)χn(s), (2)

which reduces Eq. (2) into a hypergeometric-type
equation,

σ(s)
d2χn(s)

ds2 + τ(s)
dχn(s)

ds
+λ χn(s) = 0, (3)

whereϕ(s) is defined as a logarithmic derivative [14]

ϕ ′(s)
ϕ(s)

=
π(s)
σ(s)

, (4)

we considerπ(s) andτ(s) for the NU method as

π(s) =
σ ′− τ̃

2
±
√

(
σ ′− τ̃

2
)2− σ̃(s)+ kσ(s), (5)

τ(s) = τ̃(s)+2π(s), (6)

and the other wave function is the hypergeometric type
function whose polynomial solution satisfies the
Rodriques relation

χn(s) =
Bn

ρ(s)
dn

dsn [σ
n(s)ρ(s)], (7)

where Bn is the normalization constant and the weight
functionρ(s) satisfy the condition

(σ(s)ρ(s))′ = τ(s)ρ(s), (8)

The requiredλ for the NU method are defined as

λ = k+π ′(s), (9)

Thus, the determination ofk in Eq. (5) is the necessary step
in the calculation ofπ(s) for which the discriminant of the
square root in Eq. (5) is set to zero. The new eigenvalues
equation now takes the form

λ = λn =−nτ ′(s)−
n(n−1) d2σ(s)

ds2

2
,n = 0,1,2 (10)

and its derivative is negative which is the necessary
condition for bound state solutions. The energy
eigenvalue is obtained by comparing Eqs. (9) and
(10).The parametric generalization of the NU method that
is valid for both central and non-central exponential-type
potential has been proposed [19]. We use the parametric
generalization of the NU method as

d2Ψ(s)
ds2 + α1−α2s

s(1−α3s)
dΨ(s)

ds + 1
s2(1−α3s)2

[−ξ1s2+ξ2s−ξ3]Ψ(s) = 0,

(11)
Now comparing Eq. (11) and Eq. (1), we obtain the
following parametric polynomials

τ̃(s) = α1−α2s, (12)

σ(s) = s(1−α3s), (13)

σ̃(s) =−ξ1s2+ξ2s−ξ3, (14)

Substituting Eqs. (12 - 14) into Eq. (7), we find

π(s) = α4+α5s± [(α6−α3k±)s
2+(α7+ k±)s+α8]

1/2,
(15)

where

α4 =
1
2(1−α1),α5 =

1
2(α2−2α3),α6 = α2

5 +ξ1,α7 = 2α4α5−ξ2,α8 = α2
4 +ξ3,

(16)
We obtain the parametrick± from the condition that the
function under the square root should be square of a
polynomial

k± =−(α7+2α3α8)±2
√

α8α9, (17)

where
α9 = α3α7+α2

3α8+α6, (18)

Hence, theπ(s) in Eq. (15) becomes

π(s) = α4+α5s− [(
√

α9+α3
√

α8)s−
√

α8], (19)

for the negativek− values

k− =−(α7+2α3α8)−2
√

α8α9, (20)
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Thus, from the relation,τ(s) = τ̃(s)+2π(s) , we have

τ(s) = α1+2α4− (α2−2α5)s−2[(
√

α9+α3
√

α8)s−
√

α8],
(21)

whose derivative must be negative beginequation

τ ′(s) =−2α3−2(
√

α9+α3
√

α8)< 0, (22)

Solving Eqs. (8) and (9), we obtain the parametric energy
equation as

α2n+n(n−1)α3− (2n+1)α5+(2n+1)[
√

α9+α3
√

α8]+α7+2α3α8+2
√

α8α9 = 0,

(23)
The weight functionρ(s) is obtain as

ρ(s) = sα10−1(1−α3s)
α11
α3

−α10−1
, (24)

and together with Eq. (9), we obtain

χn(s) = P
(α10−1,

α11
α3

−α10−1)
n (1−2α3s), (25)

where
α10 = α1+2α4+2

√
α8, (26)

α11 = α2−2α5+2(
√

α9+α3
√

α8), (27)

andP(α ,β )
n (s) are the Jacobi polynomials. The other part of

the wave function is obtained from Eq. (4) as

ϕ(s) = sα12(1−α3s)
−α12−

α13
α3 , (28)

where
α12 = α4+

√
α8, (29)

α13 = α5− (
√

α9+α3
√

α8), (30)

Thus, the total wave function becomes

Ψ(s) = Nnsα12(1−α3s)
−α12−

α13
α3 P

(α10−1,
α11
α3

−α10−1)
n (1−2α3s),

(31)
whereNn is the normalization constant.

