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Abstract: Scalability and performance implications of semantic net visualization techniques are open research challenges. This paper
focuses on developing a visualization technique that mitigates these challenges. We present a novel approach that exploits the underlying
concept of power-law degree distribution as many realistic semantic nets seems to possess a power law degree distribution and present
a small world phenomenon. The core concept is to partition the node set of a graph into power and non-power nodes and to apply
a modified force-directed method that emphasizes the power nodes which results in establishing local neighborhood clusters among
power nodes. We also made refinements in conventional force-directed method by tuning the temperature cooling mechanism in order
to resolve ‘local-minima’ problem. To avoid cluttered view, we appliedsemantic filtrationon nodes, ensuring zero loss of semantics.
Results show that our technique handles very large scale semantic nets witha substantial performance improvement while producing
aesthetically pleasant layouts. A visualization tool,NavigOWL, is developed by using this technique which has been ported as a plug-in
for Protege, a famous ontology editor.

Keywords: Ontology visualization, semantic net visualization, power law graphs, scalable directed graphs, force-directed graphs.

1 Introduction

Due to recent advancements in semantic web, the web of
data is continuously growing. One evidence isLinked
Data initiative1, which has resulted into billions of triples.
Similarly, several large ontology structures have evolved
over the last few years. There is a growing need of
effective visualization methods that could be adopted for
an effective representation of ontologies in order to fully
understand the structures.

Literature indicates that several research initiatives
have targeted 2D and 3D ontology visualization
techniques [16,7,3,29,22,14,6,8,9,23,17,10,31,11,13,
19]. Several tools exist to visualize the semantic nets [20].
Different layout techniques have been implemented in
these tools, but each technique has shortcomings due to
which either the structure of ontology becomes
ambiguous to the user or the view losses the semantics.
As the ontology size increases, several issues such as

1 http://linkeddata.org

node cluttering, edge crossings, local minima problem,
angular resolution problem, computational inefficiency,
shape/view distortion, ineffective rendering techniques,
and asymmetrical drawings, are observed. Hence an
effective and scalable visualization technique is needed,
that should clearly depict the structure of complete
ontology while maintaining persistent aesthetic
constraints. We present the optimized, scalable, and
performance oriented directed graph layout technique to
visualize the large-scale ontology graph by maintaining
the aesthetics aspects of visualization as discussed in [25].

We exploited the underlying concept of power-law
degree distribution topology pertaining to the property
that a small proportion of nodes have a high degree
(power nodes) while the vast majority of nodes have a
low degree (non-power nodes). Thus, in a realistic
network, there exists few power-nodes that needs to be
emphasized more as compared to other non-power nodes.
The basic idea is to partition all the nodes/vertices based
upon power-law degree distribution and then to apply our
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optimized and modified force-directed layout algorithm
which manages scalability and performance implications.

We begin by summarizing previous approaches that
have been applied to graph layout and their aesthetic
measures along with review of various tools of semantic
net visualizations in Section2. Section3 discusses the
detailed design of our novel graph layout technique along
with refinements. In Section4 we discuss our developed
visualization tool,NavigOWL, and plug-in for Protege. In
Section5, we demonstrate how our algorithm achieves
substantially better performance and mitigates scalability
challenge by comparing it to the existing approaches
while visualizing large scale semantic nets.

2 Related Work

In this section we discuss the generally accepted aesthetic
criteria for graph layouts and describe various graph
drawing layout techniques that have been implemented so
far. Further, we discuss few existing ontology
visualization tools.

2.1 Graph Drawing Aesthetics and Layouts

There are certain graph drawing constraints that a
visualization must follow. These constraints are applied
on a graph in order to get better understanding and
structure of graph. These constraints are aesthetically
measured. We are concerned with an optimized and
scalable layout technique that posses generally accepted
aesthetic criteria [25].

Moreover, visualization of semantic net gets complex
due to its structure or role-relations hierarchy defined in
an ontology. One node can be linked to many other nodes,
so the user is hardly able to understand the structure of
semantic net. In order to create clear mental map for the
user, a layout has to be applied to the visualization.
Following are few existing layout techniques that are
discussed in detail.

