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Abstract: This paper investigates the effect of partial slip on paliist flow of a Sisko fluid through a porous medium. The flow is
streaming through a tapered artery having a mild stenob&sififluences of heat and chemical reactions on blood flowlsoaaken into
account. The governing equations of motion, energy anderaration are simplified by using the long wavelength and Reynolds
number approximations. The analytical solutions of thegm#ons are obtained by considering a perturbation tecienior small non-
Newtonian Sisko fluid parameter. The pressure rise anddni¢orce are numerically calculated. The numerical catahs with the
help of graphs are adopted to obtain the effects of severahpeters, such as the slip parameter, permeability paeantiet taper angle,
Brickmann number, Soret number and the maximum height absts, upon the distributions of velocity, temperatureycemtration,
pressure rise and friction force. It is found that the axglbeity increases with the increase of slip parameter. Méda, it decreases
with the increase of permeability parameter. The streasslare also depicted. It is observed that the trapped batvsases in size
with the increase of both the slip parameter and the maximeighh of stenosis. The other results are also illustrated.

Keywords: Peristaltic flow; Sisko model; Tapered artery; Stenosis fl®@rous medium; Slip flow; Heat transfer; Trapping
phenomena.

1 Introduction non-Newtonian fluids by choosing different material
. _  parameters. Therefore, we may considered it as a blood
Several researches studied the non-Newtonian fluidg,qqel.

because of their importance in industrial and  peristaltic transport is produced by a traveling wave
technological applications. Siskdl][ proposed a new qf grea contraction and expansion along the wall of the

model in studying the non-Newtonian fluid, which is later ypes. It occurs generally from a region of lower pressure
called sisko fluid. Sisko fluid is a model which combines 4, higher pressure. It is very important in biological

the feature§ of viscous and g'er.leralized of power laWmechanism which responsible for various physiological
models. It is capable of describing shear thinning ands,ctions of the organs of the human body. It has many
thickening phenomena, which commonly exist in ”ature-applications 3], such as transport deionized water and

It has many industrial applications such as waterbomeyhole blood and deliver phosphated buffered saline into
coatings, metallic automotive, cement slurries, lubif@t e vein of a rat, the transport of urine from kidney to

greases, psueodo-plastic fluids and drilling fluids. Siskoyagder, transport of food through oesophagus, the
fluid is an example of viscoelastic materials that include j,ovement of eggs in the fallopian tube, transport of the
polymeric liquids, biological fluids, liquid crystals, gpermatozoa in the cervical canal, transport of blood in

