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Abstract: In this paper, the modified simplest equation method as one of the computational schemes is applied to a nonlinear fractional
emerging telecommunication model with higher-orderer dispersive cubic - quintic for constructing the exact traveling and solitary
wave solutions. This model is also known with higher - order dispersive cubic - quintic nonlinear complex fractional Schrödinger
(NLCFS) equation. Moreover, it is used to explain the physical nature of the waves spread, especially in the dispersive medium.
The disadvantages of the B - spline schemes are investigated based on the obtained analytical solutions. Some obtained computational
solutions are sketched to more illustration of the wave dynamics in the dispersive medium.
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1 Introduction

Partial differential equations (PDEs) have been playing an
essential role in the emerging technologies where many
nonlinear evolution equations have been derived to
describe the dynamical behavior of several phenomena in
several fields, for example, nonlinear optics, fluid
dynamics, Bose–Einstein condensates, quantum
mechanics and several other areas [1,2,3,4,5,6,7].
However, the inadequate of the PDEs with an–integer
order have been clarified because of the nonlocal property
where this kind of equation does not explain that kind of
features [8,9,10]. Therefore, several natural phenomena
have been formulated with nonlinear PDEs with fractional
order [11]. Thus, PDEs have been playing an important
role in the emerging technologies where many nonlinear
evolution equations have been derived to describe the
dynamical behaviour of several phenomenon in several
fields, for example, nonlinear optics, fluid dynamics,
Bose–Einstein condensates, quantum mechanics and

several other areas [12,13,14,15]. However, the
inadequate of the PDEs with an–integer order have been
clarified because of the nonlocal property where this kind
of equation do not explain that kind of properties [16,17,
18]. Therefore, several nature phenomena have been
formulated with nonlinear PDEs with fractional order [19,
20,21]. Thus, many fractional operators have been
derived such as conformable fractional derivative,
fractional Riemann–Liouville derivatives, Caputo,
Caputo–Fabrizio definition, and so on [22,23,24,25,26].

These definitions have been being employed to
convert the fractional nonlinear partial differential
equations to a nonlinear integer–order ordinary
differential equation. Then the computational and
numerical schemes can be applied to get various types of
solutions for these models and the examples of these
schemes [27,28,29,30,31,32,33,34,35,36,37,38].

This paper studies the analytical and numerical
solutions of the NLCFS with higher–order dispersive
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cubic–quintic arising in the emerging telecommunication
[39]. This fractional model describes the wave function or
state function of a quantum–mechanical system [40].

Moreover, it is also used in the optical fiber where it
occurs in the Manakov system. The NLCFS equation is
given by [41,42]

ıDα
x U −

s1
2
Ut t + r1 U |U|2 − ı

s2
6
D3α
t t t U −

s3
24
D4α
t t t t U + r2 U |U|4 = 0, (1)

where (0 < α < 1), U describes the propagation of
the wave through a nonlinear medium. Additionally, the
s1, s2 and s3 are dispersions of order 2nd , 3nd and 4nd

respectively, while the r1 and r2 are the coefficients of
two nonlinearities of the medium, the function q is the
gradually varying envelope of the electromagnetic

material, the variables t and x are the retarded time and
the distance along the direction of propagation
respectively. The second and third terms in the above
equations are revealed from the velocity dispersion and
the Kerr effects. Using the next wave transformation [U =
U(x, t) = U(Z) eı (d1 x+d2 t+d3), Z = 1

α (l1 x
α + l2 t

α)]
to Eq. (1), yields,
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(2)

where [di, lj , (i = 1, 2, 3), (j = 1, 2)] are arbitrary
constants. Differentiating second equation of the system
(2) and then substitute the result into the first equation of
the same equation, gives

k1 U ′′ + k2 U5 + k3 U3 + k4 U = 0, (3)

where

k1 = l22
(
12s1 − 6s3 d

2
2 − 12 s2 d2

)
×
(
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3
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2
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,

k2 = −24 r2, k3 = −24 r1,
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(
s3 d
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3
2 − 12 s1 d

2
2 + 24 d1

)
Applying the homogeneous balance principle to Eq. (3),
leads to (m = 1

2 ). Thus, we use the next transformation
[U = Q 1

2 ] to the Eq. (3), yields

−k1
4
Q′2 + k1

2
QQ′′ + k2Q4 + k3Q3 + k4Q2 = 0.(4)

Applying the homogeneous balance principle to Eq. (4),
obtains (m = 1).

