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Abstract: In many applications, the Middleton Class-A model is used todescribe the impulsive noise. A very useful and interesting
aspect for a channel affected by such, non-Gaussian noise, is to find an expression for the channel capacity. In this paperwe present
the calculation of capacity for a channel affected by additive Middleton Class-A noise (AWCN), with binary input. We considered the
case when the source is uniform, but also when it is not uniform. The channel capacities for impulsive noise, for various values of the
parameters that describe its model, are compared with thosefor the additive white Gaussian noise (AWGN) channel. The numerical
results showed that when the parameters A and T are close to 1,the capacity for impulsive noise channel is equal to that of Gaussian
channel. When A and T decrease, the AWCN capacity grows. Whenthe probability p0, the probability of bit 0, grows or when the
encoding rate decreases, each channel capacity decreases.The Shannon limit values are also given for different encoding rates in the
case of the two channels. We have shown that Signal-to-NoiseRatio (SNRb) in dB given only by the Gaussian component of AWCN is
closer to SNRb in dB of AWGN, as the AWCN capacity increases.
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1 Introduction

The major concern regarding communication systems is
to transmit data at higher speeds and with fewer errors,
thus to ensure efficient communication on noisy channels.
As a measure for this efficiency, Shannon proposed the
notion of channel capacity [1]. He considered that, to
ensure efficient communication, the channel transmission
rate, has to be lower than its capacity, irrespective of the
noise on the channel. Thereby, the meaning of capacity is
that of upper limit of the transmission rate for reliable
communication on a noisy channel.

Shannon has also mentioned that, by encoding the
channel, we can achieve a secure data transmission [1].

The channel capacity thus depends on the code being
used, on the number of antennas in the communication
system, and also on the noise that affects the channel.
Among the error correcting codes, the ones that have
remarkable performances and give the systems the
possibility to operate close to Shannon limit are the turbo

codes [2]. Afterwards, space-time block codes [3] have
improved the communication performances by using the
advantage of diversity gain and system capacity. In this
case, of systems with multiple antennas, the channel
capacity depends on the number of emitting and receiving
antennas, respectively, increasing linearly with this
number [4].

Most of the time, the capacity has been calculated for
channels affected by Additive White Gaussian Noise
(AWGN), when the channel state is known [5] or not [6],
ignoring other sources of noise, like industrial noise,
man-made activity such as automobile spark plugs [7],
microwave ovens [8] and network interference [9], noises
known to be non-Gaussian (or impulse noise).

The Middleton Class-A model is frequently used to
describe the impulsive noise. This was used to investigate
the performances of turbo codes over an AWCN versus
AWGN channel, when the encoder has two identical
recursive systematic convolutional encoders with
constraint length 5, rate 1/2, generator matrix G=[1,
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23/25] and Binary Phase Shift Keying (BPSK)
modulation. These are significantly weaker than the ones
for Gaussian noise and that is why [10] proposes a
decoder that is to be used for eliminating the Middleton
Class-A impulsive noise. Most of the systems affected by
non-Gaussian noise suffer performance degradation for
high Signal-to-Noise Ratio (SNR) values [11].

For a channel affected by impulsive noise of type
Middleton Class-A, the channel capacity is obtained
considering its model to be a Markov chain [12]. The
simulations were done for various values of the
parameters that describe the pattern of the impulsive
noise, called AWCN, and have shown that forA≥ 10, the
capacity of the AWCN channel is similar to the one for
AWGN. The more impulsive the noise is, the more the
channel capacity becomes larger than for an AWGN
channel.

To the best of our knowledge, no research results have
been published for calculating the capacity of a channel
affected by impulsive noise of type Middleton Class-A,
with binary input. This is the case when using an
antipodal modulation, for example BPSK. To fill this, our
paper presents the calculation of capacity for AWCN
channel and shows the differences between the AWGN
channel capacities and those of the AWCN channel for
this type of channel input, for various values of the
parameters that describe the model of the impulsive noise.
We considered the case of a uniform source, but also the
case when the probabilities of the two symbols, 0 and 1,
respectively, differ (the source is not uniform), like in
[13].