lubricating oils, mud and paint&]. It can demonstrate peart transport of bile in the bile duct. Several theoggtic
many typical characteristics of Newtonian and
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and experimental articles have been examined theerfusion of the arterial venous blood through the pores
peristaltic flows, such as Shapird][ Manton [B] and  of the tissue (process of delivery of blood to capillary
Fung and Yih 7). Their works considered several bed). Furthermore, it used to generate metabolic heat and
assumptions, such as long wavelength approximation, lovheat transfer due to some external interactions such as,
Reynolds number, small wave number and smallmobile phones and radioactive treatments. The
amplitude ratio. The peristaltic transport through application radio-frequency therapy is important to treat
infinitely long symmetric channel or axi-symmetric tubes more diseases such as tissue coagulation, the primary
containing a Newtonian or non-Newtonian fluids have liver cancer, the lung cancer and the reflux of stomach
been investigated. Asif et al8] studied the problem of acid [14]. Many investigators have reported the influence
peristaltic transport of a non-Newtonian power law fluid of heat transfer on peristaltic flow of Newtonian and
characterized by the streaming blood through annon-Newtonian fluids, sed§).
axi-symmetric tapered tubular vessel under a long wave In the recent past, many researches investigated,
length approximation. theoretically and experimentally, the combined effects of
Blood is a mixture of of red cells, white cells and heat and mass transfer on bio-fluid$]. The quantitative
platelets in plasma. The analysis of blood flow throughprediction of blood flow rate and heat generation are
stenosed arteries is very important. The discovery of thémportant for diagnosing blood circulation illness. Also,
cardiovascular diseases, such as stenosis othe combining between heat and mass transfer is
arteriosclerosis, is closely associated with the flowimportant for the noninvasive measurement of blood
conditions in the blood vessels. A stenosis is the abnormaglucose 17]. The mass flux caused by the temperature
growth of tissue. Stenosis means narrowing of any bodygradient, which is called Soret effect or thermal-diffusio
passaged]. stenoses may be caused by the impingements discussed by Alam et al1§]. The Soret effect is often
of extra vascular masses. Also, it may be formed due tanegligible in heat and mass transfer processes due to its
intravascular atherosclerotic plaques which developeat thsmall order of magnitude. However, for the non-
wall of the artery and protrude into the lumen. It may Newtonian fluids with light or medium molecular weight,
leads to cerebral strokes, myocardial infarction and hearit is not appropriate to neglect Soret effect as studied by
failure by reducing or occluding the blood suppid. Dursunkaya and Worek1P]. Therefore, through this
Also, in case of stenosed artery, stresses and resistanstudy, we investigate the combined effects of heat and
flow are higher than those in case of the normal onesmass transfer with Soret effect. Nadeem and Akl28} [
Furthermore, stenosis may damage the internal cells o$tudied the effect of heat and mass transfer on Walter's B
the wall. Several efforts have been made to investigate théuid through a tapered artery. Also, the problem of
blood flow characteristics through stenosed arteriesdynamic response of heat and mass transfer in blood flow
Chakravarty et al. 1] investigated the problem of through stenosed arteries has been discussed by
nonlinear blood flow in a stenosed flexible artery. Also, Chakravarty and Ser2]].
Verma and Parihar?] discussed the mathematical model The effect of vessel tapering is an important factor in
of blood flow through a tapered artery with mild stenosis. studying peristaltic transport. Pandey and Chau®d [
Heat transfer analysis is one of the important topic instudied the axi-symmetric peristaltic transport of a
studying chemical engineering. It has a great importancerziscous incompressible viscoelastic fluid through a
in the peristaltic motion. It is the passage of thermalcircular tube whose cross section changes along the
energy from a hot body to a colder one. Bio-heat islength (tapered tube). The Newtonian and non-Newtonian
considered as heat transfer in human body. It includedlood flow through tapered arteries with a stenosis have
thermotherapy and human thermoregulation syste8h [ been investigated. Mandal23] studied the notable
The thermotherapy system is on of the most importantcharacteristics of the non-Newtonian blood flow
application of heat in the human body. The human(Power-law model) through a flexible tapered arteries in
thermoregulation system is the ability of living body to the presence of stenosis subject to the pulsatile pressure
maintain temperature with in certain limits in case of gradient. Also, Mekheimer and El Ko2{] investigated
surrounding temperature variations. In physiology, it is the influence of heat and chemical reactions of blood flow
used to study the properties of tissues. Heat transfethrough tapered artery with stenosis. They considered a
analysis is important especially in case of non-NewtonianSisko fluid as a model of blood. They obtained that the
peristaltic rheology. It is used in many complicated magnitude of axial velocity is greater for a Newtonian
processes in the human body. Heat transfer is used ifiuid than that for a Sisko fluid. Also, the curves through
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the convergent tapered artery are greater than those in treurface is coated with a special coating such as a thick
non tapered artery and the diverging tapered artery. monolayer R9]. The problem of effects of magnetic field
Porous media play an important role in many and wall slip conditions on the peristaltic transport of a
branches of engineering, including material sciencenewtonian fluid in an asymmetric channel is discussed by
petroleum industry, chemical engineering, and soilEbaid B(Q]. Also, Mekheimer et al.31] investigated the
mechanics as well as bhiomechanics. The flow througheffects of slip condition and porous medium on
porous media has gained a considerable interest duringeristaltically induced MHD due to a surface acoustic
recent years, particularly among geophysical fluidwavy wall.
dynamicists. It occurs in filtration of fluids in heat pipes In the last decades, a growing intere@4[and [31]]
and seepage of water in river beds. There are someeals with studying the chemical reaction, slip or no slip
important examples of flow through porous medium suchconditions in Newtonian as well as the non- Newtonian
as solid matrix heat exchangers, electronic coolingfluids. This is because of their great importance in several
chemical reactors, sandstone, limestone, movement ddreas such as medicine and medical industries. Therefore,
underground, water, oils, rye bread, bile duct, wood, thethe aim of the present study focus on investigating the
human lung, gall bladder with stones and small bloodeffects of heat and chemical reactions on peristaltic
vessels. Also, the seepage under a dam is an importatitansport of blood flow. The flow is streaming through a
application through the porous media. An excellenttapered artery with mild stenosis. The blood is
review in the physics of porous media is given by represented by a Sisko model. Furthermore, the influences
Scheidegger 45 and Eldabe 26]. Mekheimer P7] of slip condition and porous medium are also considered.
studied the motion of an incompressible, viscous fluid inThe governing equations of motion, energy and
an inclined planar channel filled with a homogenousconcentration are simplified using the long wavelength
porous medium and having walls that are transverselyand low Reynolds number approximation. These
displaced by an infinite, harmonic traveling wave of large equations are analytically solved in accordance with the
wavelength. This problem was analyzed using aappropriate boundary conditions. The technique depends
perturbation expansion in terms of a variant wave numberon a perturbation analysis. This technique considers a
Mekheimer obtained an explicit form for the velocity field small Sisko fluid parameter. The distributions of the
and a relation between the pressure rise and flow rate istream function, temperature and concentration are
terms of Reynolds number, wave number, permeabilityobtained up to the first order. The pressure rise and
parameter, inclined angle, and the occlusion. Also, Afsarfriction force are obtained in terms of dimensionless flow
et al. 2§ discussed the problem of peristaltic flow of a rate Q by using numerical integration. Numerical
Jeffrey fluid with variable viscosity through a porous calculations are adopted to obtain the effects of several
medium in an asymmetric channel. It is observed that theparameters, such as the slip parameter, permeability
magnitude of axial velocity decreases with the increasingparameter, the taper angle, Brickmann number, Soret
of the permeability parameter. number and the maximum height of stenosis, on the
In studying the peristaltic flow, many researchesabove distributions. To clarify the problem at hand, in
assumed that the fluid layer next to the surface movesection 2, the physical description of the problem
with it, which is so called no slip condition. However, including the basic equations governing the motion with
there are another works that considered hypothesethe appropriate boundary conditions is presented. Section
including slippage. The so called slip conditions means3 is devoted to introduce the method of solution according
that there is a relative motion between the fluid layer nextto a perturbation technique. Through Section 4, we
to the fluid surface. It states that the velocity of the fluid atintroduce some important results that are displayed
the plate is linearly proportional to the shear stress at thi graphically for pumping characteristics and trapping
plate. It is very important in the polishing of artificial phenomena. Finally, in Section 5, we give concluding
heart valves. Also, it is important for internal cavitiesain  remarks for this study based on the obtained results for
variety of manufactured parts, micro-channels orperistaltic transport and stream lines.
nano-channels. The slip condition plays a vital role in
shear skin spurt and hysteresis effects. Furthermore, the
fluids that exhibit boundary slip have essential 2 Formulation of the problem
technological applications when a thin film of light oil is

attached to the moving plates. Also, it is used when theConSIder an unsteady motion of Sisko fluid through a

tapered tube with mild stenosis. The surface of the tube
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By Therefore, the constitutive equation is then becoje [

S= (a+by(vVO)" ) A, @)

whereSis the stress deviato® = 3tr(A)?, tr(A)? is the
sum of elements in main diagonal @)?, n is the power
zw index,az, b; are the material constant for Sisko fluid,

A=L+LT (3)

is the rate of strain tenso=(U,0,W) is the velocity
field andL=0V.

