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We present a decentralized resource allocation approach, DRG (Decentralized 
Response-time Guarantee), that can provide response time guarantees for multiple 
concurrent workloads sharing a back-end storage system in a distributed manner 
without assuming any support from the storage itself. This new approach uses several 
run-time statistics of both workloads and system as indicators of busty and load 
condition at the backend storage and accepts a control equation periodically to adjust 
the number of I/O requests which could be issued per workloads to meet the 
performance goals. Using a real I/O trace, we demonstrate that our approach can 
simultaneously meet the response-time requirements imposed by an SLO without 
requiring extensive knowledge of the underlying storage system. 
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1   Introduction 

I/O consolidation is a growing trend in production environments due to the increasing 
complexity in the management storage systems. A consequence of this trend is the need 
to serve multiple users and/or workloads simultaneously. It is imperative to ensure that 
these users could be insulated from each other in order to meet any service-level 
objective (SLO) especially in a distributed storage environment. Previous distributed 
proposals for performance virtualization basically provided only the throughput 
guarantees and may not always exploit the full bandwidth offered by the storage system. 

With the advent of Storage Area Network (SAN) and Network Attached Storage 
(NAS) technology, more service providers and enterprises are increasingly mapping 
application workloads onto shared pools of storage resources. Consolidation of these 
backend storage resources brings ease of backup, flexibility in provisioning and 
centralized administration, and makes economic sense, but they can induce inter-
workload interference from which arises performance degradation and lack of 
performance predictability. As a result, resource management mechanisms are required to 
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enable performance isolation and to enforce Service-Level Objective (SLO). Such 
isolation is called performance virtualization since it gives the impression that the storage 
utility is fully devoted to each workload. One way to achieve this virtualization is an 
intrusive-approach implemented in internal resources such as disk schedulers or cache [1] 
[2] [3]. Because of scale and complexity these approaches are not very attractive from the 
practical point of view. We would like to use a nonintrusive approach which treats the 
storage utility as a black box throttling requests before dispatching them to storage. A 
centralized nonintrusive scheduler which has complete control over all requests can 
supply both throughput and response time virtualization  although existing decentralized 
approaches still have the limitation of providing response time guarantees.  

2   Related work 

One way to achieve I/O performance virtualization is to perform resource 
provisioning/partitioning across workloads in a static manner [6][7], which is typically 
coarse-grained and unable to handle short-term transient conditions. Most of the online 
fine-grained centralized solutions can provide both throughput and response time 
guarantees, like Façade[8], SFQ(D)[4](using GPS[9]), Avatar[10], while distributed 
solutions, such as Triage[11], RW(D)[4], basically can only control throughput. Although 
PARDA[5] can control device latency, it still cannot control response time which is 
composed of not only device latency but also host-queuing delay. This article presents a 
decentralized resource allocation approach, DRG, which we believe is the first scheduler 
that can provide response time guarantees for open workload in a distributed storage 
system. Based on run-time workload characteristic and storage status, DRG periodically 
reallocate storage resource to meet the response time goals of concurrent workloads. 

3   Decentralized Framework 

 

 

 

 

 

 

 
Figure 2.1: The architecture of decentralized resource allocation framework 

Our decentralized framework is composed of 2 major components: Monitors which 
collect run-time workload characteristics and performance on distributed hosts and the 
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I/O slots allocation module invoked periodically dynamically to reallocate resources.  

4   Controlling Principles 

The basic rule to meet the response time is controlling the separate two parts of the 
response time: host-queuing delay and device latency. The former is influenced by 
dynamic behavior of the workload while the latter relies on specific storage status. We 
conceptually partition the array queue among workloads just like PARDA does. 
Furthermore we implement the I/O slots allocation model which adapts the device queue 
length per workloads according to dynamic resource requirement which can be concluded 
from the run-time infomation collected by monitors.  

