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Abstract: In this paper, we made point and interval estimation for legdistribution based on progressive first failure cemspri
by two methods: Maximum likelihood estimation (Mle) and Baian estimation . A comparison between Bayesian estimatider
Symmetric and Asymmetric Loss Functions are obtained. &éfglPosterior Density (HPD) interval and Approximate Caarfite
Interval (Cl) are obtained.
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1 Introduction censoring to develop a new life test plan called a
progressive first-failure censoring schem@g.dqtudied the
Censoring is very common in life tests. There areCO@fﬁC'er.]t Of. variation of Gompertz dlstrlbut|on under
different types of censored tests. One of the mostProgressive first-failure censoringj[and [9] introduced

| Mle, Bayesian estimates, exact confidence intervals and

common censored test is Type-l censoring. It is nOteOIexact confidence regions for the parameters of Gompertz
that one can use Type-Il censoring for saving time and 9 P P

money. However, when the lifetimes of products are very?nld Burr Type(—jXII dlsl'grlbutlons under progressive first
high, the experimental time of a Type-Il censoring life allure-censored sampling.

test can be still too long. A generalization of Type-II Suppose that n independent groups with k items
censoring is the progressive Type-ll censoring] [ within each group are put on a life te&, groups and the
described a life test in which the experimenter mightgroup in which the first failure is observed are randomly
decide to group the test units into several sets, each as @emoved from the test as soon as the first faiNifg, ,
assembly of test units and then run all the test unitshas occurredR, groups and the group in which the
simultaneously until occurrence the first failure in eachsecond failure is observed are randomly removed from
group. Such a censoring scheme is called first-failurethe test as soon as the second failure occhlt}%,qlm< ,

censoring, 2] and [3] obtained Mle, exact confidence and finally when the m-th failurgR, ., is observed, the

intervals and exact confidence regions for the parameters, i
S maining grou m< n) are removed from the test.
of the Gompertz and Burr Type-XIl distributions based on ., 'y Rg g <p§2m,<( YR ) are called progressively
1;mn,k mm,n,k

first failure-censored sampling, respectively. For more_. . L . .
reading one can refer tod] and [5]. The first-failure first-failure censored order statistics with the prognessi
censoring does not allow for sets to be removed from theCensored scheme,

test at the points other than the final termination point. R=(R;,R,,...,Ry), where n=m+3y",R. If the
however, this allowance will be desirable in practice. Thisfailure times of then x k items originally in the test are
leads us to the area of progressive censoriBjgcgmbine  from a continuous population with distribution function
the concepts of first-failure censoring and progressivel(y) and probability density functiorf(y) , the joint
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probability density function fol, %, . YoR s YR

* immnk
is defined as follows: Y B2(1+y)e o Oy, \ g KR
L(6) = Ak, {17} KH_) e y.}
+6 1+6
R R R (5)
fr2..m(Yemnk: Yamnko - Ymmnk) The log likelihood function may have the form:
m
_ —1)\lkM ' R . , R k(R+1)-1 m m
=A(n,m-1)k il:l f(Yimnk) [1 F(Yl:m,n,k)] £(0) = logA+ mlogk + 2 Z|og 0_ Z|og(1+ 0)
(1) = =
m m
whereAn,m—1) =n(h—R;—1)..(Nn— R —Rp — ... — + _Z|09(1+Yi) + _Z(k(a +1)-1) (8)
1= 1=

Rno1—(M—1)), 0 < X< X2< ... < Xm< ©0. 0 "
Yi (K(R
x log(1+ m) - iZiey.(k(R +1))

Special cases:
Differentiating equation (6) with respect t6 and
1.Puttingk = 1 gives the progressively Type-ll censored equating the equation to zero.
order statistics.
2.The complete sample case wHee- {0,0,...,0} and

k=1 oue 2m o .
96 o YRTD
. T AL yi
2 Lindley Distribution + i;(k(R. +1))( (e eyi))) @)
The Lindley distribution was originally proposed byd m Vi m

in the context of Bayesian statistics, as a counter example > N =0.
of fudicial statistics.yAssume that the random variable EJ( i; (1+0)(1+6+6y) 1+6
representing the lifetime of a product has Lindley
distribution with parameter§. Lindley distribution has
the following probability density function and cumulative
distribution function respectively:

62(1+ x)e~ 0%

Equation {) can’t be solved analytically, but can be
solved by using Newton-Raphson method.

