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Abstract: In order to improve the generalization capability of process neural network (PNN), a novel learning algorithm is proposed
based on basis function expansion (BFE) algorithm and artificial bee colony (ABC) algorithm, named BFE-ABC algorithm. First,
the input functions and weight functions are simplified through BFE algorithm. The parameter space is transformed from function
space to real number space in this way. Then, the PNN is designed to parametric representation through introducing two Boolean
variables and one multidimensional parameter. At last, themultidimensional parameter composed of hidden neurons, expansion items
and connection weights is optimized in real number space by ABC algorithm. BFE-ABC algorithm overcomes the premature problem
and realizes the global optimization of the structure, connection weights and function expansion form at the same time.It is validated
through the prediction experiment of Mackey-Glass chaotictime series. The test results in cylinder head temperature prediction prove
the superiority of BFE-ABC algorithm over traditional learning algorithm and the applicability to time-dependent parameter prediction.

Keywords: process neural network, learning algorithm, basis function expansion, artificial bee colony, time-dependent parameter
prediction

1 Introduction

Process neural network (PNN) is proposed by He for
processing the spatio-temporal problem with
multidimensional information in 2000 [1,2]. It is an
extension of classic artificial neural network (ANN), in
which the inputs, outputs and weights are time-dependent.
Inputs such as time series are usually sensitive to the time
parameter, so the weights should also be related to time in
order to accumulate the effects of inputs more precisely.
Theoretically, the approximation capabilities of PNN are
better than classic ANN when solving time-dependent
function problems. PNN breaks traditional input
instantaneous synchronization restriction and simulates
the physiology of the biological neurons better.

The learning algorithm of PNN is distinct from ANN
as the inputs, outputs and weights of PNN are
time-dependent. It not only includes space aggregation
operation but also includes time aggregation operation.
The main learning algorithms are numerical integration
algorithm [3] and basis function expansion (BFE)
algorithm combined with back-propagation (BP)

algorithm [4] or other improved algorithms, such as
resilient BP (RBP) algorithm [5]. The numerical
integration algorithm utilizes numerical integration to
process discrete inputs directly. The time aggregation
operation in PNN is realized in this way [3]. The BFE
algorithm introduces a group of orthogonal basis
functions and expands the input functions and weight
functions in limited series of this group, whose
orthogonality can be used to simplify the complexity of
process neuron in time aggregation operation. The
application shows that BFE algorithm has not only
simplified the operation of PNN but also increased the
stability and convergence in network training as it retains
the principal components of data [4]. However, the
topology structure of PNN cannot be optimized through
these learning algorithms and the connection weights
obtained through these learning algorithms maybe local
optimal solutions as the limitation of BP algorithm or
other improved algorithms. The generalization capability
of the model built in this way is restricted. In order to
overcome these disadvantages, a parametric
representation method of PNN should be introduced to
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realize optimization of topology structure. Besides, a
global optimization algorithm should be introduced to
realize the global optimization of PNN.

Many global optimization algorithms have been
applied to train neural network such as genetic algorithm
[6,7], particle swarm optimization algorithm [8,9,10,11],
differential evolution algorithm [12,13], artificial bee
colony (ABC) algorithm [14,15,16] and so on. As a new
intelligent computing algorithm, ABC algorithm realizes
global search and local search in every cycle and
outperforms other intelligent computing algorithms.
Karaboga applies ABC algorithm to optimize connection
weights of ANN. He proves that ABC Algorithm
outperforms BP algorithm and genetic algorithm in [14].
He also proves that ABC Algorithm has better
performance than particle swarm optimization algorithm
and differential evolution algorithm algorithm in [15].
Garro applies ABC algorithm to design an ANN
automatically, including not only the connection weights
but also the structure and the transfer functions [16]. The
ANN obtained has fewer connections than ANN obtained
in [10,12]. It is optimal in the sense that the number of
connections is minimal without losing efficiency.

A novel learning algorithm named BFE-ABC
algorithm is proposed in this paper. This algorithm
utilizes BFE algorithm to simplify the complexity of
process neuron in time aggregation operation. The
parameter space is transformed from function space to
real number space by this way. It also utilizes ABC
algorithm to realize the global optimization of PNN as the
superiority mentioned above. A parametric representation
method of PNN is proposed in this algorithm by
introducing two Boolean variables and one
multidimensional parameter. The PNN can be designed
automatically through this algorithm, including the
connection weights, the topology structure and the
function expansion form (the function expansion form is
initialized through BFE algorithm). This algorithm will
be validated in the prediction experiment of
Mackey-Glass chaotic time series. The applicability to
time-dependent parameter prediction will also be
discussed.