Since we assume that the fluid densgtyis uniform, it
follows that the incompressibility condition (continuity
equation) is then become

Fig. 1: Sketch of the physical situation of the problem.

OV =0. ()

ha§ an infinite sinusoidal yvave tralp traveling along the-l-he equation of motion is
axis of the tube. The flow is streaming through a porous
medium. Cylindrical polar co-ordinates systeR) @, Z)
is used, so that th&-axis coincides with the axis of the
tube. Through thi t n axial mmetry i . . L . .
ube' oug S study, an a .a Sy .e. y s wherelT is the pressure; is dynamic viscosity ang is
considered. In other words, all physical quantities are -
. . .. "the permeability parameter.
independent on the coordinaté. The stenosis is . .

. . . The equation of energyLf] is
developed in an axially symmetric manner. Heat and mass
transfer are also taken into account. The wall of the tube oT V.OT ) = &+ KO2T 6
is maintained at the uniform temperatur®, and PCo\ 5t TV =Pt ' )
concentratiorC;, respectively. Meanwhile, at the centre _ K .
of the tube we consider the symmetry conditions on bothWhereT is the temperaturs = ;- is the thermometric
temperature and concentration. The slip condition is alsgonductivity, K is the thermal conductivitycp is the

o ((Z—% " (y.w) —-on+os-Tv. ©

considered. specific heat an; =S, % is the dissipation term.
The effective radius of the tub&J is taken as follows: The equation of concentration i$7]
oC DKt
— +V.0OC=DI’C+ —0%T 7
Ry —md(z+L) L<z< —2, ot +y.0e C+ Tm ’ (7)
— - _H ) 7 <z< . . o .
R(2) Ri—mo(z+L) -3 [1+COSZO] D252 where C is the concentration distribution) is the

Ry —md(z+L) <z<d, coefficient of thermal diffusivity,Ky is the thermal

diffusion andTy, is the mean fluid temperature.

1)
yvhereR(z). Is the effective radius of the tapRered grteRy, The geometry of the peristaltic wall surface is defined as
is the radius of the un-tapered artedy= 3, A is the 7]
wave lengthH = hcosg is the hight of the stenosis in the o kt
tapered artery,p is the angle of taperingh is the hy = acos—- (Z— ﬁl) ; (8)
maximum hight of the stenosig is the half-length of the
stenosis andn = tang is the slope of the tapered vessel.
Sketch of the problem is given in the figure 1.

The ratio between the height of the stenosis and the radiu
of the normal artery is much less than unity. The arterialfonows:

wherea is the wave amplitude) is the wave length and
,5—‘1 is the wave speed.
Ihe appropriate boundary conditions may be listed as

is taken to be of finite length +d [11]. This study focus _ohy B B o

on all possibilities of different shapes of the artery viet W= VR T 01,C=ClatR=R, =R+,
converging taperin@ < 0, non-tapered arterg = 0 and ©)
the diverging tapering > 0 [23]. oW T aC

The prototype of fluid designed by Sisko is considered. U=0, R 0, IR 0, R O0atR=0, (10)

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 2, 673-687 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

677

wherey is the slip parameter.

Combining Egs. (2) and (3), theand z-components the
Eq. of motion (5) may be written as follows:
r-component:

U U ou\ on 2 1) OU
P(W*“TR ﬁ)**ﬁ*ﬁ(aﬁbﬂ@) ) or
4 n1) 9V 9 n-1
+252 (a1+b1(\/5) ) =257 (a1+b1(\/5) )
oW ouU 2U n-1 n
<ﬁ+TZ>7ﬁ<al+bl(\/é) )*EU-, 11)

andz-component:

oW oW oW\  on 1 1
p(ﬁ+uﬁ+wﬁ)_ aZ+R(a1+b1(\/5) )
oW U\ @ W1\ [(OW AU
<ﬁ ﬁ>+ﬁ(al+bl<@ )(ﬁ ﬁ)
4 1\ oW n
+Zﬁ<a1+b1(\@) )W_E : (12)
where® = 2(9%)2 + 2 + 2(9W)2 4 (Y 4 IW)2,
With the continuity equation
10(RU) oW
R R oz ° (13)
The Eq. of energy (6) may be written as follows:
oT  oT 9T\ o
foo (W +uﬁ+wﬁ> = (a1+b1(\/5) )
U, . OW., U W,
(2%) 257+ Gz T GR)
9°T 10T 0°T
+K(W+§ﬁ+ﬁ>’ (14)

Also, the Eq. of concentration distribution (7) may be
written as follows:

ot R 0z 0R2 ROR 0972
DKt /32T 10T 0°T
T (W ﬁﬁﬁﬁ) (15)

The instantaneous volume flow rate in the fixed coordinate

system is defined as:

Ry
szn/o WRdR (16)

whereR; is a function of Z and t.
The time average@ (time mean flow) over period= ’\—f}[
at a fixed Z-position is defined as

~ 1 /T
0= /0 Qdr. (17)

We assume that the tube length is an integral multiple of;

wavelengthA. Also, the pressure difference across the

becomes steady in the wave framg,0,z). The
transformation between these two frames is given by

W:W—L
1

u=u, r=R and

, z:Z—it.
Ry

(18)

It is convenient to write the above equations in an

appropriate dimensionless form. This can be done in a

number of ways depending primarily on the choice of the

characteristic length, time, and mass. Consider the

following dimensionless forms depending on the

characteristic lengtR;, A and the characteristic mabt

The other dimensionless quantities are given by

T _z _UR]_ _WRl—_hl _Rl
R A" MR
< SR_zn_ L_ h_- d-— R@®
S_W7ZO_X7L_X7h_R717d_X7 (Z)_R717
nRE - T C p q
= T=—FC=—"1p=~. =—— (19
ik T BRC T ac P R A e (19)

whereq is the volume flow rate in the moving coordinate
system.

