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Abstract: In this paper we will argue that the superposition of waves can be calculated in a simple way. We show, using the Gauss’s
method to sum an arithmetic sequence, how it is possible to construct the superposition of waves - with different frequencies - in a
simple conceptual way. By this method we arrive to the usual result where we can express the superposition of waves as the product of
factors, one of them with a cosine function where the cosine’s argument is the average frequency. Most important, we will show that
the superposition of waves with slightly different frequencies producephihse modulatiophenomenon as well as the amplitude
modulation phenomenon, where we namegblaase modulationthe phenomenon where there is a phase delay each time that there
exits a complete destructive interference. Although this could be a know fact for some physicist (specially those working on the theory
of sound), it is important to emphasize this result because, to the best of our knowledge, when studying the superposition of waves with
nearly equal frequencies almost all research papers and textbooks only mention that there exist an amplitude modulation.
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1. Introduction Ay cos (wot — kox + ¢2) . (1)

If the waves starts out with the same phase constant (i. e.
1 = ¢2) and with the same amplitude, id; = A, = A

(and observed at some fixed point), we can express the re-

sult as the multiplication of two sinusoidal waves as fol-

lows [1]:

Superposition of waves is one of the fundamental con-
cepts in the subject matters of Waves [1-4] and Optics [5
6]. It allows the study and explanation of interference pat-
terns in Optics, which is one of the most beautiful physical
phenomenon. Furthermore, it allows physicists to explain
many interesting sound phenomena like beat phenomenon, ,, (w2 +wr)t (wo —wi)t
which is a slow variation in the intensity of sound when () = 2A cos 2 o8 2 - (@
we add wo waves of sllgh_tly d”‘f?fe”t frequenmes. T.he If the two frequencies are rather similar, that is when:
beat effect is used by musicians in tuning theirs musical
instruments [7], it is caused by the amplitude modulationws ~ w1, 3)

phenomenon produced by superposing waves of slightly, e, it i stated in many research papers [12] that equation

different frequencies. The conceptual foundation in which(?) represents a wave thascillates at frequency(ws +
is based the study of these phenomena is the Principle o 1)/2 and whose intensity increase and decrease at the

Superposition, which roughly speaking state, inthe case o eating frequency (ws — wy). In fact, it is common to

waves, that the resultant of addingwaves is the sum of write Equation (2) in the following way:

the individual waves.
Usually, when this subject is studied [8-10], the anal- () = A(t) cos (wo +wi)t )

ysis is commonly carried out by summing only two waves 2 ’

as follows: whereA(t) = 2A cos ((wg — w1)t/2). Equation (4) is in-
y(z,t) = Ay cos (w1t — krz + ¢1) + terpreted as a wave that oscillates at the high frequency
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(w2 + w1)/2 multiplied by a slowly variable amplitude Therefore, itis important to extract all the relevant physical
A(t). Therefore, most physicists and engineers agree thatredictions that could be produced by this phenomena.
Equation (4) clearly shows that the sum of two waves of  On the other hand, from the point of view of Physi-
almost equal frequency produces the phenomenon of aneal Education Research (PER) [14-16] there is the goal
plitude modulation. Accordingly, it is usual to reproduce to present new conceptual ways to approach the solving
the plot of Equation (2) whew; ~ w;. However, almost  of relevant problems [17] and the teaching of fundamen-
nothing is mentioned about the case when equation (3) isal physical and mathematical concepts. Then, reaching
not fulfilled. this goal is one of the most important learning steps that
The next step in the study of superposition of waves (i.a researcher can focuses on. It is worth to emphasize that
e. summingV waves forlV > 2) is carried out using com-  one of the fundamental goals for both the PER’s field and
plex number. Then, representing waves as complex funcMathematical Education is to discover new, imaginative
tions (i.e.e’") itis possible to obtain the following analyt- and tested ways for teaching physics and mathematics. Part
ical expression for the sum &f waves of equal successive of this goal could be accomplished by finding easier con-

