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Abstract: In this paper, we made point and interval estimation for Lindley distribution based on progressive first failure censoring
by two methods: Maximum likelihood estimation (Mle) and Bayesian estimation . A comparison between Bayesian estimation under
Symmetric and Asymmetric Loss Functions are obtained. Highest Posterior Density (HPD) interval and Approximate Confidence
Interval (CI) are obtained.
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1 Introduction

Censoring is very common in life tests. There are
different types of censored tests. One of the most
common censored test is Type-II censoring. It is noted
that one can use Type-II censoring for saving time and
money. However, when the lifetimes of products are very
high, the experimental time of a Type-II censoring life
test can be still too long. A generalization of Type-II
censoring is the progressive Type-II censoring. [1]
described a life test in which the experimenter might
decide to group the test units into several sets, each as an
assembly of test units and then run all the test units
simultaneously until occurrence the first failure in each
group. Such a censoring scheme is called first-failure
censoring, [2] and [3] obtained Mle, exact confidence
intervals and exact confidence regions for the parameters
of the Gompertz and Burr Type-XII distributions based on
first failure-censored sampling, respectively. For more
reading one can refer to [4] and [5]. The first-failure
censoring does not allow for sets to be removed from the
test at the points other than the final termination point.
however, this allowance will be desirable in practice. This
leads us to the area of progressive censoring. [6] combine
the concepts of first-failure censoring and progressive

censoring to develop a new life test plan called a
progressive first-failure censoring scheme. [7] studied the
coefficient of variation of Gompertz distribution under
progressive first-failure censoring. [8] and [9] introduced
Mle, Bayesian estimates, exact confidence intervals and
exact confidence regions for the parameters of Gompertz
and Burr Type-XII distributions under progressive first
failure-censored sampling.

Suppose that n independent groups with k items
within each group are put on a life test.R1 groups and the
group in which the first failure is observed are randomly
removed from the test as soon as the first failureYR

1;m,n,k
has occurred,R2 groups and the group in which the
second failure is observed are randomly removed from
the test as soon as the second failure occurredYR

2;m,n,k ,
and finally when the m-th failureYR

m;m,n,k is observed, the
remaining groupsRm,(m≤ n) are removed from the test.
Then Y R

1;m,n,k < ... < YR
m;m,n,k

are called progressively
first-failure censored order statistics with the progressive
censored scheme,

R= (R1,R2, ...,Rm), where n= m+∑m
i=1Ri . If the

failure times of then× k items originally in the test are
from a continuous population with distribution function
F(y) and probability density functionf (y) , the joint
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probability density function forY R
1;m,n,k,Y

R
2;m,n,k, ...,Y

R
m;m,n,k

is defined as follows:

f1,2,...,m(Y
R

1;m,n,k,Y
R

2;m,n,k, ...,Y
R

m;m,n,k)

= A(n,m−1)km
m

∏
i=1

f (Y R
i;m,n,k)

[

1−F(Y R
i;m,n,k)

]k(Ri+1)−1

(1)

whereA(n,m− 1) = n(n−R1 − 1)...(n−R1 −R2 − ...−
Rm−1− (m−1)), 0< x1< x2< ... < xm< ∞.

Special cases:

1.Puttingk= 1 gives the progressively Type-II censored
order statistics.

2.The complete sample case whenR= {0,0, ...,0} and
k= 1.

2 Lindley Distribution

The Lindley distribution was originally proposed by [10]
in the context of Bayesian statistics, as a counter example
of fudicial statistics. Assume that the random variable X
representing the lifetime of a product has Lindley
distribution with parametersθ . Lindley distribution has
the following probability density function and cumulative
distribution function respectively:

f (x) =
θ 2(1+ x)e−θx

1+θ
,x> 0,θ > 0, (2)

and

F(x) = 1−

(

1+
θx

1+θ

)

e−θx,x> 0,θ > 0. (3)

Lindely distribution has many real life applications
for example [11] have introduced real data represent the
waiting times and fitting them. They proved that the
Lindely distribution is better model than the exponential
distribution. They also found that the maximum
likelihood has a standard error reduced than the
exponential distribution.

