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Abstract: The object of this article is to investigate the Dirichlet averages of generalized Mainardi function defined by the authors. The
results derived in this paper provide extension of the results given by Sharma et al [18]. Representations of such relations are obtained
in terms of fractional derivative. Several others new results can also be obtained from our main theorems. The results obtained are
useful in applied problems of science, engineering and technology.
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1 Introduction

The Dirichlet average of a function is certain kind of
integral average with respect to Dirichlet measure. The
concept of Dirichlet average was introduced by Carlson in
[1], [2], [4]. It is studied, among others, by zu Castell [5] ,
Massopust and Forster [12], Neuman [14], Neuman and
Van Fleet [15] and others. A detailed and comprehensive
account of various types of Dirichlet averages has been
given by Carlson in his monograph [3].

In this article we introduce generalized Mainardi
hypergeometric function in the following form

pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α,−α) ; −Z

]

=
∞

∑
n=0

[Γ (b1 + nB1) , . . . , Γ (bq + nBq)]
[

Γ (a1 + nA1) , . . . ,Γ
(

ap + nAp
)]

(−1)nzn

Γ [−α(n+1)+η ] n!
(1)

where ai ,b j ∈ C and
Ai ,B j ∈ R (i = 1, . . . . , p ; j = 1, . . . , q) and the
defining series (1) converges for

q

∑
j=1

Bj −

p

∑
i=1

A i −α > −1.

If we set p = q = 0 and η = 1,equation (1) it yields
Mainardi function defined by Mainardi [11] as

M (z,α) =
(−1)nzn

Γ [−α(n+1)+1] n!
(2)

We will use some more notations in the further
exposition. In the sequel, the symbol En−1 will be denote
by the Euclidean simplex, defined by

En−1 =

{

(u1, . . . . ,un−1) : u j ≥ 0,
j = 1, . . . ,n , u1+ . . . . + un−1 ≤ 1

}

. (3)

Next we need the concept of Dirichlet average. Following
Carlson [3] [Definition 5.2-1]

let Ω be a convex set in C and
(z) = (z1 , . . . ,zn) ∈ Ω n , n ≥ 2 and let f be a
measurable function onΩ . Define

F (b ;z) =
∫

En−1

f (u o z) dµb (u) , (4)

in dµbis the Dirichlet measure

dµb (u) = 1
B (b) u b1−1

1 , . . . ,u bn−1−1
n−1

(1− u1− . . . − un−1)
bn−1 du1, . . . , dun−1

(5)
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with the multivariate Beta-function

B(b) =
Γ (b1), . . . ,Γ (bk)

Γ (b1+ . . . + bk)

ℜ(b j)> 0, ( j = 1, . . . ,k) (6)

and

(u o z) =
n−1

∑
j=1

uj z j + (1− u1− . . . − un−1) zn . (7)

For n = 1,F (b ; z) = f (z). For n = 2 we have

dµβ β ′ (u) =
Γ (β +β ′)

Γ (β )Γ (β ′)
u β−1(1− u)β ′−1 du. (8)

The Dirichlet averages of the generalized Mainardi
function (1) is given by

Mp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α,−α); (β ,β ′;x,y)

]

=

∫

E1

pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −(uoz)

]

dµβ β ′ (u)

(9)

where for n = 1,F (b ; z) = f (z).

For n = 2 we have

dµβ β ′ (u) =
Γ (β +β ′)

Γ (β ) Γ (β ′)
u β−1 (1− u) β ′−1 du. (10)

The general Dirichlet average of a function has been
defined by Carlson [2] as

F (b,z) =
∫

En−1

f (u o z) dµb (u) (11)

Carlson [2] investigated the average (11) for f (z) = zk,
k ∈ R in the form

Rk (b,z) =
∫

En−1

(u o z)k dµb (u) (12)

If n = 2 . Carlson [2], [3] proved that

Rk (β ,β ′;x,y) =
Γ (β+β ′)

Γ (β )Γ (β ′)

∫ 1
0 [ux+(1− u)y]k u β−1 (1− u) β ′−1 du

(13)

whereβ ,β ′ ∈C, R(β )> 0, R
(

β ′
)

> 0 andx,y ∈ R

In this connection, one can refer to the works of Erdélyi et
al. [6],[8] Samko et al. [16] and Saxena et al. [17], Mathai
et al [13] and Haubold et al [9].