phase differencéw [2,1]: ceptual and mathematical ways to solve model problems,
in (NSwt /2 see reference [17-19] where there is a proposal for an eas-
y(t) = Acos (WN ;F w1 ) Sl;i(gwj/é) )7 (5) ier conceptual approach to solving quantum physical prob-

lems to avoid certain misconceptions.
wherewy is the last frequency of the sequence ands In this work, we present a method to su¥hwaves in
the first. In general, th&/ — th frequency can be obtaining a simple mathematical and conceptual way; just by using
by summingN — 1 timesdw to the wave with frequency  the trick, usually attributed to Gauss, of arranging numbers
w1, thatis [1,2]: by pairs to sum them. This is a quite simple conceptual
wy = wi + (N — 1)dw, (6) rr_lethod that could pe taught to any s.tl_Jdent with only ba-
sic knowledge on trigonometric identities and, of course,
To deduce Equation (5) the calculation is done by addingcould be taught to more advanced students. Also, we an-
the geometric progressidz) = 1+ z+ 2% +---+ 2", alyze this superposition in other settings different to the
wherez = ¢, see page89 and30 in reference [2] or  ysual restriction obw < w;. We have found out that the
page287 in reference [1]. It is worth to mention that an- sum of N waves is more richer and complex phenomenon
other way to arrive to Equation (5) is by using the phasorthan it is usually though. The most important pbinf
method [1,2]. Also, it is important to highly that in the this work is thatwe found that together with an ampli-
same way that it happens with Equation (2) it is commontude modulation there exist a phase modulation when we

to plot Equation (5) when superpose two or more waves of slightly different frequen-

Sw < wy, @) cies It is worth to highly this result because viewing this
. ) ) phenomenon from a different perspective it could have im-

which implies (for few waves, i. @V not so high): portant practical implications.

WN R Wy (8) Furthermore, this approach to study the superposition

. . . . . . of waves allows to introduce an historical account in teach-
Equation (8) is pretty similar approximation than Equation ing, both to increase the student interest and to show the

(3). Both plots, that of Equations (2) and (5), are practi- 5roplems associated with the history of scientific facts,
cally the same when conditions given by Equations (3) anqy, thjs case the problem associated with who (and how)
(8) are fuffilled. The oscillations in both situations are sim- yiscovered the procedure to sum an arithmetic sequence.
|Iar,.and it is taken for granted that the.plot of Equation (5) Also, there is an interesting question in the work done by
oscillates at frequency(wy + w:)/2 with the envelope  Rayieigh that we will draw at the end stib-subsection
oscnlf_mng at frequenc_y(wN —wi1)/2. . 3.1.1 There have been many advocates about the conve-
It is worth to mention that the superposition of waves nience of treating problems of historical science facts in
also includes the superposition of Gaussian waves, thae classroom to enhance the grasp of something that is

could be thought as superposition of waves on a range ofgmplicated or difficult to understand, see for instance the
frequenciesAw. For and interesting experimental demon-

stration see reference [11].
To summing up, almost all research papers [12] andm
textbooks on the subject matter of Waves [1-4] and Op'slightly different frequencies, we made a bibliographic review

“?5 [5.,6] agree that when two (V) waves of sllghtly_ and our surprise was that this is a quite know fact for people
different frequencies are superposed the most prominenforking in the theory of sound, even since the time of John
observed effect is themplitude modulatiorAlmost all of  \william Strutt, 3rd Baron Rayleigh. In fact, Raleigh’s book [28]
them does not mention any thing abgliase variation or  was the first one were we found it. The surprise comes because
modulation[13]. we were working in optics for many years and because we teach,
Because of being such an important and fundamentaiso for many years, undergraduate physics students with refer-
concept, the study of the superposition of waves is of highences [8-10] and neither in books of vibration and waves neither
importance in many branches of engineering and physicsin undergraduate textbooks there is any mention of this fact.

L After we have found that there was something like a phase
odulation in the phenomenon of superposition of waves with
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recent published review by Teixeira, et. al. [23], the illumi- their understanding of the nature of science [23]. It is no-

nating works of M. A. B. Whitaker [21,22] and see, also, table that many people really know that the trick was found

reference [24]. by Gauss, but few people know that such trick was pub-
lished before (in books) by at least two people: Alcuin of
York and Archimedes [25, 26].