The most popular layout algorithms are based on
force-directed or spring-embedded methods [8,10,9,13,
29,4,17]. Eades designed the earliest spring-embedded
model for graph drawing [8]. The basic idea was to
embed a graph by replacing the vertices by steel rings and
replace each edge with a spring to form a mechanical
system. The vertices are placed in some initial layout and
then released so that the spring forces on the rings move
the system to a minimal energy state. The attractive force
is calculated between neighbors with complexity of
Θ (|E|) whereas the repulsive force is calculated between
every pair of vertices with complexity ofΘ

(∣

∣V2
∣

∣

)

. This
technique generates aesthetically pleasing layouts.
However, the repulsive force complexity poses serious
computational issues for large graphs, hence it has to be
limited to few hundred nodes. Moreover, this technique

highlights certain shortcomings likeoccluding vertices
with edges, edge-crossings, and angular resolution
problemi.e. the angle between incident edges may be too
small, and it may get smaller in case of larger graphs.

Another variant by Fruchterman and Reingold [13]
simplified forces formulae and made several refinements
by using cooling scheduleto limit nodes maximum
displacement. Repulsive force is still being calculated
between every node in a graph, yielding to a complexity
of Θ

(∣

∣V2
∣

∣

)

.
Similarly, a modified spring layout was presented by

Huang et al. [17], in which they used Online
Force-Directed Animated Visualization(OFDAV)
technique for assisting web-navigation. This technique
describes, which most of existing visualization systems
have problems presenting, huge graphs like fish-eye [26],
hyperbolic browser, cone trees [23]. The main issue of
this technique iszero angular resolution problemi.e. the
smallest angle between two neighboring edges incident
on common vertex. Also, no role- relation hierarchy and
context details are observed in graphs and this technique
also does not resolve issue of overlapping edges of
common vertex.

Later Lin and Yen also proposed a variant of
Eades [10]. As many conventional force-directed methods
are based on either vertex-vertex repulsion [8,13] or
vertex-edge repulsion [17,29], therefore this approach is
an enhancement which is based uponedge-edge repulsion
to draw graphs. Although this technique resolved problem
of minimum angular resolution[12], but it was not
scalable and results show the drawings of smaller graphs
with upto few dozen nodes. Further, this technique does
not always guarantee to produce nice symmetrical
drawing and poseslocal minima problemwhere forces
get too week to spread graph. The main issue of this
algorithm is its complexity which is in square. i.e.

Θ
(

|N|2+ |E|
)

. Hence performance of algorithm is worst

in case of large scale ontologies.
From the discussion it is evident that despite various

modifications and implementations, the force-directed
algorithm is not scalable and gives worst performance in
case of large ontologies. There is a need to optimize it for
managing scalability challenge and to preserve aesthetic
visualization.

2.2 Graph Clustering Algorithms

Apart from traditional force directed algorithms,
significant research work has been done on clustering of
the graphs [30,9,1,15,4,24,27,32]. Cluster graph is
another important concept to visualize semantic nets. The
clusters are built for the aesthetic view of graph structure.
Few implementations, by tuning the force directed
algorithms with clustering techniques, are given in [4,9,
27]. In this section, we review various approaches being
adopted to build the graph clusters.
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Clusters or groups are investivated for biological and
social community structures by Girvan [15] be exploiting
centrality in order to find community boundaries. The
worst case complexity of algorithm though isΘ(m2n)
wherem represents the number of edges andn as number
of vertices. This technique was not highly scalable and
supported few thousands nodes. Moreover, it is
algorithmically complex as it operates on edges. In case
of sparse graphs, its complexity isΘ(n3), which is
inefficient.

Another variant of clustering approach was presented
by Yuruk et al. [32] in which finding the hierarchical
structure of clusters without any input parameters was
discussed. They presented, ahierarchical structural
clustering algorithm for networks. Although, this
approach is considered as highly effective in finding
hierarchical clusters in social networks, but the
implementations showed small scale graphs, thus this
approach is also not highly scalable. Algorithm is not
efficiently applicable in semantic networks, as using only
structural similarity is not sufficient for building clusters.
Results also showed node cluttering and edge-overlapping
issues.