Consider another dimensionless parameter= —2

alkR§

the sisko fluid parameteF,’r:g—t is the Prandtl number,

v:% is the kinematic viscosity, is the adverse

temperature gradients=a/R; is the amplitude ratio,
_ k2 . o .

Ec‘ﬁic_p is the Eckert number,B, = BE; is the

k is the Schmidt number,

Brickmann number,& = §
S = DKkaﬁRlAC is the Soret number angh = &t is
Kudsen number or non-dimensional slip parameter. Also,
0 = % and C; = $&. The bars mark refer to the
dimensionless quantities. From now on, these will be
omitted for simplicity.

The dimensionless effective radius of the tuB¢z)

becomes:

is

1-m(z+L) L<z< -2,
R(z)={ 1-m(z+L) - 3[1+cosZ] —20<2< 2,
1-m(z+L) p<z<d,
(20)

Assuming that the radial velocity is very small in
comparison with the axial on&. Also, the variation in
the z-direction is smaller than that in the radial one.
Therefore, we may assume that < w and 4% << 2%,
Also, it follows that the term&t, g—zf”, g—zi” may be ignored
[12). Furthermore, the assumption of long wave length
approximationd << 1 can be considered. Therefore, the
terms of orderd and higher may be neglected. So, The
dimensionless governing Eqgs. (11)-(16) may be reduced
o as following:

r-component:

ends of the tube is assumed to be a constant. Therefore,an

the flow which is unsteady in laboratory franig,0,Z)

=0

o (21)
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andz-component: 3.1 The zero-order system
dn 19 ow . 0w, w . : .
Gz ror r[Wer (W) 1) - rt (22)  In the absence of the sisko fluid parambterthe fluid
becomes a Newtonian one. Therefore, the zero-order
10 ( dT) 4B <(3W) +b*(3W)n+1> _0, (23) System resulied in without any non-Newtonian
rar\ or d or ’ parameters as follows:
14 / aC oT r-component:
FW( 0r) Srscrﬁ( W)_O (24) Mo _ (30)
The dimensionless volume flow rate in the moving o
coordinate system become: equation (30) decides théal is a function on z only.
r2 z-component:
g= A wrdr, (25) % B }i IWo W (31)
The dimensionless boundary conditions (9) and (10) are dz  r dr dr p’
then become 19/ o1 5 )

_ ow . 0w . 10 (.%o Wo\ _
u:2n£sm2nz,w:—1—yl(0r+b(ar)>,T:61, o (rd ) Br<0r> =0, (32)
C=C at r=r=R(@)+h, (26) 19 [ aC aTo

o Fa_( m)*sfsfrﬁ(W)—O' (33)
u=02_02T 0% _0 a r=0 () 2
or or or qO:/ Wordr, (34)
and 0
h; = ecos2mz 28 ~ 1T
' P9 Go=1 [ Quur. (35)
Now, the system of Eqgs. (17) and (21)-(25) are nonlinear . -
partial differential equations. They are difficult to be N accordance with the boundary conditions:
solved -exactly. Therefore, we are forced to conS|dgr an |\ omesin2z, wo = —1— y (0wo)
approximate solution by using a perturbation technique. or
This technique is considered in the following section. To= 65, Co=Cjatr=r=R(2)+hy, (36)
. ) . _~0wo  0To 0Co B
3 An approximation solution Up=0,—==0,—==0and—==0atr=0. (37)

The solutions of Egs. (31)-(35) with the boundary

The following perturbation technique depends mainly on >
conditions (36) and (37) are:

considering the small parameter of Sisko FloiidTo solve
the nonlinear system of Egs. (17) and (21)-(25) under the )
appropriate boundary conditions as given by Eq. (26) and Q, = do+ 2 (38)

(27), we shall assume that any physical quantity, such as 2’
w, 1, T, C, gandQ may be represented as: 2 1 &2
Go=co 3 (R@E+5 ). (39)
E=&+b&+........ , (29)
. . . . . 4+2V1r2_<z) . 2 2
where &, is the undisturbed quantity anfj is the first -~ b 1 2, € (r2(2))
Go@ =~ P [ Go— (R@P+5 )+ 22
perturbed one. yi(r2(2) 2 2/ 242
Substituting from Eg. (29) into the system of Egs. (17) (40)
and (21)-(25) and collect the terms of like powershbdf
This procedure yields zero and first order systems of Wo(r,z) = di(2) — pGo(2), (41)
partial differential equations with the corresponding
bour!dary conditions. Because of the con?plex?ty in To(r,2) = do(2)r* + ds(2), (42)
treating these orders, we shall study the solutions in case
of small intestine or artery, in accordance with the an 4
physical meaning of the length of the diameters of small Co(r,2) = da(2)r" + ds(2), (43)

arteries. Therefore, we may assume thai< 1. Through  where Gy(z) = ddizo and dy, do,..... ds are given in the

the following subsections, we shall consider these orders:appendix.
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3.2 The first-order system

The zero-order solutions obtained

in the previous
subsection will be combined through the first-order

Wl(r,z): de(Z)+G1() 1—-8In —)