2. The Mathematics of Arithmetic Sequence

Whether apocryphal or not it is well known the story of o . .

Gauss’s mgthoélpt)o sum an arithmetic sequence of nu)r/nbe ' SUperPOS|tlon (_)f Wave_s with different

[25] ( or Alcuin of York method [25] or Archimedes [26]). frequencies at a fixed point

The story, its weakness and drawbacks are well summa-

rized in the article by Brian Hayes [25,26]. When Gauss ;

was a child his teac)ﬁer gave a)(ll th[e stud]ents the task o?"l' The sum of frequencies as a constant

summing an arithmetic progression [25]; in order to be ex-

plicit we suppose here that the arithmetic sequence was thAs was stated above, when we add two waves which have

first one hundred numbers. It is said that using his great talslightly different frequencies their superposition produces

ent Gauss didn’t make the procedure of adding one numben amplitude-modulated wave. Based on the superposition

to the other, instead he grouped together the numbers igrinciple, the sum of two or more waves is a wave too,

pairs and found that the sum of a pair of numbers was thevhich fulfills the wave equation. The magnitude of the

same for numbers located at equidistant distance from th&ave sum at any space point and at some time depends

extreme, that ig00 + 1=99 + 2=98 + 3= . .=52 +49=51 + on the phase value of every wave component. That is, the

50 = 101. Then, the sum i$0 times101. It is worth to ~ Wave’s phase is a function of both the space and time.

mention that the difference between the grouped numbers In this section we are going to study the case where

is lowered by two, given a succession of odd numbers, thatve superpos&v waves (withV an even number) with the

is100—1 =99,99—2 = 97,98—3 = 95, - - -, 52—49 = 3, same initial phase constant, same amplitude and different

51 — 50 = 1. frequencies at a fixed point We consider an interval of
More generally, an arithmetic sequence is a set of num{requenciesAw and make a partition of the interval in an

bers such that each of them is obtained by summing to theven number between, say, to wio, i. €. Aw = wigp —

previous number a constant, s&y. For example, the set w;. Thatis, we have:

(1,11,21,31,---,101) is an arithmetic progression with

constanw = 10, which has as a first numbérand as a NZLo0

last numbef01. yr(z,t) = A Z cos(kix — wit + ¢;), (12)
An arbitrary term of the arithmetic sequence can be i=1

calculated as follows: I is the first term then the second wherew; is the angular frequency of the— th wave, k;

termay = ay + dw is: is the wave number, ang; is the initial phase constant.
ay + (2 —1)dw (9) For the sake of simplicity we are going to consider the

) ) case where the waves have the same initial phase constant,
the third term can be written as: i. e.¢; = 0. Also, as we are interested in analyzing the
a1+ (3 —1)dw, (10) case where the waves are superposed at some fixed point,

without loss of generality we can set = 0. Therefore

hence, the — th term of the arithmetic sequence is given Equation (12) reduces to:

by:
a; =ay + (i — 1)dw. (11) N=100

On the other hand, it is worth to notice that Equation yr(t) =4 Z; cos(wit).
(112) is the same Equation (6) (and is the same that Equa- =

tion (14) below), this will allow us to think about the sSUM \ye consider the case when the upper limit in the s\im
of N waves as representingsaiperposition of an arith- i an even number. Also, we make the partition/a$ by

metic sequence of frequencisd to use the properties of 544ing asw to the next frequency in the sequence, that s,
this kind of sequences to sum them. This way of think-,o have:

ing contrast with that of textbook’s authors who used to
think about the sum ol waves in terms ofjeometric se-  ,\ = w; + (N — 1)dw. (14)
gquencesas was stated in the introduction section.