3 Formulation of the problem

The Dirac equation of a single nucleon of rest massM
scalar potentialS(r) and vector potentialV (r) (in the
relativistic unit(h̄ = c = 1) is [20]

[α.p+β (M+S(r))]Ψ(r) = [E −V (r)]Ψ(r), (32)

whereE is the relativistic energy of the system andp =
−i∇ is the three dimensional momentum operator,α and
β are the 4 x 4 Dirac matrices defined as

α =

(

0 σ
σ 0

)

,β =

(

I 0
0 −I

)

, (33)

whereσ is the Pauli matrices andI is the 2 x 2 unitary
matrix. The total angular momentum operatorJ and spin
orbit K = (σ .L + 1) , where is orbital angular nucleon
commute with Dirac Hamiltonian. The eigenvalues of
spin-orbit coupling operator areK = ( j + 1

2) > 0 and
K = −( j + 1

2) < 0 for unaligned spinj = l − 1
2 and the

aligned spinj = l + 1
2 respectively. The complete set of

the conservative quantities are denoted as(n,κ , j, l,m)
Thus, the Dirac spinors can be written according to the
radial quantum number and spin-orbit coupling number
as follows:

Ψnκ(r) =
1
r

(

Fnκ(r) Y l
jm(θ ,ϕ)

iGnκ(r) Y l̃
jm(θ ,ϕ)

)

(34)

whereFnκ(r) is the upper component andGnκ(r) is the
lower component of the Dirac spinors andm is the
projection of the angular momentum on the z-axis and
l(l +1) = κ(κ +1), l̃(l̃ +1) = κ(κ −1) . On substituting
Eqs. (33)and (34) into Eq. (32), we obtain two coupled
deferential equations for the upper and the lower radial
wave functionFnκ(r) andGnκ(r) as

(
d
dr

− κ
r
)Gnκ(r) = (M−Enκ +Σ(r))Fnκ(r), (35)

(
d
dr

+
κ
r
)Fnκ(r) = (M+Enκ −∆(r))Gnκ(r), (36)

where
∆(x) =V (x)−S(x), (37)

Σ(x) =V (x)+S(x), (38)

EliminatingFnκ(r) andGnκ(r) from Eq. (35) and (36), we
obtain the following second Schr?dinger-like differential
equations for the upper and lower components of the Dirac
wave equation as

{( d2

dr2 − κ(κ+1)
r2 )− [M+Enκ −∆(r)][M−Enκ +Σ(r)]+

d∆(r)
dr ( d

dr −
κ
r )

[M+Enκ−∆(r)]}Fnκ(r) = 0,

(39)

{( d2

dr2 − κ(κ−1)
r2 )− [M+Enκ −∆(r)][M−Enκ +Σ(r)]+

dΣ(r)
dr ( d

dr −
κ
r )

[M−Enκ+Σ(r)]}Gnκ(r) = 0,

(40)
whenΣ(r) = 0 (pseudospin symmetry) withEnκ 6= M and
when ∆(r) = 0 (spin symmetry) withEnκ 6= −M .
Equations (39) and (40) are the Schrodinger-like equation
with coupling to the 1

r2 singular term satisfyingFnκ(r)

andGnκ(r) respectively. For spin symmetryd∆(r)
dr = 0 ,i.e,

∆(r) =Cs = const. , Eq. (37) turns into

{( d2

dr2 − κ(κ+1)
r2 )− (M+Enκ −Cs)Σ(r)+E2

nκ −M2+Cs(M−Enκ)}Fnκ(r) = 0,

(41)
Similarly, the pseudospin symmetry requiresdΣ(r)

dr = 0
,i.e,Σ(r) =Cps = const. , Eq. (40) becomes

{( d2

dr2 − κ(κ−1)
r2 )+(M−Enκ +Cps)∆(r)+E2

nκ −M2−Cps(M+Enκ)}Gnκ(r) = 0,

(42)
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The Schrodinger-like equation of Eqs (41) and (42)
coupling with 1