3.1 Approximate confidence interval

f(X):T,X>O,6>O, (2)
In this section we obtained the Approximate confidence
and interval for Lindely distribution parameter. The observed
. 2
F(X)=1— (1+ %) e x>06>0 (3 Fisher’s information is given byl(8) = —%6(26) at
+ o
A . o 6-06
Lindely distribution has many real life applications & = 8- The sampling distribution of — can be
for example 11] have introduced real data represent the var (6)

waiting times and fitting them. They proved that the approximated by a standard normal distribution. When
Lindely distribution is better model than the exponential the sample size is large, ti{& — y) confidence interval
distribution. They also found that the maximum bounds for6 can be computed by :

likelihood has a standard error reduced than theg 4,)—6+7 /var 9).
exponential distribution. (6, 6) % ( )

3 Maximum L ikelihood Estimation 4 Bayes Estimators under Symmetric and

This section discussed the process of obtaining point and\Symmetric L oss Function

interval estimations of the parameter based on progressive ] ) o ) o
first-failure censored data. Lgt= Yi'rl?"m  be the observed This section deqls wlthlobtalnmg the Baye3|a.n estimation
values of the lifetimey obtained from a progressive for the Lindely distribution parameter under differentdos
first-failure censoring schen® = (Ry,...,Rm). Then the ~ functions. 1.2 had studied the Bayesian estimation using

maximum likelihood function of the observations is: Squared (SE) Error loss function for lindely distribution
by using important sampling technique and

m . . .
_ N1 KR+ -1 Metropolis-Hasting algorithm .
L(6) = AkmiElf(y,) [2=F )] @ In practical works the parameters cannot be treated as a
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constant during the life testing time. Therefore, it would 4.2 Asymmetric loss function
be a fact to assume the parameters used in the life time
model as random variables. We have also conducted Asymmetric loss function may be more appropriate in

Bayesian study by assuming the following independentsome

gamma prior foiB:
g(8)a6? e 60 (8)

Where a and b are hyperparametersart> 0

4.1 Symmetric loss function (Squared Error
Loss (SEL) function)

fields. Recently, many authors considered
asymmetric loss functions in reliability and life testing.
one of the most popular asymmetric loss functions is
linear-exponential (LINEX) loss function (LI) which was
introduced by 13. It used in several papers, for example,
[14], [15], [16] and [17]. This function is approximately
linearly on one side and rises approximately to zero on
the other side. Under the assumption that the minimal loss
occurs at® = 6, the LINEX loss function can be
expressed as:

L1(d) Oexp(cd) —cd —1, (14)

In this subsection, we made Bayesian estimation usingvhered = 6 — 6,8 is the estimate 06, ¢ # 0.
Squared (SE) Error loss function. The likelihood function The magnitude of represent the direction, and degree of

has the form :

L(6) =
-y By \ g, 4RI
J[(r )=

A {
©

Thus, the posterior density function 8f given the data, is
given by

0%(1+vy)e
1+6

L(6)g(6 |ab)
Jo'L(8)9(6 | a,b)db

Therefore, the Bayes estimate of any functionBotay
h(6) under Squared Error loss function is

(6 [x) =

(10)

Jo'h(B)L(6)g(6 | a,b)d6

The posterior density function is:
m(6|x)0OL(B)g(O|a,b) (12)
(6 |y) 0
omra1 AKT T . 0y \kRr+1)-1
x [exp(—B(b+ kiYi (R+1))).
i (13)

symmetry. Wherec > 0 means overestimation is more
serious than underestimation, armd< O means the
opposite. For close to zero the LINEX loss function is
approximately the Squared Error Loss (SEL) function.
The posterior expectation of the LINEX loss function of
is :

Eg(L1(6—6)) O (15)
((exp(cO))Eqlexp(—cB)] —c(B—Egl6]) 1. (16)

The Bayes estimator under the LINEX loss function is the
value of

6 ~ ~— log(Eslexp(—c6))).

such thaEg[exp(—cB)] exists.