2 Fractional Derivative

Fractional derivative with respect to an arbitrary function
has bee used by Erdelyi [7] [p 181]. The general
definition for the fractional derivative of orderα ∈ C∞ ,
Re(α)> 0, the Riemann-Liouville integral is defined as

(Dα
x F) (x) =

1
Γ (−α)

∫ x

0

F (t)
(x− t) 1−α dt (14)

and (see Lavoie et al.[10] eqn. 5.1, p. 245 )

(

Dα
x−x0

F
)

(x) =
1

Γ (−α)

∫ x

x0

F (t)
(x− t) 1−α dt (15)

where Re(α) < 0 , F(t)is of the form xp f (x) and
f (x)is analytic atx = 0.

See also Lavoie et al [10] and Samko et al [16].

Theorem 1 Let x,y ∈ R be real number such that

x > y, β ,β ′ ∈ C, R(β ) > 0, R
(

β ′
)

> 0ai , b j ∈ C and

Ai , B j ∈ R (i = 1, . . . . , p ; j = 1, . . . , q) then the
Dirichlet average of generalized Mainardi function (1) is
given by

Mp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α,−α); (β ,β ′;x,y)

]

=
Γ (β +β ′ )

Γ (β )
(x− y)1−β−β ′

{

D−β ′
x−y pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −x

]}

(x− y)β−1 (16)

Proof:- By virtue equation (1) and (9), we have

Mp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ;(η −α,−α); (β ,β ′;x,y)

]

=

∫

E1

pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −(uoz)

]

dµβ β ′ (u)
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=
Γ (β+β ′)

Γ (β )Γ (β ′ )

∫ 1
0

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq+nBq)]
[Γ(a1+nA1) , . . . ,Γ(ap+nAp)]

(−1)n[ux+y(1−u)]n

Γ (−α(n+1)+η) n! u β−1 (1− u)β ′
−1 du

=
Γ (β+β ′)

Γ (β )Γ (β ′ )

∫ 1
0

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq +nBq)]
[Γ(a1+nA1) , . . . ,Γ(aq+nAq)]

(−1)n[y+u (x−y)]n

Γ (−α(n+1)+η) n! u
β−1 (1− u)β ′

−1 du

=
Γ (β+β ′)

Γ (β )Γ (β ′ )

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq+nBq)]
[Γ(a1+nA1) , . . . ,Γ(aq+nAq)]

(−1)n

Γ (−α(n+1)+η) n!

∫ 1
0 [y+ u (x− y)] n u β−1 (1− u)β ′

−1 du

Putu (x− y) = t

=
Γ (β+β ′ )

Γ (β )Γ (β ′ )

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq +nBq)]
[Γ(a1+nA1) , . . . ,Γ(aq+nAq)]

(−1)n

Γ (−α(n+1)+η) n!

x−y
∫

0
[y+ t ]n

(

t
x−y

)β−1(

1− t
x−y

)β ′−1
du

x−y

= Γ (β+β ′ )
Γ (β )Γ (β ′ )

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq +nBq)]
[Γ(a1+nA1) , . . . ,Γ(aq+nAq)]

(−1)n[y+t]n

Γ (−α(n+1)+η) n!

x−y
∫

0
tβ−1 (x−y)1−β−β ′

(x−y− t)β ′−1dt

=
Γ (β+β ′ )

Γ (β )Γ (β ′ )
(x− y)1−β−β ′

x−y
∫

0
tβ−1

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq +nBq)]
[Γ(a1+nA1) , . . . ,Γ(aq+nAq)]

(−1)n [y+t ]n

Γ (−α(n+1)+η) n ! (x− y− t)β ′−1dt

which yields (16) and thus the theorem 1 is proved.

3 Special Cases

For β ′ = γ −β and y = 0 , Theorem 1 yields.