The paper is structured as follows. Section 2 describes
the Middleton Class-A impulse noise model and Section
3 presents the capacity expressions for the AWGN and
AWCN channels and also for Shannon limit. The
numerical results are shown in Section 4 and conclusions
are highlighted in Section 5.

2 Middleton Class-A Model

In many applications, non-gaussian noise appears in
addition to Gaussian noise. Some of its sources are:
automotive ignition noise, power transmission lines,
devices with electromechanical switches (photocopy
machines, printers), microwave ovens etc. [14]. There are
many statistical models for impulsive noise; in this study
we assume the Middleton Class-A model. This type of
noise has two components: a Gaussian one, with variance
σ2

g , and an impulsive one, with varianceσ2
i . The

probability density function (PDF) of impulsive noise is a
Poisson weighted sum of Gaussian distributions and it is
given by [10]:

p(n) =
∞

∑
m=0

Am ·e−A
√

2π ·m! ·σm
·exp(− n2

2σ2
m
) (1)

The significance of quantities in (1) is as follows:m is
the number of active interferences (or impulses),A is the

impulse index and it indicates the average number of
impulses during interference time. This parameter
describes the noise as follows: asA decreases, the noise
gets more impulsive; conversely, asA increases, the noise
tends towards AWGN.σ2

m is given by:

σ2
m = σ2 ·

m
A +T

1+T
(2)

where:σ2 = σ2
g +σ2

i is the total noise power and

T =
σ2

g

σ2
i

(3)

is the Gaussian factor. We can observe from (3) that for
low T values, the impulsive component prevails, and that
for high values, the AWGN component.

An impulsive noise sample is given by [15]:

n= xg+
√

Km ·w (4)

wherexg is the white Gaussian background noise sequence
with zero mean and varianceσ2

g , w is the white Gaussian
sequence with zero mean and varianceσ2

i /A andKm is the
Poisson distributed sequence, whose PDF is characterized
by the impulsive indexA.

3 Capacity of AWGN and AWCN Channels

3.1 Binary Input AWGN Channel Capacity

The capacity of an AWGN channel with binary input is
obtained from the expression for mutual information,
when the probabilities of the input symbols are equal. Its
expression is:

CAWGN= 1−
∫ +∞

−∞

1

σ
√

2π
·e−(y+1)2/(2σ2)·

· log2(1+e2y/σ2
)dy (5)

If we want to express the AWGN channel capacity
based on the signal-to-noise ratio (SNR), then we must
take into account that for the input symbols with the
energy equal to 1:

SNR=
1

2σ2 ⇒ σ =
1√

2 ·SNR
(6)

Replacing (6) into (5), we get:

CAWGN= 1−
∫ +∞

−∞

√

SNR
π

·e−SNR·(y+1)2·

· log2(1+e4·SNR·y)dy (7)

In [13] the bias of AWGN channel capacity value is
presented when the input symbols are not equiprobable.
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Noting these probabilities withp0 andp1, respectively, the
capacity becomes:

Cbias
AWGN=−p0 ·

∫ +∞

−∞

1

σ
√

2π
·e−(y+1)2/(2σ2)·

· log2(p0+ p1 ·e2y/σ2
)dy

− p1 ·
∫ +∞

−∞

1

σ
√

2π
·e−(y−1)2/(2σ2)·

· log2(p0 ·e−2y/σ2
+ p1)dy (8)

In terms of SNR, (8) becomes:

Cbias
AWGN=−p0 ·

∫ +∞

−∞

√

SNR
π

·e−SNR·(y+1)2·

· log2(p0+ p1 ·e4·SNR·y)dy

− p1 ·
∫ +∞

−∞

√

SNR
π

·e−SNR·(y−1)2·

· log2(p0 ·e−4·SNR·y+ p1)dy (9)

3.2 Binary Input AWCN Channel Capacity

In [12], the AWCN channel capacity for continuous input
is given. This is obtained by modelling the AWCN
channel through a Markov chain and assuming that both
the transmitter and the receiver know the channel state.
The probability of the channel’sm state is:

πm = e−A · Am

m!
,0≤ m (10)

and the AWCN channel average capacity is:

C=
∞

∑
m=0

πm ·Cm (11)

whereCm is the AWGN channel capacity, with zero mean
and dispersionσ2

m. Considering (5) and (7), we obtain the
capacity for an AWCN channel with binary input, as:

