Generalized (1,Θ)-Derivations of Noncommutative Prime Rings

Mehsin Jabel Atteya* and Dalal Ibraheem Rasen

Department of Mathematics, College of Education, Al-Mustansiriyah University, Iraq

Abstract: In the present paper, we study when a noncommutative prime ring and semiprime ring R admitting a generalized (1,Θ)-derivation F satisfying any one of the properties: (i) $F(x)F(y) + xy \in Z(R)$ for all $x,y \in I$. (ii) $F(x)F(y) + yx \in Z(R)$ for all $x,y \in I$. (iii) $F(xy) - x\alpha y \in Z(R)$ for all $x,y \in I$.

Keywords: Derivations, (Φ,Θ)-derivations, Generalized derivations, Generalized (Φ,Θ)-derivations, Prime ring, Commuting mapping

1 Introduction

Over last few decades, several authors have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R. The first result in this direction is due to Posner [1] who proved that if R is a prime ring and D a nonzero derivation on R such that $[D(x),x] \in Z(R)$ for all $x \in R$, then R is commutative. In [2] M.N Daif, proved that, let R be a semiprime ring and d a derivation of R with $d^2 \neq 0$. If $[d(x),d(y)] = 0$ for all $x,y \in R$, then R contains a non-zero central ideal. H.E.Bell and W.S.Martindal III [3] proved that the center of semiprime ring contains no non-zero nilpotent elements. M.N.Daif and H.E.Bell [4] proved that, let R be a semiprime ring admitting a derivation d for which either $xy + d(xy) = yx + d(yx)$ for all $x,y \in R$ or $xy - d(xy) = yx - d(yx)$ for all $x,y \in R$ then R is commutative. V.DeFilippis [5] proved that, when R be a prime ring and let d a non-zero derivation of R, $U \neq 0$ a two-sided ideal of R, such that $d([x,y]) = [x,y]$ for all $x,y \in U$. Then R is commutative. A.H.Majeed and Mehsin Jabel [6], then gave some results as, let R be a 2-torsion free semiprime ring and U a non-zero ideal of R, R admitting a non-zero derivation d satisfying $([d(x),d(y)]) = [x,y]$ for all $x,y \in U$. If d acts as a homomorphism, then R contains a non-zero central ideal. Mehsin Jabel [7] proved, let R be a semiprime ring and U be a non-zero ideal of R. If R admits a generalized derivation D associated with a nonzero derivation d such that $D(xy) = xy \in Z(R)$ for all $x,y \in U$ then R contains a non-zero central ideal.L.Oukhtite and S.Salhi [8] proved, let R be a 2-torsion free σ-prime ring and let d be a non-zero derivation. If $[d(x),x] \in Z(R)$ for all $x \in R$, then R is commutative, where if a prime ring R has an involution σ, then R is said to be σ-prime if $aRb = aR\sigma(b) = 0$ implies $a = 0$ or $b = 0$. Obviously, every prime ring equipped with an involution σ is σ-prime, the converse need not be true in general. M.A. Chaudhry and Allah-Bakhsh Thaheem [9] proved, let α, β be epimorphisms of a semiprime ring R such that β is centralizing. If d is a commuting (α, β)-derivation of R, then $[x,y]d(u) = 0 = d(u)[x,y]$ for all $x,y,u \in R$. In particular, d maps R into its center, where let α, β be mappings of R into itself. An additive mapping d of R into itself is called an (α, β)-derivation if $d(xy) = \alpha(x)(y) + d(x)\beta(y)$ for all $x,y \in R$. A number of authors have studied the commutativity theorems in prime and semiprime rings admitting derivation and generalized derivation the notion of a generalized derivation of a ring was introduced by Breˇsar [10] and Hvala [11]. They have studied some properties of such derivations. An additive mapping g of R into itself is called a generalized derivation of R, with associated derivation δ, if there is a derivation δ of R such that $g(xy) = g(x)y + x\delta(y)$ for all $x,y \in R$. Chang [12] introduced the notion of a generalized (α, β)-derivation of a ring R and investigated some properties of such derivations. Let α, β be mappings of R into itself. An additive mapping g of R into itself is called a generalized (α, β)-derivation of R, with associated (α, β)-derivation δ, if there exists an (α, β)-derivation δ.