The historical problem about who was the first person  Therefore, if we compare Equation (14) with Equation
who discovered the trick to sum an arithmetic sequence ig11) we conclude that the set of frequencies form an arith-
explained by Haynes in references [25] and [26]. This his-metic sequence. Hence, in order to be able to use Gauss
torical event can be used to show students the problemmethod, we group the sum given in Equation (13) by pairs
to exactly determine some historical facts and to increaseas follows:

(13)
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We can still carry out a further step and group together
by pairs the cosine functions that are inside the braces of
yr(t) = A HCOS(Moot) + COS(Wlt)} + Equation (20). By applying Equation (16), this will pro-
duce twenty five factors with the common factos(250wt)
which can be factorized. You can make additional steps by

5 t s(wot .
[COb(wgg ) cos(ws )} o grouping by pairs the rest of the cosine functions, and you

can follow this procedure until you arrive to a short expres-
[COS(wsﬂf) + COS(wsot)} } (15) sion. We left this as an exercise to the interested reader. To
_ _ _ o show how the procedure works in full details, in the next
Now, using the following trigonometric identity subsection we carry out all the steps in the case where we
, Nt superpose ten waves.
cos(w;t) + cos(w;t) = 2 cos ((wl—;w])) Perp

« cos ((wi —2wj)t> 7 (16) 3.1.1. Example 1

) ) ~In this sub-subsection we are going to study the case of
we can rewrite the sum of the grouped cosine functionshe superposition of ten waves. In this case the arithmetic
in Equation (15) as the product of two cosines functions.sequence s, wo = wi + dw, w3 = wy + 26w, Wy =

Then, by substituting Equation (16) in Equation (15) We ;, 1 35w, ws = w; +46w, wg = w1 +50w, wr = w; + 66w,
have: wg = w1+ Téw, wyg = w1 +80w, wip = w1 +9w. The total
superposition will be, where we have grouped together the

B (w00 + w1t (wioo — w1 )t cosines functions by pairs in a convenient way:
yr(t) = AS |2cos eS| o

+ [2008 <(W99+wz)t> cos ((wgg —wg)tﬂ +myT(t) =A{ :COS(wlot)-i-cos(wlt) +

2 2
cos(wogt) + cos(wat) | +

+ [QCOS (W) cos (Wﬂ }(17) L .

cos(wst) + cos(wst) | +
Now, as by Equation (14)190 = w1 + 990w, wgg = L .

w1+ 98w, and so on. Thereforey go + w1 = wgg +wa = ) )

= ws1 + wso = 2w1 + 996w, then cos(wrt) + cos(wat) | +

<(w100 + w1)t> ((wgg + wz)t> cos(wet) + cos(wst) } (21)
cos| ————— | =cos | ———— | =--- L
2 Therefore the total sum, asg + w1 = wg + wy =
= Cos M = cos W ., (18) wg + w3 = wr +wy = wg + ws = 2w1 + 9w andwig —
2 w1 = 9w, wyg — wy = Tow,ws — w3 = How, w7 — wy =
n35w,w6 — w5 = dw, Is:

so, we can factorize the cosine of the frequencies’ sum i
i : 2 t t
equation (17) as follows: yr(t) = 24 cos {( w1 4;9&0) } {COS {96; ]
— oA (2w; + 996w)t (w100 — w1t
e A R U {75wt] {5&01
cos +cos | ——
2 2
+cos [(Woo w2t
2 3wt dwt
+ cos +cos |—| . (22)
2 2
[ (ws1 —wso)t 19 , . .
+cos 9 , (19) The next step is to group together by pairs the cosine
) functions that are inside the braces in Equation (22) and
on the other hand, by Equation (14), we haxgy —w1 = to use the trigonometric identity given by Equation (16) as

990w, wgg — wy = 970w, - - - ,ws1 — wsp = dw. Then, the  follows:
Equation (19) can be written as:

yr = 2A cos <(2w1—|—995w)t) {cos <W> + { [cos (96wt> + cos (M)} +
2 2 9 B
976wt dwt Towt 30wt 58wt
cos 5 4+ ... 4 cos Ty . (20) cos — —+ cos 5 + cos 5 _
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{2 cos (W) cos (M> + y(t)
2 2 10
9cos 50wt cos 20wt 4 cos 50wt B
2 2 2 o 5

cos (56;2&) {2[003(2(5wt)—|—cos(5wt)]+1} = a L AL ) y d . ! : o ; Lot

cos (55;15) {4 cos (S(S;t> cos <&;t> + 1}, (23)

substituting Equation (23) into Equation (22) we arrive to:

-5

_ 94 (2w + 9dw)t 50wt Figure 1 Plot of equation (24) fofw < w1. We have seb; =
yr(t) = 2Acos 9 s 10, A=1, andéw = w; x 10~2. The dotted line is the plot of the
functioncos(wt).