Table 4.1: Symbols used and their descriptions 

( )tiλ  average arrival rate in period t of workload i 

( )tqi
0  length of queuing requests at host of workload i at the end of period t 

)(_ tdque i  the queuing time to be spend on workload i during last adaptation time 
window to time period t 

( )tdi
0  the queuing time already spent on ( )tqi

0  

( )tusi  average used slots of workload i in period t 

( )tus  system-wide average used slots of workload i in period t 

( )ttsi  total slots of workload i in period t 

( )tli  average device-level latency of workload i in period t 

( )tri  average response-time of workload i in period t 

  system-wide device latency threshold 
n  number of concurrent workloads 

4.1   Controlling Device Latency  

The used-slots computation uses a control mechanism shown to exhibit stable 
behavior for the FAST TCP flow-controlling algorithm.  For latency estimation each host 

maintains an exponentially-weighted moving average of I/O latency denoted by ( )tli
'  at 

time t to smooth short-term variations. Then we can use the FAST-TCP equation to 

maintain the latency of the device stable at  . 

( ) ( ) ( ) ( )11' −×+×−= tltltl iii αα   (4.1) 

 ( ) ( ) ( ) ( ) ( )111 ' −
×

×+−×−=
∑

tus
tl

nrtusrtus
i


                   (4.2) 

According to Eq. (4.2) we can get the threshold of system-wide used slots in time 
window t. All following experiments used the smoothing parameters {α = 0.002 and r = 
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0.8} just like PARDA did. 

4.2   Controlling Queuing Delay  

Using one-step prediction, we assume ( )tiλ would be ( )1−tiλ . Let iµ  denote the 

estimated service rate in the next window. We assume that the arrival and service rate are 

constant, ( )tqi , and average queue length in the next adaptation windows is given by: 

( ) ( ) ( )( ) tttqtq iiii *110 −−+−= λµ                               (4.3)   

 ∫=
w

ii dttq
w

tqavg
0

)(1)(_                                    (4.4) 

In a simpler situation, when considering value of w is 1 second, then  iqavg _ is the 

average of ( )tqi
0 and ( )10 −tqi . We assume that the number of requests arriving during 

any given time window at the storage utility approximates the number of requests that 
leave it. Based on this assumption, we apply Little’s law:   

           
)(

)(_)(_
t

tqavgtdque
i

i
i λ

=             (4.5) 

However, this has not considered the queuing time )1(0 −tdi already spend on 

( )10 −tqi  and so we adjust this equation below： 

w
td

t
tqavgtdque i

i

i
i

)1(
)(

)(_)(_
0 −

+=
λ

          (4.6) 

4.3   Controlling Response Time 

+= )(_)(' tdquetr ii                (4.7) 

After getting the relationship of device latency and queuing delay with needed storage 

resource, we can using the Lagrange multiplier method to get )(tusi which reflects 

resource allocation aiming to maximize the system-wide utility evaluation function. How 
to determine a good utility function is out of the scope of this article. Here we simply 
used the violated number as our evaluation metric. 
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5   Performance Evaluation 

We evaluate our approach via a simulation-based analysis that is driven by 4 
concurrent real workloads: Web0 and Web1 [13], tpcc0 and tpcc1 [14]. We use Disksim 
4.0 [15] as the storage system simulator with a RAID 0 with 8 Seagate Cheetah9LP disks.  

5.1   Storage performance capacity 

 

 

 

 
 

(a) dynamic arrival rate                (b)throughput vs. slots             (c) device latency vs. slots 
Figure 5.1: characteristic of 4 workloads and back-end storage system 

Unlike other sharing resources, storage performance capacity is variable according to 
workload characteristic and storage inner-character (organization, scheduling algorithm, 
cache etc). Figure 5.1 presents the characteristics of workloads and storage in different 
concurrent degrees. “Base slots” means max I/O slots for each workload. Obviously 
higher concurrent degree can bring higher throughput in the cost of larger device latency. 
So DRG can choose the maximal system-wide used-slots threshold-based smallest 
response time according to Figure 5.1(b)(c) which can be inferred using run-time 
information. For example, when the small response time is 200, the system-wide used 
slots need to be fewer than 320(80*4). 

5.2   Device Latency vs. Response Time  

In this Section we demonstrate the relationship between “used slots” and 
performance. We set each slot’s threshold to 128 and use RW(D) schema. The latency 
and response time over the duration of the experiment are presented in Figures 5.2(a) and 
5.2(b). The used slots over the duration of the experiment are presented in Figure 5.2(c). 
Comparing Figure 5.2(a) and Figure 5.2(c), we can see that host-queuing delay is more 
influenced by the dynamic behavior of the related workload. Meanwhile the device 
latency is more likely to be influenced by used slots. So we can maintain it at a stable 
value by controlling the used slots which also represents specific storage load and 
capacity statistic.  