Wallner also described hierarchical cluster graphs that
impose higher level of granularity controlled by
users [27]. Although cluster center detection technique is
efficient and controlled by user-defined threshold,
however, this technique has certain shortcomings.
Algorithm’s complexity is very high due to cluster build
phase and further Fruchterman and Reingold
force-directed algorithm [13] is applied, which has high
complexity. Because of breakdown condition problem, in
some cases, algorithm aborts too early, hence shows long
distances between meta-nodes. Finally, no computation
time and scalability aspects are mentioned in literature.

2.3 Power Law Graphs

Several research efforts have targeted the power-law
graphs and their combinations with the traditional
force-directed algorithms [16] by exploiting the
underlying structure of power-law network
distribution [6,2,5]. In this section we review the research
work related to power-law graphs.

Chan and colleagues presented a novel algorithm of
Out Degree Layoutfor the visualization of large scale
network topologies [6]. They divided the whole network
into multiple layers based upon the Out Degree (the
number of edges coming out of the node). They adopted
thePower Law topology, which is commonly being found
in topology networks.A power-law topology has the
property that a small proportion of nodes have a high
out-degree i.e., have many connections to other nodes,
while the vast majority of nodes have a low out-degree,
i.e., have connections to few nodes[6]. The methodology
adopted is to layout the nodes with highest out-degree
first, then to layout the nodes with smaller out-degrees

and so on. They partitioned the graph into multiple layers
based upon out-degrees. The graph layout is being adjust
by using Fruchterman-Reingold (FR) Force Directed
Algorithm [13]. Complexity of FR algorithm is

Θ
(

|N|2+ |E|
)

, but the overall complexity of their

algorithm is Θ
(

∑ |Nk|2+∑ |Ek|
)

, where Nk and Ek

presents the No. of nodes and edges in layerLk
respectively. They tested the BGP networks of up to 7,000
nodes and compared the results with traditional
algorithms (including [10,13,28]) and achieved
significant improvement in aesthetic layouts, though the
view gets cluttered if the structure of network is complex.

Focus-based filtering and clustering technique in
power-law network graphs provides better layout as
compared to classical filtering technique as it is based
upon power-law distribution [5]. Dense graphs can be
filtered into clear view. However, scalability remains an
open challenge as this technique is only demonstrated for
small graph of 1,511 nodes and 7,902 co-authoring links.
Moreover, it is computationally inefficient as firstly
cluster cores are extracted and then layout is applied.
Also, changing user-focus in this technique, gives
cluttered view in few silhouettes.

In power-law topology a small portion of nodes have
many connections to other nodes which means that in a
semantic net, core nodes have the maximum degree and
in the whole graph, there exists very few core-nodes.
Similarly, as the degree of the nodes increase, the
frequency behavior of the degree decreases, which is the
basic property of mathematical power-law. It has been
proven to be effective by various approaches that the
interaction networks (Graphs containing actors and
relationships among actors) or semantic nets exhibit the
power-law behavior. Thus we can follow the power-law
property in ontology visualization as ontology also
exhibit power-law property, as the degree of nodes
increases, its frequency decreases (i.e frequency of core
nodes is very low) [5]. Our technique also exploit the
underlying concept of power-law degree distribution, that
we discuss in Section3.

2.4 Ontology Visualization

Various ontology visualization tools are in use including
Cytoscape, Giny, graphViz, HyperGraph, rdfGravity,
IsaViz, Jambalaya, Owl2Prefuse, and SocNetV [3,19].
Most of these tools either lack in visualizing role-relation
hierarchies of complete ontology or in aspect of drawing
layouts. Figure1 represents the visualization ofAmino
Acid Ontologyof 1,484 triples, the drawing layout is fine
but it misses role-relation hierarchy and simply represents
classes along with their instances. Moreover, the
animation doesn’t stops in layout process as graph
continuously adjusts itself which makes it harder for user
to preserve mental map.
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Fig. 1: Owl2Prefuse: view of classes and their instances, missing
role-relation hierarchy, and other constructs in AminoAcid
ontology graph

We also visualized sameAmino Acid ontology to
compare its graph in another popular ontology
visualization tool named asSocNetV. The tool is enriched
with various graph properties and used mostly to
visualize and exploit the properties of social networks.
The tool is computationally not very efficient, layouts are
ambiguous, and lacks role-relation hierarchy. Figure2
represents snapshot of amino-acid ontology after applying
force-directed layout on, it shows ambiguous view with
lack of details about role-relations.