CAWCN=
∞

∑
m=0

e−A · Am

m!
· (1−

−
∫ +∞

−∞

1

σm
√

2π
·e−(y+1)/(2σ2

m) · log2(1+e2y/σ2
m)dy)

(12)

The capacity in terms ofSNR is obtained by
substituting (6) into (2):

σ2
m =

1
2 ·SNR

·
m
A +T

1+T
(13)

CAWCN=
∞

∑
m=0

e−A · Am

m!
· (1−

−
∫ +∞

−∞

√

SNR
π

·
√

1+T
m/A+T

·

·e−SNR·(1+T)/(m/A+T)(y+1)2

· log2(1+e4·y·SNR·(1+T)/(m/A+T))dy) (14)

When the input symbols are not equally likely, the
AWCN channel capacity bias becomes:

Cbias
AWCN=

∞

∑
m=0

e−A · Am

m!
· (−p0 ·

∫ +∞

−∞

1

σm ·
√

2π
·

·e−(y+1)2/(2σ2
m) · log2(p0+ p1 ·e2y/σ2

m)dy−

− p1 ·
∫ +∞

−∞

1

σm ·
√

2π
·e−(y−1)2/(2σ2

m)·

· log2(p0 ·e−2y/σ2
m+ p1)dy) (15)

or, taking into account the SNR:

Cbias
AWCN=

∞

∑
m=0

e−A · Am

m!
·

(−p0 ·
√

SNR
π

·
√

1+T
m/A+T

·

·
∫ +∞

−∞
e−SNR·(1+T)/(m/A+T)·(y+1)2·

· log2(p0+ p1 ·e4·y·SNR·(1+T)/(m/A+T))dy

− p1 ·
√

SNR
π

·
√

1+T
m/A+T

·

·
∫ +∞

−∞
e−SNR·(1+T)/(m/A+T)·(y−1)2·

· log2(p0 ·e−4·y·SNR·(1+T)/(m/A+T)+ p1)dy) (16)

3.3 Shannon Limit

In this subsection, we present the expression for the
Shannon limit as a function of probabilityp0.

Shannon’s Lossy Joint Source-Channel Coding
Theoremstates that, for a given memoryless source and
channel pair and for sufficiently large source-block
lengths, the source can be transmitted via a
source-channel code over the channel at a transmission
rate of source symbols/channel symbol and reproduced at
the receiver end within an end-to-end distortion given by
if the following condition is satisfied [16]:

Rc ·R(D)<C (17)

whereC is the channel capacity andR(D) is the source
rate-distortion function andD is the distortion, generally
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taken to be the expected value of a single letter distortion
measure [17]. For a discrete binary non-uniform source
with the probability of 0 equal top0, we haveD = Pe (that
is, the bit error probability (BER)) under the Hamming
distortion measure. The rate becomes:

R(Pe) =

{

Hb(p0)−Hb(Pe) ,0≤ Pe ≤ min{p0, p1}
0 ,Pe > min{p0, p1}

(18)
wherep1 = 1− p0 and

Hb(x) =−x · log2x− (1− x) · log2(1− x) (19)

is the binary entropy function.
The capacity of the AWGN or AWCN channel is a

function of SNR. When using an error correcting code
with an encoding rateRc, theSNRexpression is the ratio
between the energy of the uncoded bit and the power
spectral density of noise, that is:

SNRb =
1/Rc

2σ2 , (20)

resulting in the noise standard deviation

σ =
1√

2 ·Rc ·SNRb
(21)

The optimalSNRb value that guarantees a certainPe
value is called the Shannon limit. This can be found by
assuming equality in relation (17). The Shannon limit
cannot be explicitly solved for BPSK-modulated
channels, due to the lack of a closed-form expression, so
it is computed via numerical integration. In the next
section, the Shannon limit values are given for the AWGN
and AWCN channels, whenPe = 10−5. These values are
useful when comparing the performances of an error
correcting code with theoretical limit.