r2 singular orbit term under spin and
pseudospin symmetries have been studied extensively in
recent times [21]. However, the limitation of this equation
is that ther−2 orbital term is too singular and the validity
of such approximation is limited only to very few of the
lowest energy eigenstates [17]. In order to extend the
approximation to a wider energy spectrum, Alhaidari [18]
approximate the less singular term distribution1

r in the
first order Dirac equation (35) and (36). This
approximation of the1

r orbital term in the first order
differential equation is less singular since it goes like1

r
and not like 1

r2 . Now approximating the1r spin-orbit term
in the Dirac equation of Eqs. (35) and (41) by a singular
function W (r) i.e. W (r) ≈ 1

r resultsin the following
second-order differential equations for spin and
pseudospin as [17]

{ d2

dr2 −κ2W 2(r)+κ
dW (r)

dr
− (M+Enκ −Cs)V (r)+E2

nκ

−M2+Cs(M−Enκ)}Fnκ(r) = 0, (43)

and

{ d2

dr2 −κ2W 2(r)−κ
dW (r)

dr
+(M−Enκ +Cps)V (r)+E2

nκ

−M2−Cps(M+Enκ)}Gnκ(r) = 0, (44)

respectively. The proper approximation forr−2 is not
simply W 2(r) but it also involves the derivativedW (r)

dr
which gives the supersymmetric formW 2(r)±W ′(r). The
proper approximation was introduced recently by
Alhaidari [18, 22] as

κ(κ ±1)
r2 = κ2W 2(r)∓κW ′(r) (45)

In this study we considerW (r) = ηeηr

(b+eηr) whereb = −1
which is a modified form of the Hylleraas potential under
investigation.

4 Results and Discussion

4.1 Spin symmetry Limit

The spin symmetry arises from the conditiond∆(r)
dr = 0 or

∆(r) =Cs = const. [22] then Eq. (9) becomes

{ d2

dr2 − κ2η2e2ηr

(eηr −1)2
− κη2eηr

(eηr −1)2
− V0(M+Enκ −Cs)(a+ eηr)

(eηr −1)

+E2
nκ −M2+Cs(M−Enκ )}Fnκ (r) = 0,

(46)

We have takenV (r) = V0(a+eηr)
(eηr−1) as the modified Hylleraas

potential. If we define the new variables = eηr −1 , then

the positive energy Schr ¨odinger-like equation of Eq. (46)
takes the form

d2Fnκ (s)
ds2 + s

s(s+1)
dFnκ (s)

ds + 1
s2(s+1)2

[−(As − ε2)s2+Bss−Cs]Fnκ(s) = 0,

(47)
where

As = κ2+β 2,

Bs =−2κ2−κ −β 2(a+1),

Cs = κ [κ +1],ε2 = [
E2

nκ −M2+Cs(M−Enκ)

η2 ],

β 2 =
V0

η2 [Enκ +M−Cs] (48)

Comparing Eq. (47) with Eq. (9), we obtain

α1 = 0,ξ1 = As − ε2,

α2 =−1,ξ2 = Bs,

α3 =−1,ξ3 =Cs, (49)

and from Eqs. (16), (18), (26 - 27) and (29 - 30), we further
obtain

α4 =
1
2
,α5 =

1
2
,α6 =

1
4
+As − ε2

α7 =
1
2
−Bs,α8 =

1
4
+Cs,α9 = As +Bs +Cs − ε2,

α10 = 1+2

√

1
4
+Cs,α11 =−2+2(

√

As +Bs +Cs − ε2−
√

1
4
+Cs),

α12 =
1
2
+

√

1
4
+Cs,α13 =

1
2
− (
√

As +Bs +Cs − ε2−
√

1
4
+Cs). (50)

In addition, the energy eigenvalue equation can be
obtained from Eq. (21) as

−n2−n+(2n+1)(
√

As +Bs +Cs − ε2−
√

1
4
+Cs)