The rest of research paper is organized as follows:
Section (2), applies the extended simplest equation
method and B - spline schemes to the suggested model to
get exact traveling and solitary wave solutions of it [43,
44,45,46,47,48,49]. Section (4), explains the conclusion
of all the steps of our paper is detailed.

2 Application

Here in this section, the extended simplest equation
method and B - spline schemes are applied to the NLCFS
equation t;o explain the restricted electromagnetic wave
which stretches in media of nonlinear dispersive. Due to
stability among nonlinearity and dispersion effects, the
intensity of optical solitons are unchanged, and such
categories of solitary waves are more significant because
of their suppleness in optical of long distance.

2.1 Computational solutions

Applying the extended simplest equation method to Eq.
(4), leads to formulate the general solution of this model
in the following formula

Q(Z) =
n∑

i=−n
ai F i(Z) =

a−1
F(Z)

+ a1F(Z) + a0, (5)

where [a−1, a0, a1] are arbitrary constants to be
determined later. Additionally, F(Z) is the solution
function of the following ordinary differential equation

F ′(Z) = α+ λF(Z) + µF(Z)2, (6)

where [α, λ, µ] are arbitrary constant. Substituting Eq.
(5) along (6) into Eq. (4) and collecting all terms with the
same power of [F i(Z), i = −5,−4, ..., 4, 5], give a
system of algebraic equation. Using the Mathematica 12
program for solving this system, yields
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Family I:
[a−1 → αa0

λ , a1 → a0µ
λ , k2 → − 3λ2k1

4a20
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(
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)
]

Thus, the explicit wave solutions of Eq. (1) are formulated in the following formulas
For [α = 0] when (λ > 0)

U1 = eid2t+id1x+id3
√
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1− µeλ(ξ+ϑ)

. (7)
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Thus, the explicit wave solutions of Eq. (1) are formulated in the following formulas
For [λ = 0], when (αµ > 0)

U5 = eid2t+id1x+id3
√
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(
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(
2
√
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√
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+ 1
)
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When (αµ < 0)
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Family III:

[a−1 →
√
a20(λ

2−4αµ)+a0λ
2µ , a1 → 0, k2 →

3k1
(
λ
√
a20(λ

2−4αµ)−a0(λ2−2αµ)
)

8a30
,
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(
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√
a20(λ

2−4αµ)
)

2a20
, k4 → − 1

4k1
(
λ2 − 4αµ

)
]

Thus, the explicit wave solutions of Eq. (1) are formulated in the following formulas.
For [λ = 0] when (αµ < 0)

U9 = eid2t+id1x+id3

√√√√√−αa20µ coth(ξ√−αµ∓ log(ϑ)
2

)
√
−αµ

+ a0, (15)

U10 = eid2t+id1x+id3

√√√√√−αa20µ tanh(ξ√−αµ∓ log(ϑ)
2

)
√
−αµ

+ a0. (16)

For [α = 0] when (λ > 0)

U11 = eid2t+id1x+id3
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(√
a20λ

2 + a0λ
)
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a20λ

2−4αa20µ
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(
λ
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(
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,
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(
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) ]
Thus, the explicit wave solutions of Eq. (1) are formulated in the following formulas
For [λ = 0] when (αµ < 0)

U12 = eid2t+id1x+id3

√√√√√−αa20µ tanh(ξ√−αµ∓ log(ϑ)
2

)
√
−αµ

+ a0, (18)