3 Maximum Likelihood Estimation

This section discussed the process of obtaining point and
interval estimations of the parameter based on progressive
first-failure censored data. Letyi =Y R

i;m,n,k be the observed
values of the lifetimey obtained from a progressive
first-failure censoring schemeR= (R1, ...,Rm). Then the
maximum likelihood function of the observations is:

L(θ ) = Akm
m

∏
i=1

f (yi) [1−F(yi)]
k(Ri+1)−1 (4)

L(θ ) = Akm∏m
i=1

[

θ 2 (1+ yi)e−θyi

1+θ

][(

1+
θyi

1+θ

)

e−θyi

]k(Ri+1)−1

(5)
The log likelihood function may have the form:

ℓ(θ ) = logA+mlogk+2
m

∑
i=1

logθ −
m

∑
i=1

log(1+θ )

+
m

∑
i=1

log(1+ yi)+
m

∑
i=1

(k(Ri +1)−1)

× log(1+
θyi

1+θ
)−

m

∑
i=1

θyi(k(Ri +1))

(6)

Differentiating equation (6) with respect toθ and
equating the equation to zero.

∂ℓ(θ )
∂θ

=
2m
θ

−
m

∑
i=1

yik(Ri +1)

+
m

∑
i=1

(k(Ri +1))(
yi

((1+θ )(1+θ +θyi))
)

−
m

∑
i=1

(
yi

(1+θ )(1+θ +θyi)
−

m
1+θ

= 0.

(7)

Equation (7) can’t be solved analytically, but can be
solved by using Newton-Raphson method.

3.1 Approximate confidence interval

In this section we obtained the Approximate confidence
interval for Lindely distribution parameter. The observed

Fisher’s information is given byI(θ̂ ) = −
∂ 2ℓ(θ )

∂θ 2 at

θ = θ̂ . The sampling distribution of
θ̂ −θ

√

var
(

θ̂
)

can be

approximated by a standard normal distribution. When
the sample size is large, the(1− γ) confidence interval
bounds forθ can be computed by :

(θ̂L, θ̂U) = θ̂ ±Zγ
2

√

var
(

θ̂
)

.

4 Bayes Estimators under Symmetric and
Asymmetric Loss Function

This section deals with obtaining the Bayesian estimation
for the Lindely distribution parameter under different loss
functions. [12] had studied the Bayesian estimation using
Squared (SE) Error loss function for lindely distribution
by using important sampling technique and
Metropolis-Hasting algorithm .
In practical works the parameters cannot be treated as a
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constant during the life testing time. Therefore, it would
be a fact to assume the parameters used in the life time
model as random variables. We have also conducted a
Bayesian study by assuming the following independent
gamma prior forθ :

g(θ )αθ a−1e−bθ ,θ > 0 (8)

Where a and b are hyperparameters anda,b> 0

4.1 Symmetric loss function (Squared Error
Loss (SEL) function)

In this subsection, we made Bayesian estimation using
Squared (SE) Error loss function. The likelihood function
has the form :

L(θ ) =

Akm
m

∏
i=1

[

θ 2 (1+ yi)e−θyi

1+θ

][(

1+
θyi

1+θ

)

e−θyi

]k(Ri+1)−1

(9)

Thus, the posterior density function ofθ , given the data, is
given by

π (θ | x) =
L(θ )g(θ | a,b)

∫ ∞
0 L(θ )g(θ | a,b)dθ

(10)

Therefore, the Bayes estimate of any function ofθ say
h(θ ) under Squared Error loss function is

θ̂SE= E(θ |data) [h(θ )] =
∫ ∞

0 h(θ )L(θ )g(θ | a,b)dθ
∫ ∞

0 L(θ )g(θ | a,b)dθ .
(11)

The posterior density function is:

π (θ | x) ∝ L(θ )g(θ | a,b) (12)

π(θ | y) ∝

θ 2m+a−1 Akm

(1+θ )m

m

∏
i=1

(1+ yi)(1+
θyi

(1+θ )
)k(Ri+1)−1

× [exp(−θ (b+ k
m

∑
i=1

yi(Ri +1)))].

