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Abstract: In this paper we will argue that the superposition of waves can be calculated in a simple way. We show, using the Gauss’s
method to sum an arithmetic sequence, how it is possible to construct the superposition of waves - with different frequencies - in a
simple conceptual way. By this method we arrive to the usual result where we can express the superposition of waves as the product of
factors, one of them with a cosine function where the cosine’s argument is the average frequency. Most important, we will show that
the superposition of waves with slightly different frequencies produces thephase modulationphenomenon as well as the amplitude
modulation phenomenon, where we named asphase modulationthe phenomenon where there is a phase delay each time that there
exits a complete destructive interference. Although this could be a know fact for some physicist (specially those working on the theory
of sound), it is important to emphasize this result because, to the best of our knowledge, when studying the superposition of waves with
nearly equal frequencies almost all research papers and textbooks only mention that there exist an amplitude modulation.
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1. Introduction

Superposition of waves is one of the fundamental con-
cepts in the subject matters of Waves [1–4] and Optics [5,
6]. It allows the study and explanation of interference pat-
terns in Optics, which is one of the most beautiful physical
phenomenon. Furthermore, it allows physicists to explain
many interesting sound phenomena like beat phenomenon,
which is a slow variation in the intensity of sound when
we add two waves of slightly different frequencies. The
beat effect is used by musicians in tuning theirs musical
instruments [7], it is caused by the amplitude modulation
phenomenon produced by superposing waves of slightly
different frequencies. The conceptual foundation in which
is based the study of these phenomena is the Principle of
Superposition, which roughly speaking state, in the case of
waves, that the resultant of addingN waves is the sum of
the individual waves.

Usually, when this subject is studied [8–10], the anal-
ysis is commonly carried out by summing only two waves
as follows:

y(x, t) = A1 cos (ω1t− k1x + φ1) +

A2 cos (ω2t− k2x + φ2) . (1)

If the waves starts out with the same phase constant (i. e.
φ1 = φ2) and with the same amplitude, i.e.A1 = A2 = A
(and observed at some fixed point), we can express the re-
sult as the multiplication of two sinusoidal waves as fol-
lows [1]:

y(t) = 2A cos
(

(ω2 + ω1)t
2

)
cos

(
(ω2 − ω1)t

2

)
. (2)

If the two frequencies are rather similar, that is when:

ω2 ≈ ω1, (3)

then, it is stated in many research papers [12] that equation
(2) represents a wave thatoscillates at frequency(ω2 +
ω1)/2 and whose intensity increase and decrease at the
beating frequency (ω2 − ω1). In fact, it is common to
write Equation (2) in the following way:

y(t) = A(t) cos
(

(ω2 + ω1)t
2

)
, (4)

whereA(t) = 2A cos ((ω2 − ω1)t/2). Equation (4) is in-
terpreted as a wave that oscillates at the high frequency
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(ω2 + ω1)/2 multiplied by a slowly variable amplitude
A(t). Therefore, most physicists and engineers agree that
Equation (4) clearly shows that the sum of two waves of
almost equal frequency produces the phenomenon of am-
plitude modulation. Accordingly, it is usual to reproduce
the plot of Equation (2) whenω2 ≈ ω1. However, almost
nothing is mentioned about the case when equation (3) is
not fulfilled.

The next step in the study of superposition of waves (i.
e. summingN waves forN > 2) is carried out using com-
plex number. Then, representing waves as complex func-
tions (i.e.eiωt) it is possible to obtain the following analyt-
ical expression for the sum ofN waves of equal successive
phase differenceδω [2,1]:

y(t) = A cos
(

ωN + ω1

2
t

)
sin (Nδωt/2)
sin(δωt/2)

, (5)

whereωN is the last frequency of the sequence andω1 is
the first. In general, theN− th frequency can be obtaining
by summingN − 1 timesδω to the wave with frequency
ω1, that is [1,2]:

ωN = ω1 + (N − 1)δω, (6)