Another asymmetric loss function called a General
Entropy (GE) Loss function was proposed W8] which
can be expressed as:

(17)

6 6
—19—qglog—= — 1.
[g)"—alogg

The weighted SEL function results frog= —1. The
Bayes estimatégg under GEL function is

Boe = (Eg[079) @

such thaEg [0~ 1] exists.

Since it is not possible to compute equation (16) and
(18) analytically. we used the Markov chain Mont-Carlo
(MCMC) method such as Metropolis-Hastings algorithm.
to draw samples from the posterior density function and
then to compute the Bayes estimate.

L2(6,6) 0 (18)

(19)

It is not possible to compute equation (11) analytically. 4.3 Metropolis-Hasting algorithm

The posterior density function cannot be reduced

analytically to well known distributions. But its plot The Metropolis algorithm was originally introduced by
shows that it is similar to normal distribution. So, to [19. Suppose that our goal was to draw samples from
calculate the integral that we cannot calculate it exact, wesome distributionsf (x|8) = vg(6), where v is the
use the Metropolis-Hasting Algorithm with normal normalizing constant which may not be known or very

proposal distribution.

difficult to compute. The MH algorithm provided a way
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of sampling fromf (x|8) without requiring us to know.
Letq (6(b>|6(a> be an arbitrary transition kernel: that is

the probability of moving, or jumping, from current state
0@ to 8. This is sometimes called the proposal
distribution. The following algorithm generated a
sequence of value®® 6@ .. 6M which form a
Markov chain with stationary distribution given by
f(x|9).

4.4 Algorithm
1.Start with6(© = Gy e.
2.Seti=1.
3.Generate 8*) from the proposal distribution
N(81- varg(i-D),
4.Calculate the acceptance probabititg(~, 8(+)) =
. m(6¢))
min 1,W

5.Generate U from uniform on (0, 1).

6.IfU <r (9( 1) 9™)) accept the proposal distribution
and set@() — 90, Otherwise, reject the proposal
distribution and se®) = g(-1).

7.Seti =i+1.

8.Repeat Steps-39 N times.
9.0btain the BEs of using MCMC under SEL function
asbse= Y .1 oy 0"
10.0Obtain the BEs 0® using MCMC under LINEX

function asf | = 1|nglM+lNLp(C9)
11.0Obtain the BEs of usmg MCMC under GE function

(i)y—a
bce = [%] , Where M is nburn units and
N is the number of mcmc iterations.

4.5 Highest Posterior Density (HPD) interval
algorithm

In Bayesian statistics, a credible interval is an intermal i
the domain of a posterior probability distribution used for
interval estimation .The credible intervals are analogou
to confidence intervals in frequentist statistics although
they differ on a philosophical basis Bayesian interval$ tha
treat their bounds as fixed and the estimated parameter
a random variable, whereas frequentist confidenc

¥

Table 1: Censoring schemes

CS|] [ mM=20n=50R, =R, = Rs = 10,R4
=Rs=Rs=R;=..=Rpn=0

CS|2] | m=20n=50R, =R, =R; =Ry
=Rs=Rg=5R;=Rg=...=Rn=0

CS| 3] | m=30.n=70,R; =R, = Rs = Ry = 10,
Rs=..=Rn=0

CS| 4 | m=30n=70,R, =R, = 20.R; = R4
=..=Rn=0

CS| 5] | m=40n=100R, =R, = Rs = Ry = Rg
=R;=10R;=...=Rn=0

CS|[6] | m=60n=140R, =R, =Rz = R4 = Rs
=Rs=,R;=Rg=10,Rg=..=Rn=0

4.Find the position of upper bound whichNg(N — M)
(1—(y/2). ,
5.The upper bound of is the observed value has the
; #) _ pl*)
number in arrangemeﬂépp_- G(N—M)*(l—(y/Z)): -
6.Repeat thea bove steps N times and every time find the