Fig. 2: SocNetV: Force-directed layout applied over AminoAcid
ontology, cluttered view with node-overlaps, missing role-
relations details.

rdfGravity is another popular ontology visualization
tool. It represents the ontology graph with complete
role-relation hierarchy and in full context along with
literals and other constructs with filtering features.
Unfortunately, it does not support any graph drawing
layout so it gives holistic view after filtering but gives
cluttered view for complete ontology graph. Figure3
represents graph ofTransOntology-Bhakti, this ontology
graph consists of only 195 triples yet we can observe
cluttered view and node-overlap in asymmetrical view of
ontology graph. Its also not scalable to support large
ontology graphs as the view becomes ambiguous and
unstructured.

Fig. 3: rdfGravity: Cluttered view with node-overlap,
asymmetrical drawing on small TransOntology-Bhakti graph.

Current ontology visualization tools tend to avoid
scalability issues by limiting the number of visible nodes
on graph canvas to about 10,000.OntSpherereports
occlusion and label-overlap problems for little over
10,000 nodes. Another problem in visualization tools over
large scale ontologies is node labels display, similarly
visualization of relation links is also problematic.
Figure 4 shows snapshot ofOntoGraf, where we can
observe cluttered view and node-overlap over ontology of
just 195 triples.

Similarly, use ofTGVizTabandOntoVizis not possible
when relation links are visible even for an ontology of less
than 300 nodes [19]. In Jambalaya, users cannot exploit
the relation links. [18] categorized the existing ontology
visualization tools that support up to 10,000 nodes. Our
main challenge is to cope with scalability issue as large
scale ontologies contains million of triples.

Summarizing the discussion on existing visualization
tools, following shortcomings are observed which needs

© 2014 NSP
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Fig. 4: OntoGraf spring layout: Cluttered view and node-overlap

to be covered in order to focus on ontology visualization
domain.

–Many visualization tools support graphs up to few
hundred nodes only like rdfGravity, Jambalaya,
GraphViz.

–In large scale graphs these tools either take significant
time in computation and/or produce ambiguous
layouts as being observed in rdfGravity.

–Node cluttering and edge overlap issues are also
present as in Prefuse, graphViz, and OntGraf.

–Tools are not enriched enough for describing
role-relation hierarchy, like in OntGraf, a Protege
plugin, it only visualizes class-hierarchy.

–Force-directed and spring layouts are implemented in
several visualization tools, however, local-minima
problem has been found in case of large scale
ontologies as observed inSocNetV.

3 Design and Methodology

This section covers the design of our proposed ontology
algorithm along with sub-functions detail. Complexity of
the algorithm has been discussed and compared with other
approaches as well.

3.1 Power Law Based Ontology Visualization
Algorithm

The proposed layout algorithm exhibits the underlying
structure of mathematical power-law property along with
existing force-directed algorithm. The outline of core
algorithm is as follows:

1.Sort nodes as per degrees and convert semantic net to
bipartite graph of Power and Non Power nodes.

2.While temperature6= 0
–Calculate attraction force among Power-Nodes and
their neighboring nodes.

–Calculate repulsive force among Power-Nodes.
–Calculate attraction force among Non-power
Nodes and their neighboring Nodes.

–Calculate repulsive force among Non-power
Nodes.

–Calculate nodes positions and update the (x; y)
coordinates of each node.

–Reducetemperatureat each iteration.

The core algorithm contains various methods which
are discussed here in detail.

3.1.1 NodeDegreeMapping Method

This method is central to the proposed power law based
algorithm. The basic idea of this method is to partition the
nodes of a graph into power and non-power nodes based
upon their degree distribution. We also tuned this method
to apply variant node-scale on graph canvas based upon
degree distribution (i.e the node with maximum scale on
canvas will be the node with maximum degree). By doing
so, visualization can provide aesthetic aspect by displaying
nodes of variant scale on graph canvas. We defined scaling
factor of node by following equation.