To deduce Equation (5) the calculation is done by adding
the geometric progressionS(z) = 1 + z + z2 + · · ·+ zN ,
wherez = eiδω, see pages29 and30 in reference [2] or
page287 in reference [1]. It is worth to mention that an-
other way to arrive to Equation (5) is by using the phasor
method [1,2]. Also, it is important to highly that in the
same way that it happens with Equation (2) it is common
to plot Equation (5) when

δω ¿ ω1, (7)

which implies (for few waves, i. e.N not so high):

ωN ≈ ω1. (8)

Equation (8) is pretty similar approximation than Equation
(3). Both plots, that of Equations (2) and (5), are practi-
cally the same when conditions given by Equations (3) and
(8) are fulfilled. The oscillations in both situations are sim-
ilar, and it is taken for granted that the plot of Equation (5)
oscillates at frequency(ωN + ω1)/2 with the envelope
oscillating at frequency(ωN − ω1)/2.

It is worth to mention that the superposition of waves
also includes the superposition of Gaussian waves, that
could be thought as superposition of waves on a range of
frequencies∆ω. For and interesting experimental demon-
stration see reference [11].

To summing up, almost all research papers [12] and
textbooks on the subject matter of Waves [1–4] and Op-
tics [5,6] agree that when two (orN ) waves of slightly
different frequencies are superposed the most prominent
observed effect is theamplitude modulation. Almost all of
them does not mention any thing aboutphase variation or
modulation[13].

Because of being such an important and fundamental
concept, the study of the superposition of waves is of high
importance in many branches of engineering and physics.

Therefore, it is important to extract all the relevant physical
predictions that could be produced by this phenomena.

On the other hand, from the point of view of Physi-
cal Education Research (PER) [14–16] there is the goal
to present new conceptual ways to approach the solving
of relevant problems [17] and the teaching of fundamen-
tal physical and mathematical concepts. Then, reaching
this goal is one of the most important learning steps that
a researcher can focuses on. It is worth to emphasize that
one of the fundamental goals for both the PER’s field and
Mathematical Education is to discover new, imaginative
and tested ways for teaching physics and mathematics. Part
of this goal could be accomplished by finding easier con-
ceptual and mathematical ways to solve model problems,
see reference [17–19] where there is a proposal for an eas-
ier conceptual approach to solving quantum physical prob-
lems to avoid certain misconceptions.

In this work, we present a method to sumN waves in
a simple mathematical and conceptual way; just by using
the trick, usually attributed to Gauss, of arranging numbers
by pairs to sum them. This is a quite simple conceptual
method that could be taught to any student with only ba-
sic knowledge on trigonometric identities and, of course,
it could be taught to more advanced students. Also, we an-
alyze this superposition in other settings different to the
usual restriction ofδω ¿ ω1. We have found out that the
sum ofN waves is more richer and complex phenomenon
than it is usually though. The most important point1 of
this work is thatwe found that together with an ampli-
tude modulation there exist a phase modulation when we
superpose two or more waves of slightly different frequen-
cies. It is worth to highly this result because viewing this
phenomenon from a different perspective it could have im-
portant practical implications.

Furthermore, this approach to study the superposition
of waves allows to introduce an historical account in teach-
ing, both to increase the student interest and to show the
problems associated with the history of scientific facts,
in this case the problem associated with who (and how)
discovered the procedure to sum an arithmetic sequence.
Also, there is an interesting question in the work done by
Rayleigh that we will draw at the end ofsub-subsection
3.1.1. There have been many advocates about the conve-
nience of treating problems of historical science facts in
the classroom to enhance the grasp of something that is
complicated or difficult to understand, see for instance the

1 After we have found that there was something like a phase
modulation in the phenomenon of superposition of waves with
slightly different frequencies, we made a bibliographic review
and our surprise was that this is a quite know fact for people
working in the theory of sound, even since the time of John
William Strutt, 3rd Baron Rayleigh. In fact, Raleigh’s book [28]
was the first one were we found it. The surprise comes because
we were working in optics for many years and because we teach,
also for many years, undergraduate physics students with refer-
ences [8–10] and neither in books of vibration and waves neither
in undergraduate textbooks there is any mention of this fact.
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recent published review by Teixeira, et. al. [23], the illumi-
nating works of M. A. B. Whitaker [21,22] and see, also,
reference [24].