2 Training PNN

2.1 PNN

PNN is a new type of artificial neuron system based on
certain topological structure, which is made of some
process neurons and traditional neurons (no
time-dependent) [1,2].

The structure of process neuron is composed of three
parts: weighting, aggregation and activation [1,2]. The
process neuron is distinct from traditional neuron, whose
inputs, outputs and weights can be time-varying, and
aggregation operations are composed of multi-input

aggregation in space domain and cumulative aggregation
in time domain. The structure of a single process neuron
is shown in Fig.1. Herexi(t) (i = 1,2, . . . ,n) represents
the input function of the process neuron.wi(t) is the
corresponding weigh function.K(···) is the time
cumulative aggregation function.f (···) is the activation
transfer function which maybe a linear function, a
sigmoid function or a Gauss-type function and so on.

x1(t)
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xn(t)
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Fig. 1: Process neuron

The topology structure of cascade-forward PNN [5]
researched in this paper is shown in Fig.2. Here the input
layer and the hidden layer are composed of process
neurons. The output layer is composed of traditional
neurons. The relationship between input and output is
shown as below:

y= g(
n

∑
i=1

vi f (
∫ T

0
wi(t)x(t)dt+θi)+

∫ T

0
u(t)x(t)dt+θ ),

(1)
where x(t) is system input function;wi(t) is the
connection weight function between the neuron in input
layer and theith neuron in hidden layer;θi is the output
threshold of theith neuron in hidden layer;[0,T] is
sampling period; f is activation transfer function of
hidden layer, and usually sigmoid function is selected;vi
is the connection weight between theith neuron in hidden
layer and the neuron in output layer;u(t) is the
connection weight between the neuron in input layer and
the neuron in output layer;θ is the output threshold of the
neuron in output layer;g is the activation transfer function
of output layer, which is usually described as the linear
one;n is the number of hidden neurons;y is the system
output.

2.2 Traditional learning algorithm

As mentioned above, the main learning algorithms of
PNN are numerical integration algorithm and BFE
algorithm combined with BP algorithm (named BFE-BP
algorithm) or other improved algorithms. A brief
description of BFE-BP algorithm is given here.

In BFE-BP algorithm, a group of proper orthogonal
basis functions is brought into input space first. Input
functions are expanded in limited series of this group by
given precision. Meanwhile, weight functions are
expressed as the expansion forms in the same group of
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Fig. 2: Cascade-forward process neural network

basis functions whose orthogonality can be used to
simplify the complexity of process neuron in time
aggregation operation. The time-dependent parameters
are eliminated in this way. After this operation, all the
remaining parameters in PNN can be optimized by BP
algorithm, i.e., there are the same complexities between
training PNN and ANN according to this algorithm.

The steps of BFE-BP algorithm are shown as below:
Step 1: Initialize the network topology structure,

expand input functions and weight functions based on
selected orthogonal basis functions to obtain the
corresponding expansion coefficients.

Step 2: Adjust weight expansion coefficients based on
BP algorithm. (The initial weight expansion coefficients
are randomly created.)

Step 3: Evaluate the performance of PNN.
Step 4: If the desired result is obtained, then stop;

otherwise goto step 2.
The difficulties in this learning algorithm are how to

choose the appropriate basis functions and how many
expansion items should be reserved. In order to improve
the training speed, RBP replaces BP in above learning
algorithm to form BFE-RBP algorithm which has been
discussed in [5]. However, the optimization of topology
structure and function expansion form still remains
unsettled.

3 Artificial bee colony algorithm

ABC algorithm was proposed by Karaboga in 2005 [17]
for solving numerical optimization problems. This
algorithm is based on the model proposed by Tereshko
and Loengarov [18]. It simulates the intelligent foraging
behaviour of honey bee swarm. The possible solutionsxi
(the population) are represented by the position of the
food sources. In order to find the best solution, three
classes of bees are used: employed bees, onlooker bees
and scout bees. They have different tasks in the colony.