U13 = eid2t+id1x+id3

√√√√√−αa20µ coth(ξ√−αµ∓ log(ϑ)
2

)
√
−αµ

+ a0. (19)

2.2 Numerical solutions

Here, we try to find the numerical solutions of the NLCFS equation via the B - spline schemes as following

2.2.1 Cubic B–Spline

Employing the cubic spline technique to Eq. (4) with the above conditions, yields elicit its numerical solutions as following

P(Z) =

M+1∑
T=−1

CT ET, (20)

where CT, ET follow the next conditions, respectively:

LB(Z) = F(ZT,B(ZT)) where (T = 0, 1, ..., n) (21)
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Fig. 1: Numerical simulation of Eq. (4) in three–dimensional sketches.

Fig. 2: Numerical simulation of Eq. (4) in two–dimensional sketches.

Fig. 3: Numerical simulation of Eq. (4) in three–dimensional sketches.

and

ET(Z) =
1

6H3


(Z− ZT−2)

3, Z ∈ [ZT−2,ZT−1],
−3 (Z− ZT−1)

3 + 3H (Z− ZT−1)
2 + 3H2 (Z− ZT−1) + H3, Z ∈ [ZT−1,Zi],

−3 (ZT+1 − Z)3 + 3H (ZT+1 − Z)2 + 3H2 (ZT+1 − Z) + H3, Z ∈ [ZT,ZT+1],
(ZT+2 − Z)3, Z ∈ [ZT+1,ZT+2],

0, otherwise.

(22)

For T ∈ [−2,M+ 2], we obtain

BT(Z) = CT−1 + 4CT + CT+1. (23)

Substituting Eq. (23) into Eq. (4), yields (M+ 3) of equations. Resolving this system gives the results in table 1.
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Fig. 4: Numerical simulation of Eq. (4) in two–dimensional sketches.

2.2.2 Quantic B–spline

Employing the cubic spline technique to Eq. (4) with the above conditions gives its numerical solutions in the next formula

B(Z) =

M+1∑
M=−1

CT ET, (24)

where CT, ET follow the next conditions, respectively:

LB(Z) = F(ZT,B(ZT)) where (T = 0, 1, ..., n) (25)

and

ET(Z) =
1

H5



(Z− ZT−3)
5, Z ∈ [ZT−3,ZT−2],

(Z− ZT−3)
5 − 6(Z− ZT−2)

5, Z ∈ [ZT−2,ZT−1],
(Z− ZT−3)

5 − 6(Z− ZT−2)
5 + 15(Z− ZT−1)

5, Z ∈ [ZT−1,ZT],
(ZT+3 − Z)5 − 6(ZT+2 − Z)5 + 15(ZT+1 − Z)5, Z ∈ [ZT,ZT+1],

(ZT+3 − Z)5 − 6(ZT+2 − Z)5, Z ∈ [ZT+1,ZT+2],
(ZT+3 − Z)5, x ∈ [ZT+2,ZT+3],

0, otherwise.

(26)

For T ∈ [−2,M+ 2], we get

BT(Z) = CT−2 + 26CT−1 + 66CT + 26CT+1 + CT+2. (27)

Substituting Eq. (27) into Eq. (4) gives (M+ 5) of equations. Resolving this system, leads to the results in table 2.

2.2.3 Septic B–Spline

Employing the septic spline technique to Eq. (4) with the above conditions gives its numerical solutions in the next form

B(Z) =

M+1∑
T=−1

CM EM, (28)

where cM, EM follow the next conditions, respectively:

LB(Z) = F(ZM,B(ZM)) where (M = 0, 1, ..., n) (29)
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Table 1: Value of exact solutions, and numerical obtained solutions by cubic spline scheme of (4) under the following
conditions [a0 = 2, α = −1, λ = 0, k1 = 3, k2 = − 9

4 , k3 = 12, k4 = −12, µ = 4, ϑ = 1] for Eq. (16)