3wt owt
i dcos [ 220 cos [ 22 +15. (24)
2 2

_ Equation (24) has, like Equation (5), a cosine termyaye with narrow width you can sufi waves with differ-
with an argument that oscillates at the mean frequencysnce frequencies. This can be used, for example, in Optics.
w = (w10 +w1)/2 = (2w1 + 90w)/2. The plot of Equa- | fact, this effect is used to produce very short-duration
tion (24) whendw < wy is the same as the plot of Equa- |aser pulses, this technique is know as mode-locking [27].
tion (5) - with N = 10, under similar condition In this On the other hand, in this case (i.e. whn > w;)
case, that is when Equation (7) is fulfilled, the function jt js clear that the wave sum does not oscillates at the
seem effectively to oscillate at the mean frequelmCy=  ean frequency, this is show in Figure 2 where we plot
(2w1 +9dw) /2. Howeverwhen we plot Equation (24) to-  giso the functioreos(2a). It is easy to see that the wave
gether with a wave that oscillates at the mean frequency g,m oscillates at a frequency similar2e = wyg — wi;
w we find that there is a phase delay each time that there powever, there are deviations frams(2w) which strongly
is a destructive interferenceWe show this in Figure 1, suggest that this plot shows a frequency or phase modula-
where we plot Equation (24) and also we have plotted th&jon This could also explain the phase delay shown in Fig-
cosine function that oscillates at the mean frequency, i. eyre 1 which then could be produced by a phase modulation
cos (wt). The plot clearly shows that there is a phase delayyhenomenon.
between the superposition of waves given by Equation (24) - 1o state it clearlytogether with an amplitude modu-
and thecos (wt) function. To the best of our knowledge, |ation, in the superposition of waves with similar frequen-
this phase delay was not previously highlighted. Als®  cjes it is probable that there is also a phase modulation.
worth to mention that the same phase delay is observed i{y/pich in the case of Figure 1t is expressed by a phase
we add two, ten or more waved/e will give a probable  yejay each time there is a destructive interference
explanation of this physical phenomenon in the last part of 14 show that this is effectively the case, let us recall
this sub-subsection. Previously, we are going to examingpat 4 phase modulated signal (t) is represented by the

Equation (24) in a different setting. following equation, see problem 6.30 in Crawford’s book
On the other hand, we can explore the effects produceg.

by different conditions on the superposition of waves. In .
particular, we can focuses on the condition given by: Spm () = Apm €08 [wet + @ sin (wmt)]. (27)
Sw > wy (25) Therefore, if there exist a phase modulation then there
’ has to be a way to express Equation (1) in the form that
Aswy +w; = 2wy + (N — 1)dw andwy — wy = Equation (27) has (here we restrict ourselves to the case of
(N —1)dw, then condition given by Equation (25) implies: summing only two waves). That is to say, we need to be

able to write Equation (1) in the following two ways:
WN + w1 RwWN — W1 (26)

In Figure 2 we plot Equation (24) when condition given (wo + w1t (wo — w1t
by Equation (25) is fulfilled. The plot shows an interesting y(t) = 2Acos <2> cos (2)
fact: the sum ofV waves with different frequencies which
fulfills the condition given by equation (25) and starts out
with the same phase serves to produce a wave with narrow Fortunately, this has been done long time ago. At least
peak amplitude. That is to say, to experimentally produce aince the time where John William Strutt, 3rd Baron Rayleigh

= Apm €08 [Wet + @y, sin (wit)]. (28)
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(or N) waves of nearly the same frequenghis phase
modulation results in a phase delay byr in the resul-

tant wave each time there is a destructive interference.