16( NG
G P B

22 =

n+3'n+3

governed system to obtain non-homogeneous set of linear

partial differential equations. This procedure will be v, ;) — Br(dl(z)Gl(z)rS

outlined as follows:
r-component:
o,
or

As before, eq. (44) indicates thdj is a function orzonly.
z-component:

=0 (44)

driy - 10 owy oWo n Wy
o (MG Gem) - (49)
10 0Ty OWp 0w, Jdw n+1)
FE( m) B (2W7+<7> =0.48)
10 0C1 0T1 _
FE( ) S(S’“rdr( dr)_o “7)
r2
= [ wirdr, (48)
0
. 1T
Q1= / Qudr. (49)
T Jo
in accordance with the appropriate boundary conditions:
- - 0W1 0W1 n -
u=0  w= Vl(ar +(0r))’ T1=0,
C,=0 at r=ry=R(Z2) +hy, (50)
oW oo 19C
ul_O,W_O, o =0, and o =0atr=0. (51)

The solutions of Egs. (45)-(49) with the boundary

conditions (50) and (51) are:

2

r
Qu=0q+ 52, (52)
~ 1 g2
Q=0 +5 ([R(Z)]2+ 7) (53)
1
Gl = ] 7} rs I nrs I

M2
—11+40In—=
500p ( \/ﬁ)

n+4

di(2) ., r
+ 2p )+1(n+3)2(n+4)3

2
X(—=8—-3n+2(3+n)(4+ n)Inﬁ)

) +d7(2), (56)

n+2

_(dl(z) )n+1 r2
2p (n+2)2

dl(Z)Gl(Z)TS B r_z
oo (11+40In\/_p)

n+4

dl(z))nJrl r2
2p (n+3)(n+4)3

]
x(—8—-3n+2(3+n)(4+ n)Inﬁ)

Ci(r,2) = —BSS(

+(

dl(z) n+1 r2+2
= 2p ) (n+2)2

whereG4(z) = % and dg, d; andds are given in the
appendix. From Egs. (40) and (54) the expression for the
pressure gradient take the following form:

G(z) =

4+2M .1 £2 (r (Z))Z
___ P _ = 2, ¢ 2 "
Vl(rZ(Z))3 Qo 2 ([R(Z)] + > ) + 2t yﬂé(z) +b
1
6 6 5
268(7—24In %) — 5(1-8In %) + ¥g? (1+8In %)

5)+ds(2), (57)

X

. 2
G- S (RDP+5)
2
- ey g +2n )
AR | ro
THr+ n+3(n+3 2'”%”
di(2) \n 3t
A 2p ) (n+3)§(n+4)2
(104-3n—2(3+n)(4+n)In r—z))]), (58)

VP
whereG(z) = 41 ‘4z - From Egs. (41) and (55) the expression

for the axial velocity component take the following form:

2 2
[Q1— %([R(Z)]ZJr %) - %(dz—?)”(ZVﬂSH(nis +2In %) W(r,z) = (di(2) — pGo(2)) +b*(ds(2)
4 n+3
e di(2) N4 G 2 1-8InT2y4 9 di(2)\nr2"~
+V1r2+2n+3(m‘2' ﬁ))_z( ;(pZ)) (n+3r)22(n+4)2 ' 1(12)16( n\/r’)jL ( 2p ) n+3
(10+3n—2(3+n)(4+n)|n%))}7 (54) il \r/zﬁ)) (59)
(@© 2016 NSP
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The pressure risédP and the friction forceAF (at the  Figures 2B indicates the variation of axial velocity(z)
wall), in the tube of length, in their non -dimensional for different values of permeability parameter It is

forms, are given by showed that the axial velocity decreases with the increase
L of p. Figures 2€ shows the variation of axial velocity
AP = /0 G(2)dz w(z) for different values of power index. It is indicated

L that, whenn is an integer, the axial velocity decreases
G(z)dz+ L G(2)dz(60) with the increase ofi. Furthermore, it is observed that in
0 Tdotto case of Newtonian behavior= 1, the values of the axial

. ~do do+Lo
= / G(z)dz+
JO d

L velocity is greater than those in case of shear thinning
AF :/0 r3(—G(2))dz behaviorn < 1 and also for shear thickening one> 1.
do do-+Lo Figures 2D indicates the variation of axial velocity(z)
=/0 r%(—G(z))dz+/d r5(—G(2))dz for different values of maximum height of stenohidt is
L ’ observed that the domain of the maximum height of
+ L r3(—G(z))dz (61)  stenosish becomes (M1 < z < 0.71), the axial velocity
ot+Lo

decreases with the increase bf Meanwhile, at the
Because of the complexity in evaluating these complementary of this domain, the curves of this velocity
integrations, the value of them are computed numerically.are coincide to each others. It is also found that, in case of
| think that our problem deals with non-Newtonian Sisko no-stenosis i{ = 0), the values of the axial velocity is
fluid. Also, the flow streaming through the porous greater than that in case of stenosis. Therefore, for the
medium with slip condition. Furthermore, peristaltic diseases of blood clot, the existence of the clots at the

motion with mild stenosis through tapered artery areartery straitens the blood flow and leads to a harmful
considered. Moreover, the effects of chemical reactioneffects for the body organd(.