Employed bees: Each bee searches for new
neighboring food source near its hive using Eq. (2). It
compares the food source against the old one, then saves
in its memory the best food source. Finally, it returns to

the dancing area in the hive, where the onlooker bees are.

v j
i = x j

i +φ j
i (x

j
i − x j

k). (2)

In Eq. (2) k ∈ 1,2, . . . ,SN and j ∈ 1,2, . . . ,D are
randomly chosen indexes andk 6= i . φ j

i is a random
number between[−1,1]. SN denotes the size of
population.D is the dimensionality of solution space,
representing the number of optimization parameters.

Onlooker bees: This kind of bees watches the dancing
of the employed bee so as to know where the food source
can be found. The onlooker bee chooses a food source
depending on the probability valuepi associated with that
food source, calculated by the following expression:

pi =
f it i

∑SN
n=1 f itn

, (3)

where f it i is the fitness value of the solutioni which is
proportional to the nectar amount of the food source in the
positioni .

Scout bees: This kind of bees helps the colony to
randomly create new solutions when a food source cannot
be improved further through a predetermined number of
cycles. The value of predetermined number of cycles is an
important control parameter in the ABC algorithm, which
is called “limit ” for abandonment. Assume that the
abandoned source isxi , and then the operation can be
defined as below:

x j
i = x j

min+ rand(0,1)(x j
max− x j

min), (4)

where x j
max and x j

min are the maximum value and
minimum value of the solution in dimension
j ∈ 1,2, . . . ,D respectively.

Detailed pseudocode of the ABC algorithm is given as
below:

1) Randomly initialize the population of solutionsxi ,
i = 1· · ·SN

2) Evaluate the population
3) Cycle=1
4) Repeat
5) Produce new solutions for the employed bees by Eq.

(2) and evaluate them
6) Apply the greedy selection process
7) Calculate the probability valuespi for the solutions

xi by Eq. (3)
8) Produce new solutionsvi for the onlooker bees from

the solutionsxi selected depending onpi and evaluate them
9) Apply the greedy selection process
10) Determine the abandoned solution for the scout

bees, if exists, and replace it with a new randomly
produced solutionxi by Eq. (4)

11) Memorize the best solution achieved so far
12) Cycle= Cycle +1
13) Until Cycle=MCN (Maximum Cycle Number)
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4 Novel learning algorithm

4.1 Algorithm description

A novel learning algorithm named BFE-ABC algorithm is
proposed here, which combines the advantages of BFE
algorithm and ABC algorithm to realize parameter space
transformation from function space to real number space
and parameter global optimization. Besides, a parametric
representation method is introduced here to realize
optimization of PNN. The BFE-ABC algorithm includes
three key parts as below:

1) Parameter space transformation
The input functions and weight functions are

simplified through BFE algorithm. The parameter space is
transformed from function space to real number space in
this way.

N groups of training samples are provided here,
expressed as{pl(t),ql},(l = 1,2, . . . ,N), where pl (t) is
the input andql is the expected output of thelth training
sample. The simplification of Eq. (1) based on BFE
algorithm is shown as below:

yl =
n

∑
i=1

vi f (
K

∑
k=1

wikakl +θi)+
K

∑
k=1

ukakl +θ , (5)

whereyl is the output of the PNN corresponding to thelth
training sample;akl is the expansion coefficient of input
function pl (t); wik and uk are expansion coefficients of
corresponding connection weight functions;K is the
maximum number of expansion items depending on the
corresponding basis functions. The other parameters have
the same meanings as in Eq. (1).

2) Parametric representation
Two Boolean variables and one multidimensional

parameter are introduced to realize parametric
representation of PNN.

A Boolean variable is defined here to represent the
hidden layer:

B= (b1,b2, . . . ,bn+1), (6)

where bi(i = 1,2, . . . ,n) is 1 or 0, which means the
corresponding hidden neuron exists or not;bn+1 is 1 or 0,
which means the connection between input and output
layer exists or not. An operation is defined as in Eq. (7).

ρ =
n+1

∑
i=1

bi2
−i (7)

The conclusion 0< ρ < 1 is easily drawn. Therefore,
a corresponding(n+ 1)-dimensional Boolean variableB
must exist whenρ ∈ (0,1) is chosen randomly, i.e., the
structure of PNN can be constructed byB drawn fromρ .