* Corresponding author e-mail: mehsinatteya@yahoo.com, dalalresan@yahoo.com
δ of R such that g(xy) = g(x)α(y) + β(x)δ(y) for all x,y ∈ R. Obviously this notion covers the notion of a generalized derivation (in case α = β = 1), notion of a derivation (in case g = δ, α = β = 1), notion of a left centralizer (in case δ = 0, α = 1), notion of (α,β)-derivation (in case g = δ) and the notion of left α-centralizer (in case δ = 0). Thus it is interesting to investigate properties of this general notion. Recently, Mehsin Jabel [13] proved some results concerning generalized derivations on prime and semiprime rings. In this paper we shall study and investigate some results concerning a generalized (1,Θ) -derivation on noncommutative prime ring R . where I is an identity automorphism of R , we give some results about that.

2 Preliminaries

Let R be an associative ring with identity and center Z(R). A ring R is said to be prime (resp.semiprime) if aRb = 0 implies that either a = 0 or b = 0 (resp.aRa = 0 implies that a = 0). A prime ring is semiprime but the converse is not true in general. For any x,y ∈ R we shall write [x,y] = xy − yx and xoy = xy + yx. An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) for all x,y ∈ R, and is said to be n-centralizing on U (resp.n-commuting on U), if [xn,d(x)] ∈ Z(R) holds for all x ∈ U (resp.[x,n,d(x)] = 0 holds for all x ∈ U, where n is a positive integer. Also, an additive mapping d : R → R is called a left (right) centralizer if d(xy) = d(x)y(xd(y)) for all x,y ∈ R. Let Φ, Θ be endomorphisms of R. An additive mapping d : R → R is called a (Φ,Θ)-derivation if d(xy) = d(x)Φ(y) + Θ(x)d(y) for all x,y ∈ R. An additive mapping F : R → R is called a generalized (Φ,Θ)-derivation on R if there exists a (Φ,Θ)-derivation d : R → R such that F(xy) = F(x)Φ(y) + Θ(x)d(y) for all x,y ∈ R. We shall call a generalized (Φ,1)-derivation a generalized Φ-derivation, where 1 is the identity automorphism of R. Similarly a generalized (1,Θ)-derivation will be called a generalized Θ-derivation. The following lemmas are necessary for this paper.

Lemma 2.1:[14:Lemma3.1] Let R be a semiprime ring and a R some fixed element. If a[x,y] = 0 for all x,y ∈ R, then there exists an ideal U of R such that a ∈ U ⊂ Z(R) holds.

Lemma 2.2:[15, Lemma3] If a prime ring R contains a nonzero commutative right ideal I, then R is commutative.

3 The main results

Theorem 3.1: Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose that Θ is an automorphism of R. If R admits a generalized Θ-derivation F with associated Θ-derivation d such that F(xy) − xy ∈ Z(R) for all x,y ∈ I, then F is commuting on I.

Proof: By assumption, we have

\[F(xy) − xy ∈ Z(R) \]

for all x,y ∈ I. This can be written as F(xy) + Θ(x)d(y) − xy ∈ Z(R). Replacing y by yz, we obtain

\[F(xy) + Θ(x)d(y)z + Θ(x)y(Θ(y)d(z)) = 0 \]

for all x,y,z ∈ I. Thus, in particular

\[[(F(xy) + Θ(x)d(y)z + Θ(x)y(Θ(y)d(z)), z) = 0 \]

for all x,y,z ∈ I. Using (3.1) and (3.2), we get

\[Θ(x)(Θ(y)d(z), z) = 0 \]