4 Numerical Results

In this section, we present numerical results for the
capacity of the channel affected by impulsive noise of
type Middleton Class-A, with binary input, and also the
optimum values forSNRb in dB based on the encoding
rate, highlighting the difference from the AWGN channel.
The results have been obtained by varying the
non-Gaussian noise model parameters A and T,
respectively. The following pairs were considered:
(A= 0.1,T = 0.1) and (A= 0.01,T = 0.01). The last set
corresponds to a highly impulsive noise. We considered
the case of a uniform source (whenp0 = 0.5), as well as
the case of a non-uniform source, like in [13], with
probabilitiesp0 = 0.8 andp0 = 0.9, respectively. For the
coding rate we used two values: 1/2 and 1/3, respectively.

In [12] it has been shown that, for an AWCN channel
modelled as a Markov chain, as the noise gets more
impulsive, its capacity is greater than that for AWGN. In

Fig. 1: AWGN/AWCN channel capacity with binary input and
coding rate 1/2.

Fig.1, we represented the AWCN channel capacity for
various values of theA and T parameters and AWGN,
respectively, for coding rate 1/2. It can be observed that
the result is similar with to that obtained by [12], that is,
for values greater than or equal to 1 of the Middleton
Class-A noise model parameters, the channel capacity is
close to that of AWGN, and for lower values, is bigger.
So, the more impulsive the noise is, the more the AWCN
channel capacity is greater than that of AWGN.

Next, in Figs. 2, 3, 4, 5, the AWGN and AWCN
channel capacities are represented for the sets
(A,T)=(0.1,0.1), (0.01,0.01), cases that describe a
highly impulsive noise, with coding rates of 1/2 and 1/3,
respectively, and various probabilities for the bit 0,
p0 = 0.5, 0.8 and 0.9, respectively. It can be observed
that, for all situations, the AWCN channel capacity is
greater than that of the AWGN channel. Another aspect is
that, for both AWCN and AWGN, the bias of the channel
capacity for a uniform source is larger than that of a
non-uniform source, and as the probability of the bit 0 is
higher, the channel capacity is lower.

The optimum values ofSNRb calculated for the entire
domain of encoding ratesRc ∈ [0,1], according to section
3.3, are represented in Fig.6 for AWCN, with parameters
A= 0.1,T = 0.1. It can be observed that, for an imposed
encoding rate, the optimumSNRb value is significantly
larger for AWGN, than that of AWCN.

To compareSNRb in dB given only by the Gaussian
component of AWCN withSNRb in dB of AWGN, in Fig.
7 we represented the same simulation as in Fig.6, only that
for AWCN the curves are shifted up with 10 lg((T+1)/T)
(lg stands for decimal logarithm). It can be observed that
theSNRb given by the Gaussian component of AWCN is
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Fig. 2: AWGN/AWCN (with A=0.1, T=0.1) channel capacity
with binary input and coding rate 1/2.

Fig. 3: AWGN/AWCN (with A=0.01, T=0.01) channel capacity
with binary input and coding rate 1/2.

greater thanSNRb of AWGN. This shows that if an error
correcting code fully eliminates the impulsive component
of AWCN, then it will have somewhat lower performances
than those of the AWGN channel.

Figs. 8 and9 show the same simulation as in Figs.6
and7, but for AWCN channel with parametersA = 0.01,
T = 0.01.

For T = 0.1, 10 lg((T + 1)/T) is 10.414 dB, and for
T = 0.01, it is 20.043 dB. These values explain the
difference from Figs.2, 3, 4 and 5 between theSNRb

Fig. 4: AWGN/AWCN (with A=0.1, T=0.1) channel capacity
with binary input and coding rate 1/3.

Fig. 5: AWGN/AWCN (with A=0.01, T=0.01) channel capacity
with binary input and coding rate 1/3.

values that lead to the same capacity of AWGN and
AWCN, of aproximately 10 dB whenT = 0.1 and
aproximately 20 dB whenT = 0.01.

Table1 shows the values of the Shannon limit in the
case of AWGN and AWCN (withA = 0.1, T = 0.1 and
A = 0.01, T = 0.01) channels, for the encoding rates 1/2
and 1/3 and for the values ofp0 equal to 0.5, 0.8, 0.9,
respectively. Obviously, the values are smaller whenp0
grows or when the encoding rate decreases. We can
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Fig. 6: OptimumSNRb [dB] in terms of coding rate (AWCN has
parameters A=0.1, T=0.1).