2. The Mathematics of Arithmetic Sequence

Whether apocryphal or not it is well known the story of
Gauss’s method to sum an arithmetic sequence of numbers
[25] ( or Alcuin of York method [25] or Archimedes [26]).
The story, its weakness and drawbacks are well summa-
rized in the article by Brian Hayes [25,26]. When Gauss
was a child his teacher gave all the students the task of
summing an arithmetic progression [25]; in order to be ex-
plicit we suppose here that the arithmetic sequence was the
first one hundred numbers. It is said that using his great tal-
ent Gauss didn’t make the procedure of adding one number
to the other, instead he grouped together the numbers in
pairs and found that the sum of a pair of numbers was the
same for numbers located at equidistant distance from the
extreme, that is100+1=99+2=98+3=· · ·=52+49=51+
50 = 101. Then, the sum is50 times101. It is worth to
mention that the difference between the grouped numbers
is lowered by two, given a succession of odd numbers, that
is100−1 = 99, 99−2 = 97, 98−3 = 95, · · ·, 52−49 = 3,
51− 50 = 1.

More generally, an arithmetic sequence is a set of num-
bers such that each of them is obtained by summing to the
previous number a constant, sayδω. For example, the set
(1, 11, 21, 31, · · · , 101) is an arithmetic progression with
constantδω = 10, which has as a first number1 and as a
last number101.

An arbitrary term of the arithmetic sequence can be
calculated as follows: Ifa1 is the first term then the second
terma2 = a1 + δω is:

a1 + (2− 1)δω (9)

the third term can be written as:

a1 + (3− 1)δω, (10)

hence, thei − th term of the arithmetic sequence is given
by:

ai = a1 + (i− 1)δω. (11)

On the other hand, it is worth to notice that Equation
(11) is the same Equation (6) (and is the same that Equa-
tion (14) below), this will allow us to think about the sum
of N waves as representing asuperposition of an arith-
metic sequence of frequenciesand to use the properties of
this kind of sequences to sum them. This way of think-
ing contrast with that of textbook’s authors who used to
think about the sum ofN waves in terms ofgeometric se-
quences, as was stated in the introduction section.

The historical problem about who was the first person
who discovered the trick to sum an arithmetic sequence is
explained by Haynes in references [25] and [26]. This his-
torical event can be used to show students the problems
to exactly determine some historical facts and to increase

their understanding of the nature of science [23]. It is no-
table that many people really know that the trick was found
by Gauss, but few people know that such trick was pub-
lished before (in books) by at least two people: Alcuin of
York and Archimedes [25,26].

3. Superposition of waves with different
frequencies at a fixed point

3.1. The sum of frequencies as a constant

As was stated above, when we add two waves which have
slightly different frequencies their superposition produces
an amplitude-modulated wave. Based on the superposition
principle, the sum of two or more waves is a wave too,
which fulfills the wave equation. The magnitude of the
wave sum at any space point and at some time depends
on the phase value of every wave component. That is, the
wave’s phase is a function of both the space and time.

In this section we are going to study the case where
we superposeN waves (withN an even number) with the
same initial phase constant, same amplitude and different
frequencies at a fixed pointx. We consider an interval of
frequencies∆ω and make a partition of the interval in an
even number between, say,ω1 to ω100, i. e.∆ω = ω100 −
ω1. That is, we have:

yT (x, t) = A

N=100∑

i=1

cos(kix− ωit + φi), (12)

whereωi is the angular frequency of thei − th wave,ki

is the wave number, andφi is the initial phase constant.
For the sake of simplicity we are going to consider the
case where the waves have the same initial phase constant,
i. e. φi = 0. Also, as we are interested in analyzing the
case where the waves are superposed at some fixed point,
without loss of generality we can setx = 0. Therefore
Equation (12) reduces to:

yT (t) = A

N=100∑

i=1

cos(ωit). (13)

We consider the case when the upper limit in the sumN
is an even number. Also, we make the partition of∆ω by
adding aδω to the next frequency in the sequence, that is,
we have:

ωN = ω1 + (N − 1)δω. (14)