for all x,y,z ∈ I. Replacing x by rx in the above expression, we obtain

\[Θ(x)(Θ(y)d(z), z) = 0 \]

for all x,y,z ∈ I. Then replace y by ty, to get

\[Θ(x)(Θ(y)d(z), z) = 0 \]

for all x,y,z ∈ I. Since Θ is an automorphism of R, then

\[Θ(x)(Θ(y)d(z), z) = 0 \]

for all x,y,z ∈ I. Thus, the primeness of R yields that for each z ∈ I, either Θ(x), Θ(y) = 0 or Θ(y)d(z) = 0. Let

\[I_1 = \{ z ∈ I | Θ(x), Θ(y) = 0 \} \]

and

\[I_2 = \{ z ∈ I | Θ(y)d(z) = 0 \} \]

for all x,y,z ∈ I. Then I_1 and I_2 are two additive subgroups of Θ whose union is I. Therefore either I_1 or I_2 is I. If I_2 = I then Θ(x) = 0 for all x,y,z ∈ I. Replace y by [y,q] to get Θ(x)[Θ(y), q]d(z) = 0 for all x,y,z ∈ I. Now replacing q by sq to get

\[Θ(x)[Θ(y), q]d(z) = 0 \]

for all x,y,z ∈ I. Since Θ is an automorphism of R, then

\[Θ(x)[Θ(y), q]d(z) = 0 \]

for all x,y,z ∈ I, s ∈ R. But according to our hypothesis R is noncommutative. So, in the our hand d(z) = 0 for all z ∈ I, this implies that d = 0 on R. Then from the main relation, we have F(x) − x ∈ Z(R), which leads to F(x), v = [x,v] = 0 for all x,y,z ∈ I. Replacing v and y by x, gives F(x,v) = 0 for all x,y ∈ I. Thus F is commuting on I, hence we get the required result. One can note that if R admits a generalized Θ-derivation F satisfying F(xy) + xy ∈ Z(R) for all x,y ∈ I, then the generalized Θ-derivation (−F) also satisfies (−F)(xy) = xy ∈ Z(R) for all x,y ∈ I. Hence in view of Theorem 3.1 we conclude the following.

Corollary 3.2: Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose Θ is an automorphism of R. If R admits a generalized Θ-derivation F with associated Θ-derivation d such that F(xy) + xy ∈ Z(R) for all x,y ∈ I, then F is commuting on I.

Theorem 3.3: Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose Θ is an automorphism of R. If R admits a generalized Θ-derivation F with associated Θ-derivation d such that F(xy) + xy ∈ Z(R) for all x,y ∈ I, then F is commuting on I.
R. If F is a generalized Θ-derivation with associated Θ-derivation d such that $F(xy) - yx \in Z(R)$ for all $x, y \in I$, then

$$ (i) d(R) = 0, $$

(1)

(ii) F is left centralizer of I.

Proof: (i) For any $x, y \in I$, we have $F(xy) - yx \in Z(R)$. This can be written as $F(x)y + \Theta(x)d(y) - yx \in Z(R)$ for all $x, y \in I$. Substituting xy for x, we obtain

$$ F(x)yy + \Theta(x)d(y)y + \Theta(x)\Theta(y)d(y) - yxy \in Z(R), $$

(3.4)

for all $x, y \in I$. In particular

$$ [(F(x)y + \Theta(x)d(y))\Theta(y)y + \Theta(x)\Theta(y)d(y), y] = 0, $$

(3.5)

for all $x, y \in I$. An application of (3.4) and (3.5) gives

$$ \Theta(x)\Theta(y)d(y), y = 0 $$

(2)

for all $x, y \in I$, i.e.

$$ \Theta(x)\Theta(y)[d(y), y] + \Theta(x)[\Theta(y), y]d(y) + [\Theta(x), y]\Theta(y)d(y) = 0 $$