σi =

[

di

∆ (G)

]

×κ (1)

where,

σi = scale of nodei.

di = degree of nodei.

∆ (G) = maximum degree of graphG.

andσi ≤ κ ;whereκ is a defined constant.

The outline of this method is as follows:

1.Sort node↔ degree distribution of whole graph.
2.Extract power nodes, i.e. top 20% nodes from the

sorted distribution.
3.Extract non power nodes, i.e. remaining 80% nodes.
4.Calculate each node’s scale relative to its degree as per

Equation1.

3.1.2 AttractionForce Method

This method is based on the force-directed model. The
basic principle of this method is to bring together the
nodes which are connected by an edge, than acts like a
spring between two nodes. The aim is to bring all
neighboring nodes close to their power nodes, to build a
local cluster around power nodes. An attraction force is
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Algorithm 1: AttractionForce
Data: n−→ node;d−→ degree;

N−→ Nodes;E−→ Edges; k← StretchConstant;
Input : The graphG< N,V > and< n,d >−→ set

of node-degree pairs;
Description: Attraction force among connected nodes, by

updating their(x,y) coordinates to bring
them closer to each other.

1 begin
2 for i← 1 to |N| do
3 for j ← 1 to |Eni | do
4 n1← i andn2← Other end node ofn1

5 ∆x← n1x−n2x

6 ∆y← n1y−n2y

7 Length←√∆x×∆x+∆y×∆y

8 force← Length−k
k×(100)

9 dx← force×∆x

10 dy← force×∆y

11 n1x← n1x−dx

12 n1y← n1y−dy

13 n2x← n2x+dx

14 n2y← n2y+dy

15 end
16 end
17 end

computed based upon the distance between two
connected nodes. Our optimized approach is presented in
Algorithm 1.

The complexity of attraction force method in
force-directed model isΘ(E), whereE represents number
of edges in graph. In our power-law based approach its
complexity is reduced toΘ

(∣

∣Vp
∣

∣

∣

∣Ep
∣

∣

)

, where Vp
represents number of Power-Vertices andEp represents
the number of edges of power-vertices in a graph.
Moreover,|Vp| ≪ |V| and |Ep| ≪ |E|, i.e the complexity
is being reduced.

3.1.3 RepulsionForce Method

This method is based on the force-directed model. The
basic principle of this method is to move away the nodes
which are not connected by an edge. All non-connected
nodes are moved away from each other. A repulsive force
is computed based upon the distance between two
connected nodes. The optimized method is provided in
Algorithm 2.

The major pit fall of force-directed algorithm is the
complexity of repulsive force method which isΘ(E2),
where E represents number of edges in graph. In our
power-law based approached, we reduced its complexity

Algorithm 2: RepulsionForce

Data: n−→ node;d−→ degree;
N−→ Nodes;E−→ Edges ;
k−→ Repulsion Constant;
dx −→ distance co-efficient ofn1;
dy −→ distance co-efficient ofn2;R = Random Value;
λ −→ a constanct initially set to 700;
Input : < n,d >−→ nodes along their degrees;
Description: Repulsive force between non-connected

nodes, by updating their(x,y) coordinates to
move them away from each other.

1 begin
2 for i← 1 to N do
3 n1← i
4 for j ← i+1 to N do
5 n2← j dx = 0 anddy = 0

6 ∆x← n1 x − n2 x

7 ∆y← n1 y − n2 y

8 Length←√∆x×∆x+∆y×∆y

9 if Length equal to 0then ;
// Collision Detection

10

11 dx = R anddy = R

12 end
13 end
14 else ifLength < λ 2 then ; // Distance

Limit
15

16 dx← ∆x
Length anddy← ∆y

Length

17 end

18 force← (n1k×n2k)
80

19 n1x← n1x+dx ∗ force

20 n1y← n1y+dy ∗ force

21 n2x← n2x−dx ∗ force

22 n2y← n2y−dy ∗ force

23 end
24 end

to θ
(∣

∣Vp
2
∣

∣

)

, whereVp represents of power vertices and
|Vp| ≪ |V|.