−Bs −2(
1
4
+Cs)+2

√

(
1
4
+Cs)(As +Bs +Cs − ε2) = 0,

(51)
By substituting the explicit values ofβ 2,ε2,As,BsandCs,
we obtain the energy spectrum for the deformed Hylleraas
potential in the Dirac theory for the spin symmetry limit
case as

−n2−n+(2n+1)(

√

−V0a
η2 [Enκ +M−Cs]− [

E2
nκ −M2+Cs(M−Enκ )

η2 ]

−
√

1
4
+κ[κ +1]−κ +

V0

η2 [Enκ +M−Cs](a+1)− 1
2

+2

√

(
1
4
+κ[κ +1])(−V0a

η2 [Enκ +M−Cs]− [
E2

nκ −M2+Cs(M−Enκ )

η2 ]) = 0,

(52)

On the other hand, to find the corresponding wave
function, we find from Eq. (31), the functions

Fnκ(r) = Nnκ(e
ηr −1)

1
2+
√

1
4+κ [κ+1]

(eηr)
−
√

−V0a

η2 [Enκ+M−Cs]−[
E2

nκ−M2+Cs(M−Enκ )

η2 ]
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,2 F1(−n,n+2

√

1
4
+κ [κ +1]

−2

√

−V0a
η2 [Enκ +M−Cs]− [

E2
nκ −M2+Cs(M−Enκ)

η2 ]+1;

2

√

1
4
+κ [κ +1]+1;1− eηr) (53)

Finally, the lower spinor components of the Dirac equation
can be obtained from Eq. (36) as

Gnκ(r) =
1

(Enκ +M−Cs)
[

d
dr

+κW (r)]Fnκ(r), (54)

whereEnκ 6= −M +Cs and only positive energy solutions
are valid [11]

4.2 Pseudospin symmetry limit

The Dirac equation for pseudospin symmetry could be
found from equation (44). If we make a change of
variabless = b+ eηr whereb = −1, we can rewrite Eq.
(42) as

d2Gnκ(s)
ds2 +

s
s(s+1)

dGnκ(s)
ds

+
1

s2(s+1)2 [−(Aps − ε2)s2

+Bpss−Cps]Gnκ(s) = 0, (55)

where
Aps = κ2−β 2,

Bps =−2κ2+κ +β 2(a+1),

Cps = κ [κ −1],ε2 = [
E2

nκ −M2−Cps(M+Enκ)

η2 ],

β 2 =
V0

η2 [M−Enκ +Cps] (56)

The energy equation for the pseudospin limit can be obtain
as

−n2−n+(2n+1)

(

√

V0a
η2 [M−Enκ +Cps]− [

E2
nκ −M2−Cps(M+Enκ )

η2 ]−
√

1
4
+κ[κ −1])

+κ − V0

η2 [M−Enκ +Cps](a+1)− 1
2

+2

√

(
1
4
+κ[κ −1])(

V0a
η2 [M−Enκ +Cps]− [

E2
nκ −M2−Cps(M+Enκ )

η2 ]) = 0,

(57)

In order to calculate the wave functionGnκ(r) , we find the
functions as,

Gnκ(r) = Nnκ(e
ηr −1)

1
2+
√

1
4+κ [κ−1]

(eηr)
−
√

V0a

η2 [M−Enκ+Cps]−[
E2

nκ−M2−Cps(M+Enκ )

η2 ]

,2 F1(−n,n+2

√

1
4
+κ [κ −1]

Table 1: Energies in the Spin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,Cs = 5 f m−1,V0 = −0.5 f m−1,a =
−1 f m−1

l n,κ < 0 (l, j) Enκ ( f m−1) n,κ > 0 (l, j) Enκ ( f m−1)
1 1,-2 1p 3

2
0.500496102 1,1 1p 1

2
0.501270302

2 1,-3 1d 5
2

0.500546961 1,2 1d 3
2

0.501607882

3 1,-4 1 f 7
2

0.500578667 1,3 1 f 5
2

0.501829528

4 1,-5 1g 9
2

0.500600301 1,4 1g 7
2

0.501985253

1 2,-2 2p 3
2

0.501607882 2,1 2p 1
2

0.502512965

2 2,-3 2d 5
2

0.501829528 2,2 2d 3
2

0.503152840

3 2,-4 2 f 7
2

0.501985253 2,3 2 f 5
2

0.503619815

4 2,-5 2g 9
2

0.502100386 2,4 2g 7
2

0.503973169

−2

√

V0a
η2 [M−Enκ +Cps]− [

E2
nκ −M2−Cps(M+Enκ)