(13)

It is not possible to compute equation (11) analytically.
The posterior density function cannot be reduced
analytically to well known distributions. But its plot
shows that it is similar to normal distribution. So, to
calculate the integral that we cannot calculate it exact, we
use the Metropolis-Hasting Algorithm with normal
proposal distribution.

4.2 Asymmetric loss function

Asymmetric loss function may be more appropriate in
some fields. Recently, many authors considered
asymmetric loss functions in reliability and life testing.
one of the most popular asymmetric loss functions is
linear-exponential (LINEX) loss function (LI) which was
introduced by [13]. It used in several papers, for example,
[14], [15], [16] and [17]. This function is approximately
linearly on one side and rises approximately to zero on
the other side. Under the assumption that the minimal loss
occurs at θ̂ = θ , the LINEX loss function can be
expressed as:

L1(δ ) ∝ exp(cδ )− cδ −1, (14)

whereδ = θ̂ −θ , θ̂ is the estimate ofθ ,c 6= 0.
The magnitude of c represent the direction, and degree of
symmetry. Wherec > 0 means overestimation is more
serious than underestimation, andc < 0 means the
opposite. Forc close to zero the LINEX loss function is
approximately the Squared Error Loss (SEL) function.
The posterior expectation of the LINEX loss function of
is :

Eθ (L1(θ̂ −θ )) ∝ (15)

((exp(cθ ))Eθ [exp(−cθ )]− c(θ̂ −Eθ [θ ])−1. (16)

The Bayes estimator under the LINEX loss function is the
value of

θ̂LI =
−1
c

log(Eθ [exp(−cθ )]), (17)

such thatEθ [exp(−cθ )] exists.
Another asymmetric loss function called a General

Entropy (GE) Loss function was proposed by [18] which
can be expressed as:

L2(θ̂ ,θ ) ∝ [
θ̂
θ
]q−qlog

θ̂
θ
−1. (18)

The weighted SEL function results fromq= −1. The
Bayes estimatêθGE under GEL function is

θ̂GE = (Eθ [θ−q])
−1
q (19)

such thatEθ [θ−q] exists.
Since it is not possible to compute equation (16) and

(18) analytically. we used the Markov chain Mont-Carlo
(MCMC) method such as Metropolis-Hastings algorithm.
to draw samples from the posterior density function and
then to compute the Bayes estimate.

4.3 Metropolis-Hasting algorithm

The Metropolis algorithm was originally introduced by
[19]. Suppose that our goal was to draw samples from
some distributions f (x|θ ) = νg(θ ), where ν is the
normalizing constant which may not be known or very
difficult to compute. The MH algorithm provided a way
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of sampling fromf (x|θ ) without requiring us to knowν.

Let q
(

θ (b)|θ (a)
)

be an arbitrary transition kernel: that is

the probability of moving, or jumping, from current state
θ (a) to θ (b). This is sometimes called the proposal
distribution. The following algorithm generated a
sequence of valuesθ (1),θ (2), ...,θ (n) which form a
Markov chain with stationary distribution given by
f (x|θ ).

4.4 Algorithm

1.Start withθ (0) = θMLE .
2.Set i=1.
3.Generate θ (∗) from the proposal distribution

N(θ (i−1),varθ (i−1)).

4.Calculate the acceptance probabilityr(θ (i−1),θ (∗)) =

min

[

1,
π(θ (∗))

π(θ (i−1))

]

.

5.Generate U from uniform on (0, 1).
6.If U < r(θ (i−1),θ (∗)) accept the proposal distribution

and setθ (i) = θ (∗). Otherwise, reject the proposal
distribution and setθ (i) = θ (i−1).

7.Seti = i +1.
8.Repeat Steps 3−9 N times.
9.Obtain the BEs ofθ using MCMC under SEL function

asθ̂SE= ∑N
i=M+1

1
N−M θ (i).

10.Obtain the BEs ofθ using MCMC under LINEX

function asθ̂LI =
−1
c log ∑N

i=M+1 exp(−cθ (i))

N−M .
11.Obtain the BEs ofθ using MCMC under GE function

θ̂GE = [
∑N

i=M+1(θ
(i))−q

N−M ]
−1
q , where M is nburn units and

N is the number of mcmc iterations.