Corollary 1.1

Mp,q

[

(b1 , B1) , . . . ,
(

bq , Bq
)

(a1 , A1) , . . . ,
(

ap , Ap
)

; (η −α,−α) ; (β ,γ −β ;x,0)

]

=
Γ (γ )
Γ (β )

x1−γ
{

Dβ−γ
x pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −x

]}

(x− y)β−1

Modification of

γMp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α, −α); (β ,β ′;x,y)

]

A modification of the (9) is taken in the form

γMp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α, −α); (β ,β ′;x,y)

]

=

∫

E2

(uoz)γ−1
pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −(uoz)

]

dµβ β ′ (u)

Theorem 2 Let x,y ∈ R be real number such that

x > y, β ,β ′ ∈ C, R(β ) > 0, R
(

β ′
)

> 0ai , b j ∈ C , and

Ai , B j ∈ R (i = 1, . . . . , p ; j = 1, . . . , q) then the
modification of Dirichlet average generalized Mainardi
function (1) is given by

Mp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α,−α); (β ,β ′;x,y)

]

=
Γ (β +β ′ )

Γ (β )
(x− y)1−β−β ′

{

D−β ′
x−y (y+ t)γ−1

pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −x

]}

(x− y)β−1

(17)

Proof :- Using equation (1) and (10), we have

γ Mp,q

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ;(η −α,−α); (β ,β ′;x,y)

]

=
Γ (β+β ′)

Γ (β )Γ (β ′ )

∫ 1
0 [ux+ y (1− u)] γ−1

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq+nBq)]
[Γ(a1+nA1) , . . . ,Γ(ap+nAp)]

(−1)n[ux+y(1−u)]n

Γ (−α(n+1)+η) n! u β−1 (1− u)β
′
−1 du

=
Γ (β+β ′)

Γ (β )Γ (β ′ )

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq+nBq)]
[Γ(a1+nA1) , . . . ,Γ(ap+nAp)]

−1n

Γ (−α(n+1)+η) n!

∫ 1
0 [y+ (x− y)u] γ+n−1

u β−1(1−u)β
′
−1 du
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Put(x− y) u,= t , we get

=
Γ (β+β ′)

Γ (β )Γ (β ′ )

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq+nBq)]
[Γ(a1+nA1) , . . . ,Γ(ap+nAp)]

(−1)n

Γ (−α(n+1)+η) n!

∫ x
y (y+ t) γ+n−1

(

t
x−y

)β−1

(

1− t
x−y

)β ′−1
dt

(x−y)

=
Γ (β+β ′)

Γ (β )Γ (β ′ ) (x− y)1−β−β ′

∞
∑

n=0

[Γ(b1+nB1), . . . ,Γ(bq+nBq)]
[Γ(a1+nA1) , . . . ,Γ(ap+nAp)]

(−1)n (y+t)n

Γ (−α(n+1)+η) n!

∫ x
y (y+ t) γ−1 (t)β−1 (x− y− t)β ′−1dt

=
Γ (β+β ′)

Γ (β )Γ (β ′ ) (x− y)1−β−β ′ ∫ x
y (y+ t) γ−1 (t)β−1

pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −x

]

(x− y− t)β ′−1 dt (18)

This gives equation (1) and thus the proof of theorem 2 is
completed.

For β ′ = γ −β and y = 0 , Theorem 2 yields.

Corollary 2.1

γ Mp,q

[

(b1 , B1) , . . . ,
(

bq , Bq
)

(a1 , A1) , . . . ,
(

ap , Ap
)

; (η −α,−α) ; (β ,γ −β ;x,0)

]

= Γ (γ )
Γ (β ) x1−γ

{

Dβ−γ
x (y+ t)γ−1

pSq

[

(b1 , B1) , . . . , (bq , Bq)
(a1 , A1) , . . . , (ap , Ap) ; (η −α ,−α) ; −x

]}

(x− y)β−1

(19)

4 Concluding

In this present we have investigated the Dirichlet averages
of generalized Mainardi function, the given results are in
compact from. The modification of generalized Mainardi
function is also obtained and special cases of our main
finding are also sated. The results are new and the readers
can obtained the generalized fractional calculus for the
generalized Mainardi function given by authors.
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[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi,
Higher Tran-scendental Functions, Vol. I. McGraw-Hill,
New York - Toronto - London (1953); Reprinted: Krieger,
Melbourne, Florida (1981).
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