with heat transfer rea taken into account. Therefore, this  Figure 34 indicates the variation of axial velocity

problem can be considered as a general problem. In casgs radial distance for different values of the taper angle
of ignoring these consideratioh( yi, hand@ tends to ¢ The importance of the effect of vessel tapering with the
zero andp tends tow), the terms of the pressure rise and shape of stenosis deserves special attention. Also, the
friction force give the previous results obtained by tapering has a significant aspect arterial systei. [
Shapiro et al.4]. Therefore, we are interested in studying the flow through
a tapered tube with stenosis. It is observed that in case of
_ ) the diverging tapered artey = 0.05(> 0), the values of
4 Discussion of the results the axial velocity are greater than those in case of the non
tapered arteryp = 0 and the convergent tapered one
¢ = —0.05(< 0). Figures 3B shows the variation of axial
velocity w(r) for different values of the Sisko parameter
b*. It indicates that the ratio of a power-low part to a
viscous part in a Sisko fluid iin(£ 1). The case off(# 1,

; = 0) denotes a viscous Newtonian fluid. Meanwhile,
the case ofl{* — o) describes a purely power-low model
[24]. It is noted that the axial velocity decreases with the
increase ofb*. Furthermore, the transmission of axial
velocity curves through a Newtonian fluid*(= 0) is

In what follows, numerical calculations will be made.
It is convenient to classify these calculations into two
categories, as follows:

4.1 Pumping characteristics

In order to identify the quantitative effects of various

parameters on the obtained distributions of the axial
ZeFl)ocnyc\i/v, fte;rr;pera;ure‘l’, cczrr]lcentra;]om, r:.reslsureftr\lie substantially greater than that in case of a Sisko fluid.
M tr?n t-rlc Ioh orcz, Se ma-l em? |cta Solt are Furthermore, the influence of this parameter is in
(Ma fama 'C‘."‘) 'S uge " ome  important Tesults areagreement with the previous work of Mekheimer and El
graphically displayed in Figures 2-8 as follows.

. . . ) . Kot [24]. Figure 3< indicates the variation of axial
Figures 2A describes the variation of axial velocity : . .
. . 2 velocity w(r) for different values of the flow rat®. It is
w versus (vs)z-axis for different values of the slip

. . "~ observed that the axial velocity increases by the
parametery;. It is observed that the axial velocity

: ; . ) . increasing oRQ.
increases with the increase pf It is also found that, in L .

. o ) The variation of temperature profilgz) for different
case of no-slip conditiony{ = 0), the value of the axial

o , ) " values of Brickmann numbd; is shown in figure 4A. It
velocity is lower than that in case of slip condition.
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is observed that the temperature increases with théhe pressure rise decrease with the increasp. #figure
increase ofB;. Figure 4B describes the variation of 7-D shows the variation of pressure rise vs the mean flow
temperatureT(z) for different values of the Sisko rate for different values of slip parametgar It is found a
parameteb*. It is noted that the temperature increasescritical flow rateQ. at (Q = 0.03) approximately. As the
with the increase df*. Moreover, the transmission of the domain of theQ becomes+{0.1 < Q < Q.), the pressure
temperature curves through a Sisko fluid is substantiallyrise decrease with the increase gf Meanwhile, the
greater than that through a Newtonian fluiaf & 0) . inverse occurs at the complementary of this domain. From
Figure 5A describes the variation of temperatdrg) for the pervious figures, it is found that the increase in mean
different values of permeability parameter. It is flow rate decreases the pressure rise. Therefore, the
observed that the temperature decreases with the increaseaximum flow rate is achieved at zero pressure rise.
of p. The variation of temperature profil@(r) for Also, the maximum pressure rise occurs at zero flow rate.
different values of power inder is described in figure Finally, the relation between pressure rise and mean flow
5-B. It is indicated that in case of Newtonian behavior rate is linear.
n =1, the values of the temperature is lower than those in  The friction force at the walAF is plotted vs the
case of shear thinning behavior< 1 and also for shear mean flow rate for different values of permeability
thickening onen > 1. Figure 6A indicates the variation parametep in figure 8A. It is observed that the friction
of concentrationC vs z-axis for different values of force increase with the increase pf Figure 88 shows
permeability parameterp. It is cleared that the the variation of friction force vs the mean flow rate for
concentration increases with the increas@.dfigure 68 different values of slip parametaf. It found a critical
describes the variation of concentrati@Gnvs z-axis for  flow rate Q¢ at (Q = 0.01) approximately. As the domain
different values of Soret numb&. It is noted that the of the Q becomes {£0.1 < Q < Qc), the friction force
concentration decreases with the increasg of increase with the increase ¢f. Meanwhile, the inverse
The pressure risAP is plotted vs the mean flow rate occurs at the complementary of this domain. It is noticed
for different values of Sisko parameterin figure 7A. It that, from these paragraph and previous paragraph, the
is observed that with an increasebn, the pressure rise friction force has the opposite behavior compared to the
increase. Also, it is found that the transmission of thepressure rise.
curves through a Sisko fluid{ # 0) is greater than that
through a Newtonian fluidb( = 0). Furthermore, the
peristaltic pumping is defined at the region whéi(> 0
and Q > 0) (pumping region). It os noticed that the
peristaltic pumping region becomes wider as the Sisko
parameteb* increases. Figure B-describes the variation
of pressure rise vs the mean flow rate for different values
of taper anglap. It is observed that for a shear thickening
fluid (n = 2), there exist a critical flow rate; at
(Q = 0.02) approximately. As the domain of th@
becomes £0.1 < Q < Qg), in case of the diverging
tapered arteryp = 0.05(> 0), the values of the pressure
rise are greater than those in case of the non tapered arter
@ = 0 and the convergent tapered ope= —0.05(< 0). o
Meanwhile, the inverse occurs at the complementary of * | '/" ;
this domain. Furthermore, it is noticed that, for a shear [
thinning fluid (= 0.5), in case of converging tapering _
artery @ = —0.05(< 0), the values of pressure rise are : p ' i
greater than those in case of the non tapered@re0
and the diverging tapered oge= 0.05(> 0). Therefore,  Fig. 2: indicates the variation of the axial velocitywith z-axis
the blood can flow freely through diverging arteries, for different values of, p, nandh.
which have less effect of pressure dr@d][ The pressure
rise is plotted vs the mean flow rate for different values of
permeability parametgy in figure 7<C. It is observed that
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Fig. 3: indicates the variation of the axial velocitywith r-axis
for different values ofp, b* andQ.
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Fig. 4: indicates the variation of the temperature distribution
with z-axis for different values oB; andb*.