Value of Z Exact value Numerical Value Absolute error
0 2 2 0

0.1 2.39475 0.994884 1.39987
0.2 2.7599 0.335965 2.42393
0.3 3.0741 0.0302715 3.04383
0.4 3.32807 -0.00460121 3.33267
0.5 3.52319 -0.000604126 3.52379
0.6 3.66731 -0.0137043 3.68101
0.7 3.7707 0.0684398 3.70226
0.8 3.84334 0.707378 3.13596
0.9 3.89361 2.02339 1.87023
1 3.92806 3.92806 0

Fig. 5: Exact and numerical values by using cubic B–spline scheme for the three analytical schemes

and

ET(Z) =
1

H5



(Z− ZT−4)
7, Z ∈ [ZT−4,ZT−3],

(Z− ZT−4)
7 − 8(Z− ZT−3)

7, Z ∈ [ZT−3,ZT−2],
(Z− ZT−4)

7 − 8(Z− ZT−3)
7 + 28(Z− ZT−2)

7, Z ∈ [ZT−2,ZT−1],
(Z− ZT−4)

7 − 8(Z− ZT−3)
7 + 28(Z− ZT−2)

7 + 56(Z− ZT−1)
7, Z ∈ [ZT−1,ZT],

(ZT+4 − Z)7 − 8(ZT+3 − Z)7 + 28(ZT+2 − Z)7 + 56(ZT+1 − Z)7, Z ∈ [ZT,ZT+1],
(ZT+4 − Z)7 − 8(ZT+3 − Z)7 + 28(ZT+2 − Z)7, Z ∈ [ZT+1,ZT+2],

(ZT+4 − Z)7 − 8(ZT+3 − Z)7, Z ∈ [ZT+2,ZT+3],
(ZT+4 − Z)7, Z ∈ [ZT+3,ZT+4],

0, otherwise.

(30)

For T ∈ [−3,M+ 3], we get

BT(Z) = CT−3 + 120CT−2 + 1191CT−1 + 2416CT

+1191CT+1 + 120CT+2 + CT+3. (31)

Substituting Eq. (31) into Eq. (4) gives (M+ 7) of equations. Resolving this system leads to the results in table (3).
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Table 2: Value of exact solutions, and numerical obtained solutions by quantic spline scheme of (4) under the following
conditions [a0 = 2, α = −1, λ = 0, k1 = 3, k2 = − 9

4 , k3 = 12, k4 = −12, µ = 4, ϑ = 1] for Eq. (16)

Value of Z Exact value Numerical Value Absolute error
0 2 1.92032 0.0796816

0.1 2.39475 0.92752 1.46723
0.2 2.7599 0.256607 2.50329
0.3 3.0741 0.0981479 2.97595
0.4 3.32807 0.0251699 3.3029
0.5 3.52319 0.0226624 3.50053
0.6 3.66731 -0.00303086 3.67034
0.7 3.7707 0.152334 3.61837
0.8 3.84334 0.825615 3.01772
0.9 3.89361 2.28397 1.60964
1 3.92806 3.77156 0.156497

Fig. 6: Exact and numerical values by using quantic B–spline scheme for the three analytical schemes

3 Results and discussion

All computational obtained solutions are considered as optical soliton wave solutions that are used to explain the
dynamical behavior of the particles in the optical waves where the optical soliton is restricted electromagnetic wave
which stretches in media of nonlinear dispersive. The physical illustration of the presented figures is given as follows

1.Figs. (1, 2) show the soliton shape of the absolute, real, and imaginary solution (12) in the three–dimensional
plot (a, b, c) to explain the perspective view of the solution and the absolute, real, and imaginary sketches in two–
dimensional plot (d, e, f) to explain the wave propagation pattern of the wave along x axis when [a0 = 7, α =
−1, α = 0.5, d1 = 5, d2 = 6, d3 = 9, µ = 4, l1 = 2, l2 = 3, ϑ = 1].