4.5 Highest Posterior Density (HPD) interval
algorithm

In Bayesian statistics, a credible interval is an interval in
the domain of a posterior probability distribution used for
interval estimation .The credible intervals are analogous
to confidence intervals in frequentist statistics although
they differ on a philosophical basis Bayesian intervals that
treat their bounds as fixed and the estimated parameter as
a random variable, whereas frequentist confidence
intervals treat their bounds as random variables and the
parameter as a fixed value. In this section, we described
the algorithm for finding(1− γ) HPD interval for θ
(credible intervals). This algorithm proposed by [20]

1.Arrange the values ofθ (∗) in ascending order.
2.Find the position of the lower bound which isN[(N−

M)∗ γ/2], M is the nburn.
3.The lower bound ofθ is the observed value has the

number in arrangementθ (∗)
low = θ (∗)

( N − M)∗(γ/2).

Table 1: Censoring schemes
C.S [1] m= 20,n= 50,R1 = R2 = R3 = 10,R4

= R5 = R6 = R7 = ...= Rm = 0
C.S [2] m= 20,n= 50,R1 = R2 = R3 = R4

= R5 = R6 = 5,R7 = R8 = ...= Rm = 0
C.S [3] m= 30,n= 70,R1 = R2 = R3 = R4 = 10,

R5 = ...= Rm = 0
C.S [4] m= 30,n= 70,R1 = R2 = 20,R3 = R4

= ...= Rm = 0
C.S [5] m= 40,n= 100,R1 = R2 = R3 = R4 = R5

= R6 = 10,R7 = ...= Rm = 0
C.S [6] m= 60,n= 140,R1 = R2 = R3 = R4 = R5

= R6 =,R7 = R8 = 10,R9 = ...= Rm = 0

4.Find the position of upper bound which isN[(N−M)∗
(1− (γ/2))].

5.The upper bound ofθ is the observed value has the

number in arrangementθ (∗)
upp= θ (∗)

(N−M)∗(1−(γ/2)).

6.Repeat thea bove steps N times and every time find the

average value ofθ (∗)
low andθ (∗)

upp.

5 Simulation Study

This section deals with obtaining some numerical results.
Maximum likelihood estimate (Mle) and Bayes estimates
using LINEX (LI), Mean Square Error (SE) and General
entropy (GE) loss functions with their Mean square error
and 95 % confidence intervals (CI) and Highest Posterior
Density Interval (HPD) with their widths for the parameter
θ whenN = 10000,M = 1000,θ = 3,a = 5,b = 1,A =
2,k= 2,3,5,c= 1,q= 1.

Using the fact that the progressive first-failure
censored sample with distribution functionF(x), can be
viewed as a progressive Type-II censored sample from a
population with distribution function 1− (1−F(x))k, we
generate a progressively first-failure censored samples
from the continuous random variable using the algorithm
described in [21].
Table (1) contains censoring schemes (C.S) used in the
simulation , Table(2) and Table(3), Table(4) contains the
results concluded from the simulation study.

6 Conclusion

Point and interval estimation using Symmetric and
Asymmetric Bayesian Estimation by two methods For
Lindley Distribution parameter based on progressive first
failure samples are derived and computed. Asymmetric
Bayesian Estimation is always better than symmetric
Bayesian Estimation, The Mean square error (Mse) ofθ̂LI

is always smaller than Mse of̂θSE, the HPD interval
length and the Confidence Interval length of the
parameter decreases asn,m increase, olso as the diffrence
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Table 2: Estimators and MSE, CI, HPD
C.S [1] [2] [3] [4] [5] [6]
n 50 50 70 70 100 140
m 20 20 30 30 40 60
k 2 2 2 2 2 2

θMlE 3.091 3.131 3.077 3.047 3.041 3.031
θSE 2.896 2.921 2.952 2.926 2.954 2.97
θLI 2.771 2.799 2.867 2.926 2.891 2.928
θGE 2.807 2.836 2.893 2.933 2.911 2.941