Therefore, if we compare Equation (14) with Equation
(11) we conclude that the set of frequencies form an arith-
metic sequence. Hence, in order to be able to use Gauss
method, we group the sum given in Equation (13) by pairs
as follows:
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yT (t) = A

{[
cos(ω100t) + cos(ω1t)

]
+

[
cos(ω99t) + cos(ω2t)

]
+ · · ·+

[
cos(ω51t) + cos(ω50t)

]}
. (15)

Now, using the following trigonometric identity

cos(ωit) + cos(ωjt) = 2 cos
(

(ωi + ωj)t
2

)

× cos
(

(ωi − ωj)t
2

)
, (16)

we can rewrite the sum of the grouped cosine functions
in Equation (15) as the product of two cosines functions.
Then, by substituting Equation (16) in Equation (15) we
have:

yT (t) = A

{ [
2 cos

(
(ω100 + ω1)t

2

)
cos

(
(ω100 − ω1)t

2

)]

+
[
2 cos

(
(ω99 + ω2)t

2

)
cos

(
(ω99 − ω2)t

2

)]
+ · · ·

+
[
2 cos

(
(ω51 + ω50)t

2

)
cos

(
(ω51 − ω50)t

2

)] }
.(17)

Now, as by Equation (14)ω100 = ω1 + 99δω, ω99 =
ω1 +98δω, and so on. Therefore,ω100 +ω1 = ω99 +ω2 =
· · · = ω51 + ω50 = 2ω1 + 99δω, then

cos
(

(ω100 + ω1)t
2

)
= cos

(
(ω99 + ω2)t

2

)
= · · ·

= cos
(

(ω51 + ω1)t
2

)
= cos

(
(2ω1 + 99δω)t

2

)
, (18)

so, we can factorize the cosine of the frequencies’ sum in
equation (17) as follows:

yT = 2A cos
(

(2ω1 + 99δω)t
2

) {
cos

(
(ω100 − ω1)t

2

)

+cos
(

(ω99 − ω2)t
2

)
+ · · ·

+cos
(

(ω51 − ω50)t
2

) }
, (19)

on the other hand, by Equation (14), we haveω100−ω1 =
99δω, ω99 − ω2 = 97δω, · · · , ω51 − ω50 = δω. Then, the
Equation (19) can be written as:

yT = 2A cos
(

(2ω1 + 99δω)t
2

) {
cos

(
99δωt

2

)
+

cos
(

97δωt

2

)
+ · · ·+ cos

(
δωt

2

) }
. (20)

We can still carry out a further step and group together
by pairs the cosine functions that are inside the braces of
Equation (20). By applying Equation (16), this will pro-
duce twenty five factors with the common factorcos(25δωt)
which can be factorized. You can make additional steps by
grouping by pairs the rest of the cosine functions, and you
can follow this procedure until you arrive to a short expres-
sion. We left this as an exercise to the interested reader. To
show how the procedure works in full details, in the next
subsection we carry out all the steps in the case where we
superpose ten waves.

3.1.1. Example 1

In this sub-subsection we are going to study the case of
the superposition of ten waves. In this case the arithmetic
sequence isω1, ω2 = ω1 + δω, ω3 = ω1 + 2δω, ω4 =
ω1+3δω, ω5 = ω1+4δω, ω6 = ω1+5δω, ω7 = ω1+6δω,
ω8 = ω1+7δω, ω9 = ω1+8δω, ω10 = ω1+9δω. The total
superposition will be, where we have grouped together the
cosines functions by pairs in a convenient way:

yT (t) = A

{ [
cos(ω10t) + cos(ω1t)

]
+

[
cos(ω9t) + cos(ω2t)

]
+

[
cos(ω8t) + cos(ω3t)

]
+

[
cos(ω7t) + cos(ω4t)

]
+

[
cos(ω6t) + cos(ω5t)

]}
. (21)

Therefore the total sum, asω10 + ω1 = ω9 + ω2 =
ω8 + ω3 = ω7 + ω4 = ω6 + ω5 = 2ω1 + 9δω andω10 −
ω1 = 9δω, ω9 − ω2 = 7δω, ω8 − ω3 = 5δω, ω7 − ω4 =
3δω, ω6 − ω5 = δω, is:

yT (t) = 2A cos
[
(2ω1 + 9δω)t

2

] {
cos

[
9δωt

2

]
+

cos
[
7δωt

2

]
+ cos

[
5δωt

2

]