Another Boolean variableC is defined here to
represent the expansion form of input function:

C= (c1,c2, . . . ,cK), (8)

where ck(k = 1,2, · · · ,K) is 1 or 0, which means the
expansion item corresponding to one basis function exists
or not. An operation is defined as in Eq. (9).

η =
K

∑
k=1

ck2
−k (9)

The conclusion 0< ρ < 1 is easily drawn. Therefore,
a correspondingK-dimensional Boolean variableC must
exist when ρ ∈ (0,1) is chosen randomly, i.e., the
expansion form of input function can be determined
throughC drawn fromη .

The relationship between input and output can be
rewritten as below:

yl =
n

∑
i=1

bivi f (
K

∑
k=1

ckwikakl +θi)+bn+1

K

∑
k=1

ckukakl +θ .

(10)
A multidimensional parameterx is defined here to

realize the parametric representation of PNN. Every
solution ofx represents a PNN:

x= ρ ,η ,wik,θi ,vi ,uk,θ , i = 1,2, · · · ,n;k= 1,2, · · · ,K.

(11)
Different dimensions in the multidimensional parameterx
take values from different ranges. For the first two
dimensions,ρ andη , the range is between(0,1). For the
other dimensions, the range is[−1,1].

3) Global optimization
The multidimensional parameterx is optimized by

ABC algorithm. It represents a food source position
corresponding to the possible solution.

Each food source position in the solution space
represents a PNN. ABC algorithm will search for a PNN
that has appropriate structure and parameters to optimize
the objective function. The objective function is defined
as below:

J = lnE+
λ1

N

n+1

∑
i=1

bi +
λ2

N

K

∑
k=1

ck. (12)

The first item in Eq. (12) represents the goodness of
fit between the model output and the sample.E is mean
squared error (MSE), given in Eq. (13). The second item
is used to limit the complexity of network. The third item
is used to limit the complexity of BFE, which limits the
complexity of network indirectly.λ1 andλ2 are adjustable
coefficients, which represent the proportion relative to the
first item.

E =
1
N

N

∑
l=1

(ql − yl)
2 (13)

According to the above description, the steps of BFE-
ABC algorithm can be summarized as below:

Step 1: Expand input functions and weight functions
through BFE algorithm.

Step 2: Represent PNN in a multidimensional
parameter according to Eq. (11)
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Step 3: Set up the objective function, i.e. Eq. (12), as
the fitness function of ABC algorithm and set parameters
(search space borderlines,λ1, λ2, SN, limit , MCN).

Step 4: Run ABC algorithm (the new solutions are
decoded according to Eqs. (7), (9), (10) and (11) in every
cycle to evaluate them).

Step 5: After stops, output the optimal solution and
decode it to PNN.

4.2 Algorithm validation

In order to validate the algorithm proposed above,
Mackey-Glass chaotic time series prediction is used here.
The equation of Mackey-Glass [19] is shown in Eq. (14).

dx
dt

=
ax(t − τ)

1+ x10(t − τ)
−bx(t). (14)

Initialize the parameters in Eq. (14): a= 2 , b= 0.1 ,
τ = 17 , x(0) = 1.2. 406 data are obtained from Eq. (14),
i.e. x(t), t = 0,1,2, · · · ,405. Six continuous data are fitted
to form a time-dependent polynomial function as the
input of PNN, and the seventh datum is set to output. 400
samples are obtained through this way. The first 200
samples are taken as training set. The last 200 samples are
taken as test set.

The input function and connection weight functions
are expanded based on shifted Legendre orthogonal basis
functions. Therefore,K is equal to 6 here. The maximum
number of hidden neurons is taken as 10, i.e.,n = 10.
Initialize the adjustable coefficients in Eq. (12), λ1 = 1,
λ2 = 1. Initialize other parameters,SN= 10, limit = 100,
MCN= 2500.

Besides MSE, mean relative error (MRE) is used to
evaluate a PNN after optimization, defined as below:

MRE=
1
N

N

∑
l=1

|ql − yl |

ql
. (15)

Run the algorithm proposed above to obtain an
optimal PNN. The parameters in Eq. (12) can be obtained
after training. The MSE is 1.7171 ∗ 10−4 .
B = (1,1,0,1,0,0,0,1,1,1,1) and C = (1,1,1,1,0,1) .
Therefore, the topology structure of newly constructed
PNN is 1-6-1. The connection between input and output
layer exists. The basis functions used here are 0-3 order
shifted Legendre polynomials and 5 order shifted
Legendre polynomial.