Fig. 5: indicates the variation of the temperature distribution
with r-axis for different values op andn.

4.2 Trapping
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Fig. 6: indicates the variation of the concentratibrior different
values ofp andS.
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Fig. 7: indicates the variation of pressure rid® vs mean flow
rate for different values di*, ¢, pandy.

1 2
B
1 p 4.’%{:/
0 /f"‘"
-1 %
|
b
e =T
B —n =05
A — =05
000 =005 000 0.05 010
0 Q

Fig. 8: indicates the variation of friction forc&F vs mean flow
rate for different values gp andy;.

peristaltic motion. As the walls are stationary, trapping
In addition to the pumping phenomenon, trapping is phenomenon may be anticipated that the streamlines have
considered as another motivating physical phenomenon i shape similar to the walls. However, in the wave frame,
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some streamlines under specific conditions may be ™

separated to enclose a bolus of fluid particles in closed
streamlines. Therefore, the structure of an internally *

circulating bolus of the fluid by closed stream lines is

defined as a trapping. Furthermore, this trapped bolus is
moved forward along with the speed of the peristaltic

i

o

1

wave. Also, bolus is defined as a volume of fluid bounded

by closed streamlines. In addition, the trapping
phenomenon has been discussed by many researche
such that Shapiro4] and Jaffrin B2. The following

figures illustrate the stream lines graphes for different

values of several parameters.
The effect of the Sisko parametdr on trapping is

illustrated in figure 9. It is observed that the trapped bolus .-
increases in size by the increasing of the Sisko paramete

b*. The effect of the slip parametas is illustrated in
figure 10. It is observed that the size of trapping bolus
increases by the increasing ¢f. The effects of the
maximum height of stenosi® on the trapping are
displayed in figures 11. It is observed that the bolus
increases in size by the increasingofThe effects of the
permeability parametgy on the trapping are displayed in
figures 12. It is observed that the bolus decreases in siz
by the increasing op.

1)

Fig. 9: Streamlines for different values of Sisko paraméiter
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Fig. 10: Streamlines for different values of slip parameger
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Fig. 11: Streamlines for different values of maximum height of

stenosish.
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Fig. 12: Streamlines for different values of permeability
parametep.

concentration are analytically solved by using the long
In this study we have presented a theoreticalwavelength and low Reynolds number approximations.
approach to investigate the effects of heat and chemicarhese equations are treated in accordance with the
reactions on peristaltic transport of blood flow. The flow appropriate boundary conditions. The analytical solgion
is streaming through a tapered artery with mild stenosisdepend on a perturbation method. This technique
The blood is represented by a Sisko model. Furthermoregonsidered a small Sisko fluid parametbt. The
the influences of slip condition and porous medium aredistributions of velocity, stream function, temperatune a
studied. The governing equations of motion, energy andcconcentration are obtained up to the first order. The
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expressions for pressure rise and friction force are
obtained in terms of dimensionless flow r&eby using

the numerical integration. The numerical calculations are
adopted to obtain the effects of several parameters, such

Caption of figures

as the slip parametgn, permeability parametep, the

taper angle, Brickmann numbBf, Soret numbe& and

the maximum height of stenosif, on the above
distributions. Trapping phenomena is also discussed.

The concluding remarks may be drawn as follows:

—Pumping characteristics

1.The axial velocity increases with the increasof
and by the decrease of boprandb*.

2.As the domain of the maximum height of stenosis
h becomes (@1 < z < 0.71), the axial velocity
decreases with the increase lof Meanwhile, at
the complementary of this domain, the curves of
this velocity are coincide to each others.

3.The temperature increases with the increads; of

—Figure 2A is prepared for various values of the
parameterst. =1,d =2,z =0.8,Q=3,p = 0.01,
b*=0.1,¢=0.1,n=0.5, ¢ =0.05h=0.2 and
(y» = 0,0.001,0.002).

—Figure 2B is prepared for various values of the
parameterst =1,d=2,2=0.8,Q= 3, y1 = 0.5,
b*=01,¢=01,n=17,¢=0.05h=01 and
(p =0.5,2,10).

—Figure 2C is prepared for various values of the
parameterst. =1,d =2,z =0.8,Q= 3, y1 = 0.5,
b*=01, =01 p=3, ¢ =005 h=01 and
(n=1,0.25,1.5).

—Figure 2D is prepared for various values of the
parametersL =1,d =2,7=0.8,Q= 3, y1 = 0.01,

b* =0.01,¢ =01, p =001, ¢=0.05n=2 and
(h=0,0.1,0.2).

4.The concentration decreases with the increase of —Figure 34 is prepared for various values of the

S.

5. As the domain of the Q becomes
(-0.1 < Q £0.02), in case of the diverging
tapered arteryp = 0.05(> 0), the values of the

pressure rise are greater than those in case of the

non tapered arteryp = 0 and the convergent
tapered onep = —0.05(< 0). Meanwhile, the
inverse occurs at the complementary of this
domain.

6.The increase in mean flow rate decreases the
pressure rise. Therefore, the maximum flow rate is

parameterst. =1,d =2,z =0.8,Q=3, y1 = 0.5,
b*=0.01,¢=01,p=001,n=2 h=0.1 and
(¢ =0,0.005—0.005).