+cos
[
3δωt

2

]
+ cos

[
δωt

2

] }
. (22)

The next step is to group together by pairs the cosine
functions that are inside the braces in Equation (22) and
to use the trigonometric identity given by Equation (16) as
follows:

{[
cos

(
9δωt

2

)
+ cos

(
δωt

2

)]
+

[
cos

(
7δωt

2

)
+ cos

(
3δωt

2

)]
+ cos

(
5δωt

2

) }
=
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{
2 cos

(
5δωt

2

)
cos

(
4δωt

2

)
+

2 cos
(

5δωt

2

)
cos

(
2δωt

2

)
+ cos

(
5δωt

2

) }
=

cos
(

5δωt

2

) {
2 [cos (2δωt) + cos (δωt)] + 1

}
=

cos
(

5δωt

2

) {
4 cos

(
3δωt

2

)
cos

(
δωt

2

)
+ 1

}
, (23)

substituting Equation (23) into Equation (22) we arrive to:

yT (t) = 2A cos
[
(2ω1 + 9δω)t

2

]
cos

(
5δωt

2

)

×
{

4 cos
(

3δωt

2

)
cos

(
δωt

2

)
+ 1

}
. (24)

Equation (24) has, like Equation (5), a cosine term
with an argument that oscillates at the mean frequency
ω = (ω10 + ω1)/2 = (2ω1 + 9δω)/2. The plot of Equa-
tion (24) whenδω ¿ ω1 is the same as the plot of Equa-
tion (5) - with N = 10, under similar condition. In this
case, that is when Equation (7) is fulfilled, the function
seem effectively to oscillate at the mean frequencyω =
(2ω1 +9δω)/2. However,when we plot Equation (24) to-
gether with a wave that oscillates at the mean frequency
ω̄ we find that there is a phase delay each time that there
is a destructive interference. We show this in Figure 1,
where we plot Equation (24) and also we have plotted the
cosine function that oscillates at the mean frequency, i. e.
cos (ωt). The plot clearly shows that there is a phase delay
between the superposition of waves given by Equation (24)
and thecos (ωt) function. To the best of our knowledge,
this phase delay was not previously highlighted. Also,it is
worth to mention that the same phase delay is observed if
we add two, ten or more waves. We will give a probable
explanation of this physical phenomenon in the last part of
this sub-subsection. Previously, we are going to examine
Equation (24) in a different setting.

On the other hand, we can explore the effects produced
by different conditions on the superposition of waves. In
particular, we can focuses on the condition given by:

δω À ω1. (25)

As ωN + ω1 = 2ω1 + (N − 1)δω andωN − ω1 =
(N−1)δω, then condition given by Equation (25) implies:

ωN + ω1 ≈ ωN − ω1. (26)

In Figure 2 we plot Equation (24) when condition given
by Equation (25) is fulfilled. The plot shows an interesting
fact: the sum ofN waves with different frequencies which
fulfills the condition given by equation (25) and starts out
with the same phase serves to produce a wave with narrow
peak amplitude. That is to say, to experimentally produce a

5 10 15
t

-10

-5

5

10

yHtL

Figure 1 Plot of equation (24) forδω ¿ ω1. We have setω1 =
10, A=1, andδω = ω1 × 10−2. The dotted line is the plot of the
functioncos(ω̄t).

wave with narrow width you can sumN waves with differ-
ence frequencies. This can be used, for example, in Optics.
In fact, this effect is used to produce very short-duration
laser pulses, this technique is know as mode-locking [27].

On the other hand, in this case (i.e. whenδω À ω1)
it is clear that the wave sum does not oscillates at the
mean frequencyω, this is show in Figure 2 where we plot
also the functioncos(2ω̄). It is easy to see that the wave
sum oscillates at a frequency similar to2ω̄ = ω10 − ω1;
however, there are deviations fromcos(2ω̄) which strongly
suggest that this plot shows a frequency or phase modula-
tion. This could also explain the phase delay shown in Fig-
ure 1 which then could be produced by a phase modulation
phenomenon.