η2 ]+1;

2

√

1
4
+κ [κ −1]+1;1− eηr) (58)

where Nnκ is the normalization constant. The upper
component of the Dirac spinor can be calculated as

Fnκ(r) =
1

(M−Enκ +Cps)
[

d
dr

−κW (r)]Gnκ(r), (59)

whereEnκ 6= M +Cps and only negative energy solution
is valid because negative energy spectrum is obtained in
the pseudospin symmetry limit [12]. In order to show the
improved accuracy of our work, we computed the energy
levels for different values of the Hylleraas parameters in
Table 1-4. In Tables (1) and (2) we have portrayed the
energy eigenvalues for various values of the quantum
numbersn andκ . As we expect the energy eigenvalues in
the spin symmetry limit is positive and for the pseudospin
symmetry limit is negative. In Tables (3) and (4), we have
reported the energy for some different values ofCs and
Cps respectively. We have obtained the relation between
energy and potential parameterV0 for both of the two
symmetry limits in Tables (5) and (6). Fig. (1) represents
the relationship between the energy and parameter ofη
for pseudospin and spin symmetry limits. It is seen that if
theη-parameter increases, the bound states become more
bounded both for the pseudospin and spin symmetry
limits.In Figs. (2), we obtain the effects ofa-parameter on
the bound states in view of the pseudospin and spin
symmetry limits.We can see bound states obtained in
view of spin and pseudospin symmetries become less
bounded with increasinga.

5 Conclusion

In this paper, we obtained the solution of the Dirac
equation for modified Hylleraas potential under the spin
and pseudospin symmetry within the frame work of
Alhaidariformulation using the NIkiforov-Uvarov method
by approximating the less singular spin-orbit angular
momentum term1

r . We obtain explicitly the energy
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Table 2: Energies in the Pseudospin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,Cps = −5 f m−1,V0 = 0.5 f m−1,a =

−1 f m−1

l n,κ < 0 (l, j) Enκ ( f m−1) n-1,κ > 0 (l +2, j+1) Enκ ( f m−1)
1 1,-1 1s 1

2
-0.501270302 0,2 0d 3

2
-0.500496102

2 1,-2 1p 3
2

-0.501607882 0,3 0 f 5
2

-0.500546961

3 1,-3 1d 5
2

-0.501829528 0,4 0g 7
2

-0.500578667

4 1,-4 1 f 7
2

-0.501985253 0,5 0h 9
2

-0.500600301

1 2,-1 2s 1
2

-0.502512965 1,2 1d 3
2

-0.501607882

2 2,-2 2p 3
2

-0.503152840 1,3 1 f 5
2

-0.501829528

3 2,-3 2d 5
2

-0.503619815 1,4 1g 7
2

-0.501985253

4 2,-4 2 f 7
2

-0.503973169 1,5 1h 9
2

-0.502100386

Table 3: SS: Energies in Spin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,V0 =−0.5 f m−1,a =−1 f m−1

Cs 1p 3
2

1d 5
2

2 f 7
2

2g 9
2

3 0.501158302 0.501277129 0.504644008 0.504914058
3.2 0.501021856 0.501126666 0.504094831 0.504332772
3.4 0.500914183 0.501007936 0.503662029 0.503874712
3.6 0.500827045 0.500911854 0.503312102 0.503504390
3.8 0.500755079 0.500832502 0.503023298 0.503198770
4 0.500694638 0.500765860 0.502780871 0.502942238

4.2 0.500643157 0.500709098 0.502574471 0.502723836
4.4 0.500598783 0.500660172 0.502396617 0.502535644
4.6 0.500560137 0.500617563 0.502241765 0.502371795
4.8 0.500526178 0.500580121 0.502105721 0.502227849
5 0.500496102 0.500546961 0.501985253 0.502100386

Table 4: PSS: Energies in Pseudospin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,V0 = 0.5 f m−1,a =−1 f m−1