average value o) and6(y),

5 Simulation Study

This section deals with obtaining some numerical results.
Maximum likelihood estimate (Mle) and Bayes estimates
using LINEX (LI), Mean Square Error (SE) and General
entropy (GE) loss functions with their Mean square error
and 95 % confidence intervals (Cl) and Highest Posterior
Density Interval (HPD) with their widths for the parameter
6 whenN = 10000,M = 10006 = 3,a=5b=1A=
2.k=2,35,c=1q9=1

Using the fact that the progressive first-failure
censored sample with distribution functiér{x), can be
viewed as a progressive Type-Il censored sample from a
population with distribution function & (1 — F(x))¥, we
generate a progressively first-failure censored samples
from the continuous random variable using the algorithm
described in21].
Table (1) contains censoring schemes (C.S) used in the
simulation , Table(2) and Table(3), Table(4) contains the
esults concluded from the simulation study.

? Conclusion

intervals treat their bounds as random variables and the
parameter as a fixed value. In this section, we describef0int and interval estimation using Symmetric and

the algorithm for finding(1 — y) HPD interval for 6
(credible intervals). This algorithm proposed [20]

1.Arrange the values 08*) in ascending order.

2.Find the position of the lower bound whichNg(N —
M) xy/2], M is the nburn.

3.The lower bound oB is the ob§erved value has the

. ¥) _ gl
number in arrangemef,, = 9( N — M)«(y/2)"

Asymmetric Bayesian Estimation by two methods For
Lindley Distribution parameter based on progressive first
failure samples are derived and computed. Asymmetric
Bayesian Estimation is always better than symmetric
Bayesian Estimation, The Mean square error (Mseg pf

is always smaller than Mse dofsg, the HPD interval
length and the Confidence Interval length of the
parameter decreasesrasnincrease, olso as the diffrence
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Table 2: Estimators and MSE, CI, HPD

C.s [1] (2] (3] [4] [5] 6]
n 50 50 70 70 100 140
m 20 20 30 30 40 60
K 2 2 2 2 2 2
BwiE 3.001 3.131 3.077 3.047 3.041 3.031
Bse 2.896 2.921 2.952 2.926 2.954 2.97
6L 2.771 2.799 2.867 2.926 2.891 2.928
Bce 2.807 2.836 2.893 2.933 2.911 2.941
Mseure 0.3729 0.3472 0.2202 0.2574 0.1765 0.1106
Msese 0.2689 0.2585 0.1963 0.2054 0.1537 0.1059
Mse, 0.263 0.2441 0.187 0.2013 0.1512 0.1037
Msese 0.2758 0.257 0.1964 0.2083 0.1552 0.1059
95%CI {2.054,4397 | {1.967,4.% | {22341} | (214382 | {2.253.73 | {2.407,3.64%
Length 2.3376 2.21447 1.8758 1.792 1.542 1.275
95%CIforHPD | {2.039,4.16 | {1.97,3.98 | {2.14,3.87 | {2.255,3.73) | {2.407,3.646 | {2.232,3.92
Length 2.12906 201199 | 1.69547 1678 1.474 1.239