To state it clearly:together with an amplitude modu-
lation, in the superposition of waves with similar frequen-
cies, it is probable that there is also a phase modulation.
Which in the case of Figure 1it is expressed by a phase
delay each time there is a destructive interference.

To show that this is effectively the case, let us recall
that a phase modulated signalsm(t) is represented by the
following equation, see problem 6.30 in Crawford’s book
[1]:

spm(t) = Apm cos [ωct + am sin (ωmt)]. (27)

Therefore, if there exist a phase modulation then there
has to be a way to express Equation (1) in the form that
Equation (27) has (here we restrict ourselves to the case of
summing only two waves). That is to say, we need to be
able to write Equation (1) in the following two ways:

y(t) = 2A cos
(

(ω2 + ω1)t
2

)
cos

(
(ω2 − ω1)t

2

)

= Apm cos [ωct + am sin (ωmt)]. (28)

Fortunately, this has been done long time ago. At least
since the time where John William Strutt, 3rd Baron Rayleigh

c© 2012 NSP
Natural Sciences Publishing Cor.
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0.0005 0.0010 0.0015
t

-2

2

4

6

8

10

yHtL

Figure 2 Plot of equation (24) forδω À ω1. We have setω1 =
10, A = 1, andδω = ω1× 103. The dotted line is the plot of the
functioncos(2ω̄t)..

(a British scientist) lived. At the end of the 19 century
Strutt wrote a book titledThe Theory of Sound[28], in this
book (see page 23) he wrote the sum of two waves similar
to the last right part of Equation (28). The equation that he
wrote is:

u = r cos (2πmt− θ(t)) , (29)

where

r2 = a2 + a′2 + 2aa′ cos (2π(m− n)t + ε′ − ε) , (30)

and

tan θ(t) =
a sin ε + a′ sin (2π(m− n)t + ε′)
a cos ε + a′ cos (2π(m− n)t + ε)

, (31)

wherea anda′ are the amplitude of the two waves,ε and
ε′ are the initial phase;m andn are the frequencies. This
equation can be calculated using the phasor method. So
choosinga = a′ and ε = ε′ = 0 we fulfill the initial
condition of our problem.

Additionally, we have found a book that has an equa-
tion similar to Equation (29) [29]. The authors of this book,
Rossing and Fletcher [29], write the superposition of two
waves as:

x̃ = A(t)ej(ω1t+φ(t)), (32)

wherej is the imaginary number, andA(t) andφ(t) are
similar to Equations (30) and (31) respectively, see page
9 in reference [29]. Notably, these authors, clearly state
that the resulting vibration has “both amplitude and phase
varying slowly”.

Therefore, in conclusion, the sum of two waves can be
writing in the usual form that a phase modulation equation
has. That is to say, the far right of Equation (28) is true.
Hence, Equation (29) (and (32)) allow us to conclude that
effectivelythere is a phase modulation- at the same time
that there is an amplitude modulation- when we sum two

(or N ) waves of nearly the same frequency.This phase
modulation results in a phase delay byπ in the resul-
tant wave each time there is a destructive interference.
It is important to clarify that when we talk a bout a phase
modulation we are stating that there is a phase delay each
time that there is a destructive interference, that is to say
the far right of Eq. (28) , i. e.Apm cos [ωct + am sin (ωmt)],
implies that when the frequencies are almost equal there is
a phase delay each time that there is an interference.

In conclusion, because when Eq. (3) is not fulfilled
then there is not a phase delay mainly because there is not
such thing as a complete destructive interference, therefore
Eq. (28) not always implies the effect that we are calling
phase modulation. That is to say, although the concept of
phase differences in the superposition of waves is inher-
ent in explaining any interference phenomena here we are
talking about a different phenomenon, i.e. the phase delay
byπ each time there is a complete destructive interference,
which we callphase modulation.