MseMle 0.3729 0.3472 0.2202 0.2574 0.1765 0.1106
MseSE 0.2689 0.2585 0.1963 0.2054 0.1537 0.1059
MseLI 0.263 0.2441 0.187 0.2013 0.1512 0.1037
MseGE 0.2758 0.257 0.1964 0.2083 0.1552 0.1059
95%CI {2.054,4.392} {1.967,4.1} {2.23,4.11} {2.14,3.82} {2.25,3.73} {2.407,3.646}
Length 2.3376 2.21447 1.8758 1.792 1.542 1.275

95%CI f orHPD {2.039,4.16} {1.97,3.98} {2.14,3.82} {2.255,3.730} {2.407,3.646} {2.232,3.92}
Length 2.12906 2.01199 1.69547 1.678 1.474 1.239

Table 3: Estimators and MSE, CI, HPD
C.S [1] [2] [3] [4] [5] [6]
n 50 50 70 70 100 140
m 20 20 30 30 40 60
k 3 3 3 3 3 3

θMle 3.06 3.192 3.083 3.063 3.023 3.044
θSE 2.905 2.973 2.984 2.964 2.931 2.98
θLI 2.777 2.838 2.936 2.895 2.863 2.932
θGE 2.814 2.88 2.913 2.917 2.884 2.947

MseMle 0.4203 0.4581 .01941 0.1518 0.164 0.103
MseSE 0.2787 0.2869 0.155 0.1256 0.1443 0.09
MseLI 0.2691 0.2554 0.1465 0.1238 0.1439 0.0879
MseGE 0.2848 0.2768 0.1529 0.1271 0.1475 0.0899
95% CI {1.991,4.217} {2.051,4.357} {2.113,3.850} {2.23,4.100} {2.13,3.88} {2.41,3.66}
Length 2.22659 2.30549 1.73705 1.861 1.753 1.255

95% CI for HPD {1.97,3.997} {2.041,4.111} {2.219,3.93} {2.13,3.78} {2.119,3.734} {2.40,3.623}
Length 2.018 2.070 {2.219,3.93} {2.13,3.78} {2.119,3.734} {2.40,3.623}

Table 4: Estimators and MSE, CI, HPD
C.S [1] [2] [3] [4] [5] [6]
n 50 50 70 70 100 140
m 20 20 30 30 40 60
k 5 5 5 5 5 5

θMlE 3.104 3.083 3.055 3.062 3.041 3.055
θSE 2.898 2.8854 2.924 2.962 2.954 2.992
θLI 2.926 2.759 2.835 2.894 2.891 2.945
θGE 2.77 2.796 2.862 2.915 2.911 2.96

MseMle 0.502 0.381 0.2347 0.145 0.1179 0.0956
MseSE 0.309 0.2711 0.1875 0.1189 0.1015 0.0829
MseLI 0.2761 0.2682 0.1849 0.1171 0.1 0.0799
MseGE 0.3007 0.2792 0.1912 0.1202 0.1023 0.0821
95%CI 1.98,4.19 1.99,4.2 2.16,3.94 2.291,3.83 2.359,3.727 2.427,3.682
Length 2.20442 2.21509 1.7755 1.54008 1.36855 1.254

95%CI f orHPD {1.98,3.98} {2.02,3.84} {2.154,3.822} {2.279,3.739} {2.3,3.6} {2.416,3.628}
Length 1.9965 1.8175 1.66847 1.46057 1.31821 1.2121
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betweenn,m deacreses the Mse error of the paramter
deacreses, all the results concludede are :

1.For all censoring schemes andk = 2,3,5 as n,m
increase the Mse of̂θMle, θ̂SE, θ̂LI , θ̂GE decrease.

2.For all censoring schemes andk = 2,3,5 as n,m
increase the HPD interval length and the Confidence
Interval length of the parameter decreases.

3.The Mse ofθ̂SE, θ̂LI , θ̂GE (bayesian estimators) is
always smaller than Mse of̂θMle.

4.The Mse ofθ̂SE, θ̂LI is always smaller than Mse of
θ̂GE.

5.The Mse ofθ̂LI is always smaller than Mse of̂θSE.
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