Table 3: Estimators and MSE, CI, HPD

Cs (1] (2] (3] [4] [5] [6]
n 50 50 70 70 100 140
m 20 20 30 30 40 60
K 3 3 3 3 3 3
Bvie 3.06 3.192 3.083 3.063 3.023 3.044
Bse 2.905 2.973 2.984 2.964 2.931 2.98
6L 2777 2.838 2.936 2.895 2.863 2.932
Bce 2.814 2.88 2.913 2.917 2.884 2.947
Msewie 0.4203 0.4581 01941 0.1518 0.164 0.103
Msese 0.2787 0.2869 0.155 0.1256 0.1443 0.09
Mse,, 0.2691 0.2554 0.1465 0.1238 0.1439 0.0879
Msese 0.2848 0.2768 0.1529 0.1271 0.1475 0.0899
95% CI {1.991,4.21F | {2.051,4.357 | {2.113,3.850 | {2.23,4.100 | {2.13,3.88 | {2.41,3.66
Length 2.22659 2.30549 1.73705 1.861 1.753 1.255
95% Cl for HPD | {1.97,3.99F7 | {2.041,4.11} | {2.219,3.93 | {2.13,3.78 | {2.119,3.73% | {2.40,3.623
Length 2.018 2.070 (2219393 | {2.133.78 | {2.119,3.734 | {2.40,3.623

Table 4: Estimators and MSE, Cl, HPD

C.s [1] [2] [3] [4] [5] [6]
n 50 50 70 70 100 140
m 20 20 30 30 40 60
K 5 5 5 5 5 5
Bwie 3.104 3.083 3.055 3.062 3.041 3.055
Bse 2.898 2.8854 2.924 2.962 2.954 2.992
CY 2.926 2.759 2.835 2.894 2.891 2.945
Bce 2.77 2.796 2.862 2.915 2.911 2.96
MSewre 0.502 0.381 0.2347 0.145 0.1179 0.0956
Msese 0.309 0.2711 0.1875 0.1189 0.1015 0.0829
Mse, 0.2761 0.2682 0.1849 0.1171 01 0.0799
Msece 0.3007 0.2792 0.1912 0.1202 0.1023 0.0821
95%CI 198419 | 1.9942 2.16,3.94 2.291,3.83 | 2.359,3.727| 2.427,3.682
Length 2.20442 | 2.21509 1.7755 1.54008 1.36855 1.254
95%CITorHPD | {1.98,3.98 | {2.02,3.84 | {2.154,3.827 | {2.279,3.739 | 12.3.3.6 | {2.416,3.628
Length 1.9965 1.8175 1.66847 1.46057 1.31821 1.2121
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betweenn,m deacreses the Mse error of the paramter[12] M. Dube, R. Garg , H. Krishna “"On progressively first

deacreses, all the results concludede are : failure censored Lindley distribution”, Comput Stat, 31,
(2016), pp. 139-163.

1.For all censoring schemes ahkd= 2,3,5 asn,m [13] H.R. Varian , “A Bayesian Approach to Real Estate

increase the Mse cﬁwe, éSE, éu, éGE decrease. Assessment”. North Holland, Ams- terdam, (1975), pp. 195-
2.For all censoring schemes ahd= 2,3,5 as n,m 208. _ _ o _

increase the HPD interval length and the Confidence14] U. Balaso oriya, N. Balakrishnan, “Reliability sampgi

Interval length of the parameter decreases. plans for log-normal distribution based on progressively

3.The Mse offec, i bavesian estimators) is censored samples”. |IEEE Transactions on Reliability 49
se, Bu, Bce_(bay ) (2000) pp. 199-203.

always Smaller thf;m Mse Gue- [15] A.A. Soliman, “Estimation of parameters of life from

4.The Mse offs, 6 is always smaller than Mse of progressively censored data using Burr-XI | model”. IEEE
BcE. R R Transactions on Reliability 54 (1) (2005) pp. 34-42.

5.The Mse ofg, is always smaller than Mse 6ke. [16] A.A. Soliman, “Estimation for Pareto model using
general progressive censored data and asymmetric loss”.
Communications in Statistics-Theory and Methods 37 (2008)
pp.1353-1370.

[17] G. Prakash, D.C. Singh,“Shrinkage estimation in
exponential Type-ll censored data under LINEX loss”.
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