3.1.4 UpdateNodesPosition Method

This method changes the node positions once they have
been processed by attraction and repulsion forces and
updates each node’s(x,y) coordinates based on node’s
temperature and distance co-efficients.
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3.1.5 CoolDown Method

This method iteratively reduces the temperature (or heat).
As Temperature∝ SpringForcesor we can say at each
iteration the heat is being cooled down.

One can easily build such a method through
synchronized iterations. We have tuned algorithm
temperature cooling mechanism such that while operating
on Power-Nodes temperature slowly cools down, as these
are core nodes and need maximum temperature through
which maximum force value can be exerted upon these
nodes. On the other hand, when algorithm calculates
forces on Non-Power nodes, temperature falls quickly by
rapid cooling as it is least important to exert equal amount
of force on non-power nodes as compared to
power-nodes.

Logically, power-nodes need high temperature which
is slowly decreasing and non-Power should need
relatively low temperature which is rapidly decreasing,
because of their least importance. By tuning this cooling
mechanism, we achieved significant improvement in
layout (tightly coupled cluster built around power-nodes)
and performance as temperature rapidly decreases on
power-nodes thus saving iterations and execution time.

3.2 Time Complexity

The major pitfall in the traditional force-directed
algorithm is its complexity which isΘ(

∣

∣V2
∣

∣+ |E|), where
V are Vertices andE are Edges. In our algorithm the time
complexity for each function is as under:

–Attractive Force⇒Θ(
∣

∣Vp
∣

∣

∣

∣Ep
∣

∣)

–Repulsive Force⇒Θ(
∣

∣Vp
2
∣

∣)

–Forces Complexity⇒Θ(
∣

∣Vp
∣

∣ · (
∣

∣Vp
∣

∣+
∣

∣Ep
∣

∣))
–Vp→ Number of Power Nodes.
–Ep→Number of Edges connected to Power Nodes
–Moreover,Vp≪V andEp≪ E

Force complexity of our proposed power-law based
algorithm is significantly reduced as compare to
force-directed algorithm’s forces complexity. Moreover,
the complexity of each function is almost linear therefore
total complexity of power-law based algorithm is also
linear which indicates significant improvement in
complexity.

3.3 Refinements and Optimizations

In the previous section, we claimed that|Vp| ≪ |V| and
|Ep| ≪ |E|. We optimized our algorithm along with
performance tweaks due to which we are able to gain
significant performance as well as more aesthetic and
clear visualization of semantic net.

3.3.1 Semantic Based Filtration

It has been observed that in an ontology many concepts
are linked with model specific core nodes such as
rdf:Class. When an ontology is visualized, many edges
seem connected to the RDF and OWL specific core nodes.
By considering this fact we have applied the filtering
process on graph drawing canvas. Figure5 explains the
view-complexity over Amino Acid Ontology of 1,484
Triples which has been reduced due to filtration process.

Fig. 5: Semantic filtration (a) Unfiltered graph, (b) Filtered graph

We have filtered primitive constructs of RDF, RDFS,
OWL, and XML. Similarly, we also filtered the primitive
constructs related to predicates ofRDF, RDFS, OWL,
XML. Any built up edges due to this property are not
shown in graph like propertiesrdf:Domain, rdf:Range,
however, we do not loss the semantics of visualization by
retaining all the information in a tool-tip over nodes. The
Table1 explains the filtered number of nodes and edges
as compared to un-filtered.

Table 1: Filtration statistics on nodes and edges

Triples
Unfiltered Graph Filtered Graph

Nodes Edges Nodes Edges
1,515 474 1,515 246 1,245
5,527 3,045 5,527 1,738 3,467
7,330 3,090 7,330 1,052 2,149
10,893 5,937 10,893 3,446 6,830
16,229 8,697 16,629 5,097 10,250
47,003 34,291 47,003 11,767 23,490
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4 Implementation Details

We implemented the power-law based semantic net
visualization algorithm in a tool calledNavigOwl2. It is
developed in Java and for graph drawing we used
Piccolo3. Jena4 is used for the processing of semantic
models.

Fig. 6: Snapshot of NavigOwl.

The tool enriched with complete ontology
visualization contains whole role-relation hierarchy of
each concept (node) and has applied semantic based
filtration as we have discussed in Section3.3.1. This tool
supports RDF and OWL ontology files. The snapshot of
NavigOwl is given in Figure6. It supports many features
as listed below:

Fig. 7: NavigOwl visualization exhibiting labels of all graph
nodes.