Now, we are going to argue how this phase modulation
is produced and what it actually means. Figure (3) shows
a plot of Equation (31) whit2πm = 11 and2πn = 10.
The dotted line represents the superposition of the two
waves. The plot clearly show that there is a slow varia-
tion on the phase angle, however, there is also a sudden
change in the phase each time the destructive interference
happens. Mathematically this sudden changes comes from
the change in the sign of the ArcTan function. Physically,
this sudden change happens because the two waves are
completely out of phase at this time, and after this time
the two waves star to develop an increasing phase delay
between them, to reach the time (2π times latter) where
they are completely out of phase again. In fact, the waves
star in phase att = 0, then after a variation ofπ radiants
the waves are out of phase, then after a variation ofπ ra-
diants the waves are in phase again, this entering and exit
of phase and out of phase produces the phase modulation.
This in turn produces the destructive and constructive in-
terferences. To state it clearly,it is the phase modulation
which produces the destructive interference. Probably, it
could also be said that it is the phase modulation the re-
sponsible for the amplitude modulation.

Also, we can infer from Equations (29) and (30) that
there exits a correlation between the modulated amplitude
and the phase modulation: in this case both oscillates at the
same frequency, i. e. at frequencym− n.

The meaning of the phase modulation is that the phase
of the resultant wave changes in time with a modulation
given byθ(t), as can be inferred from Equation (29), in
this particular case at two rates, one is a slower change and
the other is the sudden change each time the destructive
interference happens.

Now, to finish this subsection, we will draw a histori-
cal issue about these points. It is interesting to notice that
Equation (29) was not noticed before by many textbook’s
authors, including famous books like that of reference [8].
On the other hand, it seems that people working in the field
of Sound uses this equation as a teaching tool. Then, the
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Figure 3 Plot of θ(t) given by Equation (31) fora = a′. We
have setε = ε′ = 0, 2πm = 11, 2πn = 10. The dotted line is
the resulting wave.

historical problem here is: Which book and author first
published Equation (29)?, Why scientist working in the
subject matters of Waves and Optics have not noticed this
equation before?

4. The difference between frequencies as a
constant

Instead of grouping the arithmetic sequence as we did in
the the previous section, we can group it by pairs as100−
50 = 99 − 49 = 98 − 48 = · · · 52 − 2 = 51 − 1 =
50. Therefore,the difference between numbers is a con-
stant. In this case, their sum descent by two in the interval
between[150, 52] as follows:100 + 50 = 150, 99 + 49 =
148, 98 + 48 = 146, · · · 52 + 2 = 54, 51 + 1 = 52.

Then, instead of Equation (15) we can group together
by pairs the wave’s sum as follows:

yT (t) =
{ [

cos(ω100t) + cos(ω50t)
]

+
[

cos(ω99t) + cos(ω49t)
]

+

· · ·+
[

cos(ω51t) + cos(ω1t)
]}

. (33)

Now, using the trigonometric identity given by equation
(16) we have:

yT (t) =

{[
cos

(
(ω100 + ω50)t

2

)
cos

(
(ω100 − ω50)t

2

)]

+
[
cos

(
(ω99 + ω49)t

2

)
cos

(
(ω99 − ω49)t

2

)]
+

· · ·+
[
cos

(
(ω51 + ω1)t

2

)
cos

(
(ω51 − ω1)t

2

)] }
(34)

Now, asωN = ω1 + (N − 1)δω thenω100 − ω50 =
ω99 − ω49 = · · · = ω51 − ω1 = 50δω; also we have that
ω100 + ω50 = 2ω1 + 148δω, ω99 + ω49 = 2ω1 + 146δω,
· · ·, ω51 + ω1 = 2ω1 + 50δω. Therefore,

cos
(

(ω100 − ω50)t
2

)
= cos

(
(ω99 − ω49)t

2

)
= · · ·

= cos
(

(ω51 − ω1)t
2

)
= cos

(
50δωt

2

)
, (35)

so, in Equation (34) we can factorize the cosines that have
the same argument(50δωt/2):

yT (t) = cos (25δωt)

{
cos

(
(2ω1 + 148δω)t

2

)
+

cos
(

(2ω1 + 146δω)t
2

)
+ · · ·+ cos

(
(2ω1 + 50δω)t

2

) }
.(36)

In a further step, we can group by pairs cosines func-
tions that are inside the braces in Equation (36) in such a
way that the difference between the arguments of the co-
sine function are equal. This will provide twenty five co-
sine functions, and the procedure can be followed to the
step where you find the shorter expression. However, we
will not carried ou this procedure, instead in the next sub-
section we focuses in the case where we have only ten
waves.