Fig. 7: Optimum SNRb [dB] for AWGN and AWCN (with
A=0.1, T=0.1) as a function a coding rate. For AWCN is
representedSNRb+10lg((T +1)/T).

observe the difference of aproximately 10 dB (that is
10 lg((T +1)/T) for T = 0.1) and of aproximately 20 dB
(that is 10 lg((T + 1)/T) for T=0.01) between the
Shannon limit for AWGN and that of AWCN. In the fifth
and seventh columns, in paranthesis, are given the
difference values in dB betweenSNRb for the Gaussian
component of AWCN andSNRb in dB of AWGN. It can
be observed that whenA = 0.01 and T = 0.01, the
Shannon limit, for AWCN expressed asSNRb of gaussian
component is very close to that for AWGN (the same

Fig. 8: OptimumSNRb [dB] as a function a coding rate (AWCN
has parameters A=0.01, T=0.01).

Fig. 9: Optimum SNRb [dB] for AWGN and AWCN (with
A=0.01, T=0.01) as a function a coding rate. For AWCN is
representedSNRb+10lg((T +1)/T).

thing can be seen in Fig.9 for the full range of coding
rates). This shows that if an error correcting code fully
eliminates the impulsive component of AWCN, then it
will have performances closer to those of the AWGN
channel. This is shown through simulations in [10], when
a turbo code is used on the AWCN channel.
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Table 1: Shannon Limit inSNRb [dB] for AWGN and AWCN (with A=0.1, T=0.1 and A=0.01, T=0.01)Channels atPe = 10−5.

Rc p0 AWGN
Shannon limit

AWCN with Difference for AWCN with Difference for
A= 0.1 A= 0.1 A= 0.01 A= 0.01
T = 0.1 T = 0.1 T = 0.01 T = 0.01

1/3

9.854 19.986
0.5 -0.498 -10.352

(-0.560)
-20.484

(-0.057)

9.898 19.991
0.8 -2.244 -12.142

(-0.516)
-22.235

(-0.052)

9.931 19.994
0.9 -4.398 -14.398

(-0.483)
-24.392

(-0.049)

1/2

9.742 19.976
0.5 0.185 -9.557

(-0.672)
-19.791

(-0.067)

9.840 19.985
0.8 -1.808 -11.648

(-0.574)
-21.793

(-0.058)

9.902 19.991
0.9 -4.138 -14.040

(-0.512)
-24.129

(-0.052)

5 Conclusion

This paper has established a mathematical expression for
the AWCN channel capacity with binary input. The
expression was obtained by modeling the AWCN channel
through a Markov chain and assuming that both the
emitter and the receiver know the channel state, similar to
[12]. Likewise, the expression for the capacity bias was
given when the input is non-uniform (that is the input
symbols probabilities are not equal).

Then, we made an analysis of the AWGN and AWCN
channel capacity values for various parameters. WhenA
andT are close to 1 the AWCN capacity is equal to that
of AWGN. WhenA andT decrease, the AWCN capacity
grows.

When the probabilityp0 grows or when the encoding
rate decreases, each channel capacity decreases. This is
obvious, because whenp0 grows, the source redundancy
grows, and when the encoding rate drops, imposing a
constant energy for the encoded bit, the uncoded bit
energy becomes higher.

The Shannon limit values are also given for different
encoding rates in the case of the two channels. We have
shown thatSNRb in dB given only by the Gaussian
component of AWCN is closer toSNRb in dB of AWGN,
as the AWCN capacity increases. This explains the
differences between theSNRb values that lead to the same
AWGN and AWCN capacity, with parameterT of
approximately 10 lg((T + 1)/T) dB. When T is small
enough, this shows that if an error correcting code fully
eliminates the impulsive component of AWCN, then it
will have performances in terms of BER closer to those of
the AWGN channel. In [10] is shown by simulations that
when a turbo code is used on the AWCN channel with a

matched turbo decoder at reception, the BER
performances are closer to those of AWGN channel when
T = 0.01 compared toT = 0.1 case, confirming the
previous mentioned result.
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