2.Figs. (3, 4) show the soliton of the absolute, real, and imaginary solution (18) in the three–dimensional plot (a, b, c)
to explain the perspective view of the solution and the absolute, real, and imaginary sketches in two– dimensional plot
(d, e, f) to explain the wave propagation pattern of the wave along x axis when [a0 = 7, α = −1, α = 0.5, d1 =
5, d2 = 6, d3 = 9, µ = 4, l1 = 2, l2 = 3, ϑ = 1].

3.Fig. 5 shows the exact and numerical solutions of Eq. (4) via cubic B - spline scheme under the following conditions
[a0 = 2, α = −1, λ = 0, k1 = 3, k2 = − 9

4 , k3 = 12, k4 = −12, µ = 4, ϑ = 1] for Eq. (16).
4.Fig. 6 shows the exact and numerical solutions of Eq. (4) via quantic B - spline scheme under the following conditions
[a0 = 2, α = −1, λ = 0, k1 = 3, k2 = − 9

4 , k3 = 12, k4 = −12, µ = 4, ϑ = 1] for Eq. (16).
5.Fig. 7 shows the exact and numerical solutions of Eq. (4) via septic B - spline scheme under the following conditions
[a0 = 2, α = −1, λ = 0, k1 = 3, k2 = − 9

4 , k3 = 12, k4 = −12, µ = 4, ϑ = 1] for Eq. (16).
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Table 3: Value of exact solutions, and numerical obtained solutions by septic spline scheme of (4) under the following
conditions [a0 = 2, α = −1, λ = 0, k1 = 3, k2 = − 9

4 , k3 = 12, k4 = −12, µ = 4, ϑ = 1] for Eq. (16)

Value of Z Exact value Numerical Value Absolute error
0 2 0.496895 1.5031

0.1 2.39475 0.347676 2.04707
0.2 2.7599 0.203475 2.55642
0.3 3.0741 0.156736 2.91736
0.4 3.32807 0.0408894 3.28718
0.5 3.52319 -0.00272479 3.52591
0.6 3.66731 0.0759522 3.59136
0.7 3.7707 0.231326 3.53938
0.8 3.84334 0.378552 3.46479
0.9 3.89361 0.650581 3.24303
1 3.92806 0.975916 2.95214

Fig. 7: Exact and numerical values by using septic B–spline scheme for the three analytical schemes

Here, the obtained computational and numerical solutions are investigated to show the novelty of our solutions as
following:

1.Computational schemes:
The extended simplest equation method is employed to find the exact traveling and solitary wave solutions of the
higher - order dispersive cubic - quintic NLCFS equation. The employed method is considered one of the most recent
derived analytical schemes. It depends on an auxiliary equation (6) that has the following general solution,

F(Z) =

√
4αµ− λ2 tan

(
1
2

(
Z
√

4αµ− λ2 + c1
√
4αµ− λ2

))
− λ

2µ
, (32)

where c1 is arbitrary constant. Consequently, all other obtained solutions via this method are just special case of this
general solution under specific conditions.

2.Obtained computational wave solutions:

–Eq. (16) is equal to Eq. (29) [42] when [ϑ = 0, −αµ = χ2 − 4 δ %, k1 = a0].
–All other obtained solutions are different from that obtained in [42] where the modified Khater method was

employed to construct the exact traveling and solitary wave solutions.
3.Obtained Numerical solutions:

Here, we explain the obtained numerical results via B - spline schemes (cubic & quantic & septic). These solutions
illustrate the disadvantage of this kind of numerical schemes where the value of absolute error is relativity not small.
The reason of this value is the higher and degree in Eq. (1).
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Fig. 8: The obtained absolute value of error via cubic,
quantic, and septic spline schemes

4 Conclusion

This research investigated the exact traveling and solitary
wave solutions of the higher-order dispersive cubic -
quintic NLCFS equation via the extended simplest
equation method through the conformable fractional
derivative. Novel solitary wave solutions were obtained
and some of them were explained by plotting them in two,
three-dimensional in absolute, real, and imaginary values
of these solutions. The novelty of our paper was shown by
making the comparison between our obtained solutions
and that were purchased in previously published articles.
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