Cps 1p 3
2

1d 5
2

2 f 7
2

2s 1
2

-5 -0.501607882 -0.501829528 -0.503973169 -0.502512965
-4.8 -0.501705427 -0.501940535 -0.504214566 -0.502665505
-4.6 -0.501815580 -0.502065893 -0.504487239 -0.502837779
-4.4 -0.501940954 -0.502208579 -0.504797698 -0.503033885
-4.2 -0.502084943 -0.502372455 -0.505154398 -0.503259142
-4 -0.502252029 -0.502562627 -0.505568526 -0.503520583

-3.8 -0.502448258 -0.502785983 -0.506055205 -0.503827702
-3.6 -0.502681997 -0.503052055 -0.506635397 -0.504193642
-3.4 -0.502965154 -0.503374414 -0.507339036 -0.504637140
-3.2 -0.503315289 -0.503773080 -0.508210422 -0.505185856
-3 -0.503759422 -0.504278873 -0.509318089 -0.505882444

Table 5: SS: Energies in Spin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,Cs = 5 f m−1,a =−1 f m−1

V0 1p 3
2

1d 5
2

2 f 7
2

2g 9
2

-1 0.000434075 0.000478573 0.001736865 0.001837579
-0.8 0.200456926 0.200503767 0.201828365 0.201934390
-0.6 0.400482318 0.400531763 0.401930047 0.402041975
-0.4 0.600510698 0.600563053 0.602043712 0.602162239
-0.2 0.800542627 0.800598256 0.802171613 0.802297568
0 1.000578815 1.000638157 1.002316604 1.002450982

0.2 1.200620177 1.200683761 1.202482359 1.202626370
0.4 1.400667907 1.400736386 1.402673690 1.402828823
0.6 1.600723598 1.600797791 1.602897015 1.603065139
0.8 1.800789425 1.800870373 1.803161108 1.803344602
1 2.000868433 2.000957490 2.003478271 2.003680241

Table 6: PSS: Energies in Pseudospin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,Cps =−5 f m−1,a =−1 f m−1

V0 1p 3
2

1d 5
2

2 f 7
2

2s 1
2

-1 -2.002816466 -2.003205136 -2.006969440 -2.004404230
-0.8 -1.802559797 -1.802912948 -1.806332000 -1.804002310
-0.6 -1.602346043 -1.602669636 -1.605801652 -1.603667714
-0.4 -1.402165265 -1.402463873 -1.405353448 -1.403384815
-0.2 -1.202010372 -1.202287583 -1.204969644 -1.203142478
0 -1.001876173 -1.002134853 -1.004637270 -1.002932554

0.2 -0.801758779 -0.802001252 -0.804346625 -0.802748944
0.4 -0.601655218 -0.601883396 -0.604090305 -0.602586987
0.6 -0.401563179 -0.401778657 -0.403862563 -0.402443064
0.8 -0.201480840 -0.201684958 -0.203658867 -0.202314321
1 -0.001406745 -0.001600641 -0.003475596 -0.002198474

Fig. 1: SS: Energy vs.η for Spin Symmetry Limit for
M = 1 f m−1,Cs = 5 f m−1,V0 = −0.5 f m−1,a = −1 f m−1 PSS:
Energy vs. η for Pseudospin Symmetry Limit forM =
1 f m−1,Cps =−5 f m−1,V0 = 0.5 f m−1,a =−1 f m−1

Fig. 2: SS: Energy vs.a for Spin Symmetry Limit for
η = −0.05f m−1,M = 1 f m−1,Cs = 5 f m−1,V0 = −0.5 f m−1

PSS: Energy vs.a for Pseudospin Symmetry Limit forη =
−0.05f m−1,M = 1 f m−1,Cps =−5 f m−1,V0 = 0.5 f m−1

eigenvalues and the corresponding wave function for both
the spin and pseudospin symmetries limit. These results
are extensively new and there is no available literature to
compare it. However, with approximate choose on the
Hylleraas parameter, the energy eigenvalues of Eq. (51)
reduces to that of the Woods-Saxon [10].The wave
function obtained in this work is the
standardhypergeometric function [24]. Finally, as noted
by Alhaidari [18] this analytic solution is valid to higher
excitation levels in the spectrum than the traditional1

r2

and this result is a generalized case of the one reported in
Ref. [27].
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