—Figure 3B is prepared for various values of the
parameterst. =1,d =2,z =0.8,Q= 3, y1 = 0.5,
n=17,¢=01p=3, ¢ =005 h=01 and
(b* =0,0.01,0.02).

—Figure 3C is prepared for various values of the
parameters. =1,d =2,20=0.8,n= 1.7, y; = 0.5,
b*=02,¢=01 p=3, ¢ =005 h=0.1 and
(Q=3,4,5).

achieved at zero pressure rise. Also, the maximum —Figure 44 is prepared for various values of the

pressure rise occurs at zero flow rate.

7.There exist a critical flow rat. at (Q = 0.01)
approximately. As the domain of th@ becomes
(—0.1 < Q < Qy), the friction force increases with
the increase ofs. Meanwhile, the inverse occurs
at the complementary of this domain.

8.The friction force has the opposite behavior
compared to the pressure rise.

—Trapping

1.The size of the trapped bolus decreases with the

increasing of permeability parameter

parameters. =1,d =2,2=0.8,n=0.5, 4 = 0.8,
b* = 0.2, € = 0.01, p = 0.01, ¢ = 0.05, 6 = 10,
Q=3,h=0.1and B; =0.2,0.3,0.4).

—Figure 4B is prepared for various values of the
parameters. =1,d =2,2=0.8,n= 0.5, ; = 0.8,
Br = 0.2, ¢ =0.01, p = 0.01, ¢ = 0.05, 6 = 10,
Q=3,h=0.1and p* =0,0.1,0.2).

—Figure 5A is prepared for various values of the
parameters. =1,d =2,2=0.8,n=0.5, 4 = 0.8,
B = 0.1, € = 0.01, b* = 0.01, ¢ = 0.05, 6 = 10,
Q=3,h=0.1and p =0.1,0.2,0.3).

2.The size of the trapped bolus increases with the —Figure 5B is prepared for various values of the

increasing of Sisko parametéf, slip parameter
y1 and maximum height of stenogis

To the best of our knowledge, This study is very

parametersiL = 1, d = 2, zp = 0.8, b* = 0.01,
y1 = 0.8,B, =01, € =001, p=0.01, ¢ = 0.05,
67 =10,Q=3,h=0.1and o=1,0.25,1.5).

important in the field of fluid mechanics because it have —Figures 6A is prepared for various values of the

many applications in many scientific fields such as

medicine, medical industrial and others.

parameters. =1,d =2,25=0.8,n= 15, = 0.8,
Br=01, & =4S =05, ¢ =001, b* = 0.2,
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@ = 005 ¢ = 10, Q=3, h = 01 and d3(2) =6;—dx(2)r3(2),
(p=0.01,0.02,0.03).
—Figures 6B is prepared for various values of the ds(z) = —SS:02(2),
parameters. =1,d =2,2=0.8,n= 1.5,y = 0.8,
B =01 &= .4, p=001 ¢ =0.01, b* =0.2, ds(2) = ¢} — da(2)r3(2),
@ = 005 ¢ = 10, Q=3, h = 01 and dda:wpﬂ)()@+zmyg 2(¢ p)“ﬂ%g+2m%q
(§ =0.5,0.6,0.7). di(2) \n.ny _ G1(Ar3(2) T2 di(2)\nrz" r2
—Figure 74 is prepared for various values of the O - =R - )+ 2 5 ”*3(”+3d 2In o)
parametersL =1,d =2,z =08,p=3,e =01, ¥@= _Br[%( 114-40In %) + m( Dl A
n=15 wy =05 ¢ =005 h=02 and x(—8-3n+2(3+n)(4+n)In &) — (E(pz )M(rﬂ; ’
(b*=0,0.1,0.2). dg(2) = —S Sd7(2).
—Figure 7B is prepared for various values of the
parameterd- =1,d=2,2=0.8,)4 = 0.5,b* =
e =01 n=2 p =3 h=01 and
(p=0,0.05,—0.05).
—Figure 7C is prepared for various values of the References

parameterd- =1,d=2,2=10.8,4 = 0.5,b* = 0.1,
€=01,n=2,¢=005h=0.1and p=3,7,15).

—Figure 7D is prepared for various values of the
parameters. =1,d =2,z =0.8,h=0.1,b* =
e =201 p=3 ¢ =005 n=2 and
(y1 = 0.5,0.6,0.7).

—Figure 8A is prepared for various values of the
parameterst =1,d =2,z =08, =0.1,n= 2,
y1 =0.5,0=0.05b*=0.1,h=0.1and ¢ = 2,4,9).

—Figure 8B is prepared for various values of the
parametersiL = 1, d = 2, zp = 0.8, ¢ = 0.05,
b* =01, ¢ =01, n=2 p=4 h=01 and
(y1 = 0.5,0.6,0.7).

—Figure 9: Stream linesfdr=1,d=2,2=0.8,p =
0.001,6=0.1,n=17,1=05,9=0.05,h=0.12,
Q=3and p*=0.2,0.2050.21).

—Figure 10: Stream linesfar=1,d =2,2=0.8,p =
0.001,e =0.1,n=1.7,b*=0.2,¢9=0.05,h=0.1,
Q=3and {1 =0.5,0.53 0.55).

—Figure 12: Stream linesfar=1,d =2,29=0.8,p =
0.001,6=0.1,n=17,b*=0.2,0=0.05,1 =
Q=3and 6=0.1,0.11,0.12).

—Figure 15: Stream lines fdr=1,d =2,29=0.8, 1 =
05,6=01,n=17,b*=0.2,9=0.05h=0.1,Q=
3and ¢ =0.001,0.00150.002).

Appendix

The constant coefficients ,1=1,2,...
following forms:

.,8 are given by the

GO _
@ = e

B:d
to(2) =~ 25T,
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