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Abstract: The object of this article is to investigate the Dirichleeeages of generalized Mainardi function defined by the astfide
results derived in this paper provide extension of the tsegiven by Sharma et al§]. Representations of such relations are obtained
in terms of fractional derivative. Several others new resscan also be obtained from our main theorems. The resulésneld are
useful in applied problems of science, engineering andhigolyy.
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1 Introduction If we setp = q = Oandn = 1,equation {) it yields
Mainardi function defined by Mainardi[l] as
The Dirichlet average of a function is certain kind of

integral average with respect to Dirichlet measure. The (—1)""
concept of Dirichlet average was introduced by Carlson in M(z,a) = Fa(n+)+1n
[1], [2], [4]. Itis studied, among others, by zu Casté&]l [ - J
Massopust and Forstet?], Neuman [L4], Neuman and
Van Fleet [L5] and others. A detailed and comprehensive
account of various types of Dirichlet averages has bee
given by Carlson in his monograp8|[

()

We will use some more notations in the further
exposition. In the sequel, the symbq] k& will be denote
rby the Euclidean simplex, defined by

In this article we introduce generalized Mainardi E, ; = {(ul’i' u?]‘l) U =0, < 1}. 3)
hypergeometric function in the following form 1= MUt U =

Next we need the concept of Dirichlet average. Following
S (bl,Bl), ., (bg, Bg) Carlson B] [Definition 5.2-1]
P (a1, A1) 5 - (@ps Ap)s (N —a,—a) s —Z

let Q be a convex set in C and

w (20 = (zn,...,2Z7) € Q",n>2 and let f be a
M (b +1nBy), ..., T (g + NnBg)] measurable function o@. Define
nZO al + I’lAl ,I' (ap + nAp)]
(— 1)z ) Fig)= [ fuozdu(u), (4)
n—1
I [—a(n+21)+njn (1)
where aj, b € C and  indupis the Dirichlet measure
ABj € R(i=1,....,p;j=1,...,q and the
ini i b b 1-1
defining senesg]() ConveLges for dpp (U) = % ull L oud
>B - YA —a> -1 (5)
= =] (1—uUp—...—Up1) 1 dug, ..., duy 1
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with the multivariate Beta-function
r(by),...,l (b

B(b) = r (bt ... +by)
O(bj) >0, (j=1,....k (6)
and
n-1
—Un-1)Zn. (7)

(uoz) = ujzi+ (1—ui— ...
>

Forn=1,F (b;z) = f(z). Forn=2 we have

(B"’B) uﬁ 1(1 u)ﬁ 1du (8)

Wop )= By (B)

The Dirichlet averages of the generalized Mainardi

function (1) is given by

M [(blaBl) -+ (bq, Bq) ]
PA| (a1,A1), ..., (ap, Ap); (N —a,—a); (B,B';xY)

:/qu “gllill)) ''''''' , <<?fp iqp)) (n—a,—a);— uoz} dugp: (U)
C)

where forn=1F (b; z) = f(2).

For n = 2 we have

dpgpr (U) = % ufb~t(1—u)ftdu (10)

The general Dirichlet average of a function has beenM

defined by Carlson?] as

F(b2) = / f(u02) dup (U) (11)

Carlson P] investigated the averagd{) for f(z) = %,
k € Rin the form

Re(b.2)= [ (o2t dm (v (12)

If n=2. Carlson ], [3] proved that

r
Rk(B,B/;X,y) = [‘(B)[‘(B/>

(13)
J3 [ux+ (1—u)yuP-t (1—u)F~tdu

whereB, 8’ € C, R(B) >0, R(B') >0andx,yeR

In this connection, one can refer to the works of Erdélyi et
al. [6],[8] Samko et al. 16] and Saxena et all[7], Mathai
et al [13] and Haubold et alq].

2 Fractional Derivative

Fractional derivative with respect to an arbitrary funatio
has bee used by Erdelyi7][ [p 181]. The general
definition for the fractional derivative of order € C ,
Re(a) > 0, the Riemann-Liouville integral is defined as

(DXF) () =

1 X FQ)
/O(X _dt (14)

and (see Lavoie et al.f] eqn. 5.1, p. 245)

(Dg—xo F) (x)

1 /X PO & as)

where Re(a) < 0, F(t)is of the formxPf(x) and
f(x)is analytic atx = 0.

See also Lavoie et alP] and Samko et all[g].