–Loads RDF/OWL ontology file and configures its
graph by rendering nodes and edges based upon

2 http://klatif.seecs.nust.edu.pk/navigowl
3 A 2D graphics API http://www.piccolo2d.org
4 http://jena.apache.org

role-relations defined in ontology taxonomy. The
node-labels along with edge-relations is shown in
visualization in Figure7.

–Facilitates large-scale semantic nets a.k.a ontologies.
–It recongnizes various pre-configuredRDF/OWL node
types such asowl:Classand handles them differently
compared to rest of the nodes. This helps in separating
the core model specific nodes from the actual ontology
concepts.

–Supports fully scalable directed graphs. Visualizes
whole role relation hierarchy, defined in ontology.
Node’s tool-tip exhibits complete role relation
hierarchy as shown in Figure8.

–Zoomable user interface and handling mouse events
like pan, drag, mouse-Over, for nodes of a graph.

–Graph overview is also provided to show holistic view
of large scale graphs to traverse through whole graph.

–Tool facilitates user to apply various drawing layouts
techniques to produce appealing symmetric results of
whole graphs.

–Power-law based layout technique produces appealing
drawing based upon node-degree distribution, in order
to understand node’s importance.

–Node search feature is included which highlights the
searched node in whole of graph.

–Show / Hide labels of all nodes.
–Node cluttering and edges-overlapping is minimized
up to optimum level. However, as in case of large
semantic nets, where ontology possess rich
role-relation model structure, node-cluttering and
edge-overlapping cannot be overcome.

Graph coloring is very important feature used in most
of the visualization tools. In case of visualization for
large-scale semantic nets, which are enriched with many
roles and relationships and ontologies contain different
types of concepts, instances and roles among them. We
used a color-scheme inspired from Protege to remain
consistent. As in an ontology file, different types of
relations exist between concepts which are represented by
edge line in graph, keeping this concept in view, we have
implemented specific arrow shapes and strokes to
represent distinct type of edges for user-understandability.

Protege5 is a famous ontology editor. We have ported
NavigOwl in Protege as a tab-widget plugin where users
would be able to visualize the RDF / OWL ontology within
Protege6. Figure9 shows the snapshot of NavigOwl plugin
for Protege.

In Protege there are different view panels like
class-hierarchy, object-properties, data-type properties,
therefore we have integrated the NavigOwl drawing
canvas with Protege class-hierarchy panel. When user
selects a particular class node in Protege class-hierarchy
panel, that particular node is highlighted on drawing
canvas. This functionality helps users to identify selected
node.

5 http://protege.stanford.edu
6 http://protegewiki.stanford.edu/wiki/NavigOWL
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Fig. 8: NavigOwl visualization exhibiting role-relation model of
ontology.

Fig. 9: NavigOwl as plugin of Protege

5 Performance Evaluation

We tested visualization of large scale ontologies on a
Core2 Duo 2.99GHzmachine with 4GB memory. We also
implemented two previous approaches of traditional force
directed algorithms including
Fruchterman-Reingold[13], andmodified spring[21]. We
then visualized same ontology on these two algorithms
and compared performance results with the proposed
algorithm. Figure10 shows the speedup over existing
Force-Directed algorithm approaches.

Fig. 10: Comparison of time to layout (in logrithmic scale) of
various graph layout algorithms.

5.1 Comparison Over Fruchterman-Reingold

Our implementation showed following observations as
compared to the performance impact over
Fruchterman-Reingold algorithm:

–Significant improvement in graph layout by
expanding over canvas, symmetrical, minimum edge
crossings and almost zero node cluttering as shown in
Figure11.

–Significant improvement in execution time as shown in
Figure10.

–Linear improvement in algorithm complexity, as
shown in Section3.2

–Fruchterman-Reingold algorithm is not highly
scalable, takes much longer computation time over
large scale ontologies as shown in Figure10, on
47,003 triples it took 732.456 seconds but our
algorithm only took 66.951 seconds.