4.1. Example 2

In this subsubsection we are going to study the case of
the superposition of ten waves. In this case the arithmetic
sequence isω1, ω2 = ω1 + δω, ω3 = ω1 + 2δω, ω4 =
ω1 + 3δω, ω5 = ω1 + 4δω, ω6 = ω1 + 5δω, ω7 = ω1 +
6δω, ω8 = ω1 + 7δω, ω9 = ω1 + 8δω, ω10 = ω1 + 9δω.
The total superposition will be, where we have grouped by
pairs the cosines functions in a convenient way:

yT (t) = A

{[
cos(ω10t) + cos(ω5t)

]
+

[
cos(ω9t) + cos(ω4t)

]
+

[
cos(ω8t) + cos(ω3t)

]
(37)

+
[

cos(ω7t) + cos(ω2t)
]

+
[

cos(ω6t) + cos(ω1t)
]}

.

Following the same steps of the Example 1 in subsec-
tion 3.1.1, but this time factorizing the factors which have
the difference in frequencies, we arrive to the following
final result:

yT (t) = 2A cos
(

5δω

2
t

) {
4 cos2(δωt) cos [(w1 + 5δω)t] +

cos
[
2ω1 + 5δω

2
t

]}
(38)

A plot of Eq. (38) reproduces the same plot, when us-
ing the same values, as the one giving in Fig. 1.
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5. A note

Usually it is stated that the condition for the existence of
the amplitude modulation phenomenon is that the frequen-
cies are almost equal, this is the condition given in Equa-
tion (3), i. e. for the case of two waves whereω2 ≈ ω1.
Mathematically, this condition implies

ω2 − ω1 → 0. (39)

However, you can find that the amplitude modulation
phenomenon can be produced inclusive whenω2 − ω1 À
0. For example, you can useω2 = 550, 000 and ω1 =
500, 000 to produce the amplitude modulation phenomenon,
in this case the frequency difference is more grater than
one (i.eω2 − ω1 À 1), then Equation (39) is not fulfilled.

We don’t know if the condition given by Equation (3)
has been physically motivated or where it comes from. But
it seems that the physical condition to produce the ampli-
tude modulation phenomenon is that the resultant wave os-
cillates at a highly greater frequency than the phase mod-
ulation, i. e. the latter has to oscillate slower, that is:

ω2 + ω1

2
À ω2 − ω1

2
. (40)

this condition means that the phase variation between the
waves is slow.

To resume, Equation (40) is motivated from the phys-
ical condition that the resultant wave oscillates at a high
frequency whereas the modulated amplitude oscillates at
much slower frequency. It seems that this is a better physi-
cal condition than the condition given by Equation (3) and
it serves to explain the beating phenomenon in cases where
the condition given by Equation (3) is not fulfilled.

Additionally, it is worth to mention a physical condi-
tion encountered in the physics for narrow bands, that is
(w2 − w1)/w1 ¿ 1.

6. Conclusions

In this work we present the well known Gauss method to
sum an arithmetic sequence, but now as an useful tool to
addN waves. This method is simple, easy to apply and
avoids to use complex number. This method can be used
to teach this subject matter since the beginning of the syl-
labus.

Most important, results observed in the plots and the
equations shows a phase delay in the superposition of waves
not previously highlighted. We have shown that together
with an amplitude modulation there must exist aphase
modulation. We are calling asphase modulationnot just
the representation of the superposition of waves by the
equationApm cos [ωct + am sin (ωmt)], but the phenomenon
of phase delay each time that there is a complete destruc-
tive interference in the superposition of waves of nearly
equal frequencies.

The amplitude modulation produces the phenomenon
of beating. We think that thephase modulationproduces

a phenomenon that can not be noticed by human detec-
tors (the ears, which in fact registers just the intensity), but
probably this phenomenon could be recorded by other de-
tector system and probably could have new applications.
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