It is important to clarify that when we talk a bout a phase
modulation we are stating that there is a phase delay each
time that there is a destructive interference, that is to say
the far right of Eq. (28) , i. ed,,,,, cos [wet + ap, sin (wit)],
implies that when the frequencies are almost equal there is
a phase delay each time that there is an interference.

In conclusion, because when Eq. (3) is not fulfilled
then there is not a phase delay mainly because there is not
such thing as a complete destructive interference, therefore
Eqg. (28) not always implies the effect that we are calling
phase modulationThat is to say, although the concept of
phase differences in the superposition of waves is inher-
ent in explaining any interference phenomena here we are
talking about a different phenomenon, i.e. the phase delay
by 7 each time there is a complete destructive interference,
which we callphase modulation

Now, we are going to argue how this phase modulation
is produced and what it actually means. Figure (3) shows

(a British scientist) lived. At the end of the 19 century @ plot of Equation (31) whierm = 11 and2rn = 10.
Strutt wrote a book titledhe Theory of Sour@8], inthis ~ The dotted line represents the superposition of the two
book (see page 23) he wrote the sum of two waves similafvaves. The plot clearly show that there is a slow varia-
to the last right part of Equation (28). The equation that hetion on the phase angle, however, there is also a sudden

Figure 2 Plot of equation (24) fobw > w1. We have set =
10, A = 1, andéw = w; x 103. The dotted line is the plot of the
functioncos(2wt)..

wrote is: change in the phase each time the destructive interference
happens. Mathematically this sudden changes comes from
u = rcos (2rmt — 6(¢)), (29)  the change in the sign of the ArcTan function. Physically,
this sudden change happens because the two waves are
where completely out of phase at this time, and after this time

12 =a?+ a2+ 2aa cos (2n(m —n)t +¢ —¢), (30) the two waves star to develop an ir)creasing phase delay
between them, to reach the tim2r(times latter) where

and they are completely out of phase again. In fact, the waves
asine + a'sin (2mr(m — n)t + €') star in phase at = 0, then after a variation of radiants
tan 6(t) = (31)  the waves are out of phase, then after a variation od-

acose+a' cos(2n(m —n)t +¢€)’ , ) : ; ) .
(2m( ) ) diants the waves are in phase again, this entering and exit

wherea anda’ are the amplitude of the two wavesand  of phase and out of phase produces the phase modulation.
¢ are the initial phaseyn andn are the frequencies. This This in turn produces the destructive and constructive in-
equation can be calculated using the phasor method. Sgirferences. To state it clearly,is the phase modulation
choosinga = o’ ande = ¢ = 0 we fulfill the initial  which produces the destructive interferengeobably, it
condition of our problem. could also be said that it is the phase modulation the re-

Additionally, we have found a book that has an equa-sponsible for the amplitude modulation.
tion similar to Equation (29) [29]. The authors of thisbook,  Also, we can infer from Equations (29) and (30) that
Rossing and Fletcher [29], write the superposition of twothere exits a correlation between the modulated amplitude
waves as: and the phase modulation: in this case both oscillates at the
= _ A(t)ej(wlt-l,-qﬁ(t))’ (32) same frequen_cy, i. e. at frequeney— n.

The meaning of the phase modulation is that the phase
wherej is the imaginary number, and(t) and¢(¢) are  of the resultant wave changes in time with a modulation
similar to Equations (30) and (31) respectively, see pagaiven by6(t), as can be inferred from Equation (29), in
9 in reference [29]. Notably, these authors, clearly statethis particular case at two rates, one is a slower change and
that the resulting vibration has “both amplitude and phasehe other is the sudden change each time the destructive
varying slowly”. interference happens.