Theorem 1 Let x,y € R be real number such that
x>y, BB €C, R(B) >0, R(B’) > 0a;, b; € Cand
A,B € R(i=1,....,p;j=1,...,q) then the
Dirichlet average of generalized Mainardi functidt) (s
given by

[(bla B1), ..., (bg, Bg) ]
(a,A1) ..., (@p, Ap); (n—a,—a); (B,B"xY)
_rB+B),, 1pp

“ T Y

g by,B1),..., by, B -
{Dxfy S [<a11 All)) ..... <(aqp A?p)) (n—a,-a); x] } (=)™t (1)
Proof:- By virtue equationl() and (9), we have

" [(bl,Bl),...,(bq,Bq) }
P.q (alvAl)v"'v(avaP);(n_av_a); (BvB/;va)

! by, B ..., (bg, B
= o [ R e - —(wo | W )
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Modification of

_ r(p+B") s [ (b1+1nBy), ....T (bg+nBq)] M [(bl,Bl),...,(bq,Bq) }
Yp,q

I (
—r(ere nZo [F(a+nAy),....T (ap+nAp)] (@1, A1), ..., (ap, Ap); (N—a, —a); (B.B":x.Y)

C1 eyl g1 g B -1 g
Falnel+n)n! A modification of the (9) is taken in the form

F(B+B) (1 & [[(oa+nBy).... T (bg+nBy)]
= TR R b 7B LA b 7B
rrp’ Jo nZO [M(@a+nAy), ... (aq+nAq)] yMp,q[((all All)) ((ai, A?p))- (n—a, —a); (B,B";x Y)]

1)”Ey+u(x—y)]n"! w1 (1—wF Ly

' 1 by, B1), ..., (b, B
—/ (U2 oS ((al,/.\l))1.,,,((3(:,,,/-\[]:);(n7a,7a);—(uoz)] AHgpr (W)
B2
_r(B+B)  © [Flbr+nBy),....T (bg+nBg)] Theorem 2 Let x,y € R be ,real number such that
STBTB) 2y [Pl nAy). T (2t )] x>y, B, €C, R(B) >0, R(B ) >0a,bj € C, and
A,B € R(i=1,....,p;j=1,...,q) then the
1 n X B /7 . g . .. . . .
71_(_(1((%;””)”!]01 ly+u(x—y)]"uf-1@a—uP tdu modification of Dirichlet average generalized Mainardi

function @) is given by

Putu (x—y) =t v | (b1, B1) ... (bg, Bg)
P (alaAl)a'-'a(apaAp);(r]—a,_a); (ﬁ,ﬁ/;x7y)

_ IB+B) [F(oi+nBy). ..., I (bg+nBg)] ()" , /

“rere) n§O [F(all+nAi) ..... F(a§+nA2)] T (—a(nt1)+n)n! - r I('B(—E)B ) (X_y)lfﬁfﬁ

.....

17)
_ I (B+B) § [M(b1+nBa),....[(Bg+nBg)] _ (=1)"[y+1]"
FBIT () (&g [M(@+nAy, ... T(aq+nAq)] I (-a(n+l)+n)n! Proof :- Using equationl) and (L0), we have
Xy ap - b1,B1), ..., (bg, Bg)
tBlX—lﬁﬁX——tﬁldt M (lala > \Mg» Pq
R A ) MMoal (a1, A1), (8p, Ap)s (N —a,—a); (B,B'5xY)
_ r(g+p g XY g, 2 [r(bg+nBy)...., T (bq +nB
- r<5)r(13’)) (y) PP oftB ' nZo %Fga;nf*g»----fr(aqwf*gﬂ
A oy P e = Frh by (- u) vt

which yields (16) and thus the theorem 1 is proved.
[F (b1+nBy), . ...T (bg+nBqg)]

3 Special Cases

Muﬁfl (1_ U)B/*l du
Forp’ = y—pB and y=0, Theorem 1 yields. r(—a(+D)+n)n!

Corollary 1.1
|:(bl7Bl)>~"7 (bq7Bq) :| _ I—(B+B,) had [F(b1+nBl)_..,F(bq+an)]
PAl (a1, A1), ... (ap. Ap)i (n—a,—a); (B.y—Bix.0) =TT E) 2, [t A, T (% nAy)]
Iy . - (b, By) ..., (bg, Bg) _ I L _ yn—1
= Fp e {ors f R  E R ama f Famenayar Jo Y+ (X=y)ul

!
uB-1(1-w? ~tdu
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Put(x—y)u,=t, we get

_ r(B+p)

_ § [F (b1 +nBy), . ...T (bg+nBq)]
FBIre) %o

[M(@+nAy), ... (a+nAp)]

(=1)"
I (—a(n+1)+n)n!

)

K y+0r (2

B'-1
t dt
(1_X_—y) x=y)
r ﬁ+ﬁ' 1-B3-p'
— Fhrmh (-
[l_ (b1 +nBy), ,r(bq+an)] — )" (y+1)"

r(B+p’ 1-B-pB — 1
= Fiir ey eyt P
by, B1), ..., (by, B /—
oS [ B) BB aays ) Byt e a9

This gives equationl] and thus the proof of theorem 2 is
completed.

ForB’ = y— B and y=0, Theorem 2 yields.

Corollary 2.1

M {(bl7Bl)7~~~7(bQ7BQ) }

yTea (al7Al)7~~~7(ap7Ap); (’7_07_0); (B7V_B1X7O)
r _

(b1,B1), ..., (bg, By)

{D&V(y“)wlps* (ar. A1) . (@p. Ag)i (0~ —a1)

]} (x—y)Pft
(19)

4 Concluding

In this present we have investigated the Dirichlet averages

of generalized Mainardi function, the given results are in
compact from. The modification of generalized Mainardi

function is also obtained and special cases of our main
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