Fig. 11: Layout comparison on OCW Ontology of 1,515 triples
filtered graph G(V=246,E=1,245).
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5.2 Comparison Over Modified-Spring

Similar implementation showed following observations as
compared to the performance impact over Modified spring
algorithm [21]:

–Improvement in graph layout as shown in Figure11
and12.

–Significant improvement in Execution time as in
Figure10.

–Linear improvement in algorithm Complexity as
shown in Algorithm3.2.

–Modified-Spring algorithm is not highly scalable,
takes much longer computation time over large-scale
ontologies.

Fig. 12: Layout comparison on Food ontology of 870 triples
filtered graph G(V=339,E=604).

5.3 Visualization Results

We have rendered various ontologies in NavigOwl, by
applying our power-layout algorithm and obtained
promising results in aesthetic preservation of produced
graphs with low execution time as compared to
force-directed and spring layouts. Table2 shows these
results as follows:

Visualizations of various ontology datasets are shown
in Figure13and14

6 Discussion and Case Study

In order to get insight of the complexity of social
networks, we have takenTwitter as our case study to
analyze relationship graph. In order to understand the
scheme of relationships and network characteristics, we
obtained dataset ofFollower relationships which contains

Table 2: NavigOwl Results on power-layout
Ontology Triples |V| |E| Time(s)
GeoNames 104 28 52 0.037
TransOntology Bhakti 195 58 56 0.042
IRI Library CF 378 77 133 0.047
URIplay 597 147 155 0.232
SIOC-NS 615 104 279 0.039
SKOS 1,954 399 1,544 0.146
School 2,178 476 779 0.231
University (LUBH) 5,454 1,095 3,737 2.103
DBPedia 5,633 1,563 1,842 3.198
Barton Subgraph 5,863 1,902 3,691 4.593
Open-BioMed TCM 5,950 2,554 5,098 6.768
TDWG Geography 7,303 1,052 2,149 3.807
LOID OrdnanceSurvey 47,003 11,767 23,490 17.595

Fig. 13: Symmetrical and clustered graphs of small ontologies.

‘who follows who?’type of relationship tuples as shown
in Figure3.

We have created a semantic model of this information
transformed all records into that schema in order to
visualize it in NavigOwl for better understanding of
complexity and role-relation hierarchy. The relationship
tuples after transformation to semantic model were
visualized as shown in Figure15.

Table4 represents the mapping ofTwitter schema to
ontology model. We have visualized these networks in
NavigOwl. After applying power layout we obtained
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Fig. 14:Large scale symmetrical, dense, clustered visualizations.

Table 3: Tuples represnting‘who follows who?’in Twitter
Twitter User ID Twitter Follower ID

6353282 783214
6633812 6353282
7017692 6633812
14951565 7017692
14681199 7017692
8195652 14681199
15015170 8195652
68998614 15015170
3785461 68998614
40887009 3785461
53268444 40887009

—– —–

symmetrical, clustered, and aesthetic persistent layouts
(c.f. Figure15).

7 Conclusion and Future Work

This paper proposes the first known solution to mitigate
the scalability challenge and performance implications in

Table 4: Mapping of Twitter dataset to ontology schema.
Dataset Records Ontology Triples |V| |E|

5,000 532 280 528
10,000 906 473 902
15,000 5,393 2,706 5,389
20,000 11,346 5,663 11,342
30,000 20,533 10,250 20,529
40,000 28,504 14,161 28,500
50,000 36,230 17,929 36,226
60,000 42,649 21,004 42,645

Fig. 15: Twitter Dataset Visualizations on NavigOWL.

visualizing large-scale semantic nets. We propose a
solution to simultaneously address these open issues by
developing modified force-directed layout and exploiting
the under-laying concept of power-law degree
distribution. The layout was implemented as a
visualization tool that can handle large-scale ontologies.
We compared our layout algorithm over previous
implementations, and achieved significant performance
results.

Future direction for this research includes
implemention over distributed platform. A distributed
layout algorithm can be devised which can be executed
over parallel multiple compute nodes and may be
computationally more efficient and robust through
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exploitation of under-laying parallel computing benefits.
Moreover, we also plan to further enrich visualization tool
with ontology editing, text searching and SPARQL query
options along with formal assessment of our results over
more complex large-scale semantic nets.
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