(3)

for all $x, y \in I$. Replacing x by z in (3.6) and using (3.6), we find that

$$ [\Theta(z), y]\Theta(x)\Theta(y)d(y) = 0, $$

(3.7)

for all $x, y, z \in I$. Replacing x by x in (3.7), we get

$$ [\Theta(z), y]\Theta(x)\Theta(r)\Theta(y)d(y) = 0 $$

for all $x, y, z \in I$, i.e. $\Theta(z), y]\Theta(x)\Theta(r)\Theta(y)d(y) = 0$ for all $x, y, z \in I$. Thus the primeness of R gives that for each $r \in I$, either

$$ [\Theta(z), y]\Theta(x) = 0 $$

for all $y \in I$. The sets $y \in I$ for which these two properties hold, are additive subgroups of I whose union is I. Then either

$$ [\Theta(z), y]\Theta(x) = 0 $$

or $\Theta(y)d(y) = 0$, for all $x, y, z \in I$. If $\Theta(y)d(y) = 0$, for all $y \in I$, then linearity gives

$$ \Theta(x)d(y) + \Theta(y)d(x) = 0 $$

(3.8)

for all $x, y \in I$. Replace y by xy to get

$$ \Theta(x)d(z) + \Theta(x)\Theta(z)d(y) + \Theta(z)\Theta(y)d(x) = 0 $$

(3.9)

for all $x, y \in I$. Comparing (3.8) and (3.9), we get

$$ \Theta(x)d(z) + \Theta(x)\Theta(z)d(y) - \Theta(z)\Theta(x)d(y) = 0 $$

for all $x, y \in I$. That is,

$$ \Theta(x)d(z)yr + [\Theta(x), \Theta(z)]d(y)r + [\Theta(x), \Theta(z)]\Theta(y)d(r) = 0 $$

(3.10)

for all $x, y, z \in I$, $r \in R$. An application of (3.9) in (3.10) yields that

$$ \Theta(x), \Theta(z)[\Theta(y)d(r) = 0 $$

(3.11)

for all $x, y, z \in I$, $r \in R$.

Now replace y by y to get

$$ [\Theta(x), \Theta(z)]\Theta(y)sd(r) = 0 $$

for all $x, y, z \in I$, $r, s \in R$, i.e. $[\Theta(x), \Theta(z)]RIRd(r) = 0$ for all $x, z \in I$, $r \in R$. Thus the primeness of R with noncommutative, lead to $RIRd(r) = 0$ for all $r \in R$. By using the primeness of R and I is nonzero ideal, we obtain $d(r) = 0$ for all $r \in R$. Thus, we have $d(R) = 0$. (ii) Since F is a generalized Θ-derivation with associated Θ-derivation d, then by using the fact Θ is an automorphism of R and result in (i), we get the required result.

Arguing as above we can prove the following.

Theorem 3.4: Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose Θ is an automorphism of R. If F is a generalized Θ-derivation with associated Θ-derivation d such that $F(xy) + yx \in Z(R)$ for all $x, y \in I$, then

$$ (ii) d(R) = 0 $$

(ii) F is left centralizer of I.

Theorem 3.5:

Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose Θ is an automorphism of R. If R admits a generalized Θ-derivation F with associated nonzero Θ-derivation d such that $F(xy) - yx \in Z(R)$ for all $x, y \in I$, then either $d(R) = 0$ or F is commuting of I.

Proof: By assumption we have $F(xy) - yx \in Z(R)$ for all $x, y \in I$. Replacing y by yr, we find that $F(xy) - yx + F(xy)d(r) \in Z(R)$ for all $x, y \in I$, and then either $d(R) = 0$ or F is commuting of I.

Thus the primeness of R with noncommutative, lead to $RIRd(r) = 0$ for all $r \in R$. By using the primeness of R and I is nonzero ideal, we obtain $d(r) = 0$ for all $r \in R$. Thus, we have $d(R) = 0$. (ii) Since F is a generalized Θ-derivation with associated Θ-derivation d, then by using the fact Θ is an automorphism of R and result in (i), we get the required result.