Therefore, in conclusion, the sum of two waves can be  Now, to finish this subsection, we will draw a histori-
writing in the usual form that a phase modulation equationcal issue about these points. It is interesting to notice that
has. That is to say, the far right of Equation (28) is true. Equation (29) was not noticed before by many textbook’s
Hence, Equation (29) (and (32)) allow us to conclude thatauthors, including famous books like that of reference [8].
effectivelythere is a phase modulation at the same time  On the other hand, it seems that people working in the field
thatthere is an amplitude modulatierwhen we sum two  of Sound uses this equation as a teaching tool. Then, the
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Now, aswy = w1 + (N — 1)(5&) thenwigg — wsg =
W9 — w49 = -+ = w51 — w1 = H00w; also we have that
w100 + wso = 2w + 1480w, wgg + wag = 2wi + 1460w,
<o ws1 + w1 = 2wy + 500w. Therefore,

cos ((wmo ;w5o)t> = cos <(w99 —2w49)t> — ...
— cos ((wm ;m)t) — cos (503@) (35)

so, in Equation (34) we can factorize the cosines that have
the same argume§0dwt /2):

) § t R yr(t) = cos (256wt) {Cos(

2wy + 1485w)t>
2

Figure 3 Plot of 6(¢) given by Equation (31) fon = a’. We cos (WM&W> 4 ... 4 cos <(2w1+506w)t> (86)
have set = ¢’ = 0, 2rm = 11, 2mn = 10. The dotted line is 2 2

the resulting wave. In a further step, we can group by pairs cosines func-
tions that are inside the braces in Equation (36) in such a
way that the difference between the arguments of the co-
sine function are equal. This will provide twenty five co-
sine functions, and the procedure can be followed to the
step where you find the shorter expression. However, we
Wil not carried ou this procedure, instead in the next sub-
section we focuses in the case where we have only ten
waves.

historical problem here is: Which book and author first
published Equation (29)?, Why scientist working in the
subject matters of Waves and Optics have not noticed thi
equation before?

4. The difference between frequencies as a
constant 4.1. Example 2

) _ _ ... In this subsubsection we are going to study the case of
Instead of grouping the arithmetic sequence as we did ifpe gperposition of ten waves. In this case the arithmetic
the the previous section, we can group it by pairsGis— sequence i, ws = wi + dw,ws = w1 + 20w, Wy =
50 = 99 — 49 = 98 — 48 = .--52 -2 = 5] — 1 = w1 + 30w, ws = w1 + 4ddw,wg = wy + Hdw,wr = w1 +
50. Thereforethe difference between numbersis acon- 5., ws = wy 4 76w, wo = wy + 86w, wip = w1 + Yow.
stant. In this case, their sum descent by two in the interval ¢ total superposition will be, where we have grouped by

betweer{150, 52] as follows:100 + 50 = 150,99 +49 = pajrs the cosines functions in a convenient way:
148,98 +48 = 146, ---52 4+ 2 = 54,51 + 1 = 52.

Then, instead of Equation (15) we can group together
by pairs the wave'’s sum as follows: yr(t) = A{ [cos(wlot) + COS(W5t):| +
yr(t) = { {cos(wloot) + COS(W50t)} + {cos((,ugt) + cos(wzlt)} + [cos(w@) + cos(wgt)] (37)
{Cos(w%t) + COS(W49t):| + + {cos(wﬂi) + cos(wgt)} + {cos(w(;t) + cos(wlt)} }
| S T it schibirioiodii e

the difference in frequencies, we arrive to the following

Now, using the trigonometric identity given by equation final result:

(16) we have:

yr(t) = { [cos <(601002+w5o)t> cos (W)] yr(t) = 2A cos (5zwt> {4cos2(5wt) cos [(w1 + 5éw)t] +

+ {Cos <(w99 —;w4g)t) cos <(w99 ;w49)t>} + cos {2@01 42r55wt] } (38)

et {COS ((w51 + Wl)t) oS <(W51 _ wl)tﬂ (34) A plot of Eqg. (38) reproduces the same plot, when us-
2 2 ing the same values, as the one giving in Fig. 1.
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5. Anote a phenomenon that can not be noticed by human detec-
tors (the ears, which in fact registers just the intensity), but

Usually it is stated that the condition for the existence of probably this phenomenon could be recorded by other de-

the amplitude modulation phenomenon is that the frequentector system and probably could have new applications.

cies are almost equal, this is the condition given in Equa-

tion (3), i. e. for the case of two waves whesg ~ w;.

Mathematically, this condition implies Acknowledgement
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