 

 

 

 
 

(a) device latency                      (b)response time                       (c) used slots 
Figure 5.2: performance and System-wide used slots under RW(D) 



Liu Liu et al                                                                                                                          58 

0

50

100

150

200

250

300

350

0 20 40 60 80 100

time period (sec)

av
er

ag
e 

re
sp

on
se

 t
im

e 
(m

s)

web0 web1 tpcc0 tpcc1

40

60

80

100

120

140

0 20 40 60 80 100
time period (sec)

us
ed
 s
lo
ts

tpcc0

tpcc1
0

50

100

150

200

250

0 20 40 60 80 100
time period (sec)

us
ed

 s
lo

ts

tpcc0

tpcc1

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

time period (sec)

av
er

ag
e 

re
sp

on
se

 t
im

e 
(m

s)

web0_RW(D)
web0_DRG
web1_RW(D)
web1 DRG

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100

time period (sec)

av
er
ag
e 
re
sp
on
se
 t
im
e 
(m
s)

tpcc0_RW(D)
tpcc0_DRG
tpcc1_RW(D)
tpcc1_DRG

5.3   RW(D) vs. DRG 

We firstly consider the most common sharing environment without any I/O 
controlling scheme. There is one main observation from Figure 5.3: because there is no 
queuing time but only the same device latency, the response times of all workloads are 
exactly the same.  

 

 

 

 
Figure 5.3: Response time of 4 concurrent workloads without any I/O controlling scheme 

 
We use two different SLOs: SLO_A<250, 250, 800, 800> and SLO_B<400, 400, 250, 
250 >. For example, SLO_A means web workloads need a response time less than 
250ms. Once larger than 250ms, we state that a violation happened. The response time 
and used slots with SLO_A are presented in Figure 5.4 and Figure 5.5 while the response 
time and used slots with SLO_B are presented in Figure 5.6 and Figure 5.7. 

 

 

 

 
(a)  Response time of 2 web workloads      (b) Response time of 2 tpcc workloads 

 
Figure 5.4: Response time of 4 concurrent workloads come with SLO_A 

 

 

 

 

 
(a) Used slots under RW(D)                      (b) Used slots under DRG 

 
Figure 5.5: The slots used by tpcc0 and tpcc1 workloads come with SLO_A 

We observe that web workloads meet SLO_A. The violation rate of tpcc workloads 
under DGR is obviously much better than RW(D): 28% for tpcc0 and 20% for tpcc1 
under RW(D) while only 1 violation for tpcc1 and 0 violation for tpcc0  under DRG.   
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(a) Response time of 2 web workloads          (b) Response time of 2 tpcc workloads 

Figure 5.6: Response time of 4 concurrent workloads come with SLO_B 

 

 

 

 
(a) Used slots under RW(D)          (b) Used slots under DRG 

Figure 5.7: The slots used by web0 and web1 workloads comes with SLO_B 

Just as the behavior with SLO_A, DRG can meet the response time need of tpcc 
workloads. DRG provides better violation ratios than RW(D) for web workloads: 5% for 
web0 and 14% for web1 under RW(D) while no violation happen to web workloads 
under DRG. The reason behind the better response-time guarantees is relying on better 
usage of system-wide resources which we can see from how slots were used. Just as 
Figure 5.5 and 5.7 show to us, under RW(D), while the queuing delay of one workload 
increased heavily because of lacking usable slots, the other cannot fulfill its slots, and 
vice versa, but under DRG we can see better usage situation of slots. 

6   Conclusion 

This article presents a decentralized resource allocation approach DRG which can 
provide response-time guarantees for concurrent workloads in a distributed storage 
system. Our solution decouples the control of device latency and host-queuing delay, 
making it more flexible and efficient to use the shared storage resources. DRG firstly 
uses the FAST TCP flow control algorithm to maintain the device latency at a predictable 
stable value, and then uses run-time statistics of both workloads and system collected by 
distributed hosts as parameters in Little’s law-based equation to find the relationship 
between queuing delay and resource needs. Evaluation of DRG shows that it is able to 
provide response-time guarantees to the concurrent workloads sharing the same back-end 
storage array. As future work we are trying to integrate throughput guarantee to provide a 
complete I/O resource allocation framework.  
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