Arguing as above we can prove the following.
Theorem 3.6: Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose Θ is an automorphism of R. If R admits a generalized Θ-derivation F with associated Θ-derivation d such that $F(xy) + \Theta(xy)d(y) - \Theta(xy)y\Theta(x)d(z) - xy\Theta(xy)z \in Z(R)$ for all $x, y \in I$, then R contains nonzero central ideal.

Proof: By assumption, we have $F(xy) - xoy \in Z(R)$ for all $x, y \in I$. This can be written as $F(xy) + \Theta(xy)d(y) - \Theta(xy)y\Theta(x)d(z) - xy\Theta(xy)z \in Z(R)$. Replacing y by $y z$, we obtain

$$F(xy)yz + \Theta(xy)d(y)z + \Theta(xy)\Theta(y)d(z) - xoyz \in Z(R),$$

for all $x, y, z \in I$. Replacing x by xy in (3.16), we obtain

$$F(xy)yz + \Theta(xy)d(y)z + \Theta(xy)\Theta(y)d(z) - xoyz \in Z(R),$$

for all $x, y, z \in I$. Then from (3.17), we get

$$(F(xy) - xoy)yz + \Theta(xy)d(y)z + \Theta(xy)\Theta(y)d(z) - xy\Theta(xy)z \in Z(R),$$

for all $x, y, z \in I$. Since $F(xy) - xoy \in Z(R)$ for all $x, y \in I$, then from above equation (3.18), we arrived at

$$yz(F(xy) - xoy) + xz + \Theta(xy)d(y)z + \Theta(xy)\Theta(y)d(z) - xy\Theta(xy)z \in Z(R),$$

for all $x, y, z \in I$. Subtracting (3.19) and (3.18), we obtain

$$|F(xy) - xoy|, |x|z = 0 \text{ for all } x, y, z \in I.$$ Then

$$F(xy) = xoy \text{ for all } x, y, z \in I.$$ If $xy + \Theta(xy)d(y)z + \Theta(xy)\Theta(y)d(z) - xy\Theta(xy)z \in Z(R),$$

for all $x, y, z \in I$. The relation $F(xy) - xoy \in Z(R)$ for all $x, y \in I$, after replacing r and y by x, we get, $F(x^2), x^2 = 0$ for all $x \in I$. Replacing x by x^2 in above equation (3.20), with using the relation $F(x^2), x^2 = 0$ for all $x \in I$, we obtain

$$x^2[d(x^2), x^2] = 0$$

for all $x \in I$.

Right-multiplying (3.21) by $[s, t]$, we arrived to

$$x^2[d(x^2), x^4][s, t] = 0 \text{ for all } x \in I, s, t \in R.$$ We set $a = x^2[d(x^2), x^4], a \in R$; then $a[s, t] = 0$ for all $y, z \in R$. Apply Lemma 2.1, we get R contains nonzero central ideal. This meaning, we get the required result. By using the result in Theorem (3.7) with apply Lemma (2.2), we can prove the following theorem.

Theorem 3.8: Let R be a noncommutative prime ring and I a nonzero ideal of R. Suppose that Θ is an automorphism of R. If R admits a generalized Θ-derivation F with associated Θ-derivation d such that $F(xy) - xoy \in Z(R)$ for all $x, y \in I$, then R is commutative.

Acknowledgments

The author would like to thank the referee for her/his useful comments.

References

Mehsin Jabel Atteya
Assistant Professor of Mathematics received the MSc degree in Mathematics. His research interests are in the areas of algebra (non-commutative rings). He has published book and research articles in reputed international journals of mathematical sciences. He is referee and editor of mathematical journals. He has many certificates of appreciation.

Dalal Ibraheem Rasen
Assistant Professor of Mathematics received the MSc degree in Mathematics. His research interests are in the areas of Topology and Algebra (non-commutative rings). She has published research articles in reputed international journals of mathematical sciences. She is referee of mathematical journals. She has many certificates of appreciation.