The test set is employed to validate the generalization
capability of newly constructed PNN model. The test
results are shown in Fig. (3). The MSE is 1.2215∗10−4 .
The MRE is 0.0103 . The results show that the algorithm
proposed above could solve the prediction problem of
Mackey-Glass chaotic time series effectively. The
algorithm is validated in this way.
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Fig. 3: Prediction of Mackey-Glass chaotic time series

5 The application in time-dependent
parameter prediction

PNN breaks traditional input instantaneous
synchronization restriction and can be applied to
time-dependent parameter prediction as its
time-dependent input characteristics [20,21]. The
time-dependent characteristics of engine are so
complicated that they can’t be described by an existing
analytical model. PNN is applied here to construct engine
model to realize parameter prediction.

This section takes the cylinder head temperature
prediction of engine as an example and compares the
prediction performance of PNN models optimized by
BFE-ABC and BFE-RBP receptively. The cylinder head
temperature data is from several flight experiments of an
unmanned helicopter, whose sampling frequency is 10
times per second. The relative error of the collected data
is 0.1%. In order to get the change trend of engine
parameter, the data is resampled every 10 seconds. The
offline prediction and online prediction are carried out
respectively.

5.1 Offline prediction

This part takes the data from one flight experiment. The
data is divided into two sets: a training set and a testing
set. 200 data are obtained after resampled. Part of the data
are shown in Table1. Six continuous data are fitted to
form a time-dependent polynomial function as the input
of PNN, and the seventh datum is set to output. 194
samples are obtained through this way. The first 100
samples are taken as training set to get the prediction
model. The last 94 samples are taken as test set to validate
the prediction precision.

PNN models are constructed based on BFE-ABC
algorithm and BFE-RBP algorithm to realize offline
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Table 1: The Resampled Data (part)

Temperature Temperature
Number

(oF)
Number

(oF)

1 202.0 11 221.2

2 202.1 12 223.2

3 204.1 13 225.3

4 206.5 14 227.3

5 208.7 15 229.3

6 210.8 16 231.1

7 212.9 17 232.9

8 215.1 18 234.6

9 217.3 19 236.4

10 219.3 · · · · · ·

prediction. The parameters in BFE-RBP are set the same
as in [5]. The parameters in BFE-ABC are set as below.
The input function and connection weight functions are
expanded based on shifted Legendre orthogonal basis
functions. Therefore,K is equal to 6 here. The maximum
number of hidden neurons is taken as 10, i.e.,n = 10 .
Initialize the adjustable coefficients in Eq.(15), λ1 = 0.5,
λ2 = 0.2. Initialize other parameters,SN = 15,
limit = 100,MCN= 3000.

The training and prediction results are shown in Table
2. Figure4 is the prediction curves. It is obvious that the
PNN model optimized by BFE-ABC algorithm has
simpler structure and basis function expansion form than
BFE-RBP. The prediction accuracy of BFE-ABC
algorithm is higher than BFE-RBP algorithm. Because all
the solutions should be decoded in every cycle to evaluate
the fitness value in BFE-ABC, the time consumed by
BFE-ABC is longer than BFE-RBP. However, the time
consumed is acceptable as offline prediction.The
prediction results prove that BFE-ABC algorithm can
give PNN more powerful learning capability and much
better generalization capability.

5.2 Online prediction

In order to validate the practical effect of the PNN model
built by BFE-ABC algorithm, online prediction
experiments are done. The datum of next time is predicted
based on the data collected now. The PNN model is
constructed based on the data from one flight experiment,
which is used to predict cylinder head temperature in
other flight experiments.

All the cylinder head temperature data in offline
prediction, i.e. 200 data, are used to train PNN. The
initialization parameters in BFE-RBP algorithm and
BFE-ABC algorithm are set the same as in offline
prediction. Run BFE-RBP algorithm and BFE-ABC
algorithm respectively to get PNN models. The topology
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Fig. 4: Offline prediction

structure of PNN optimized by BFE-ABC algorithm is
1-9-1, and the number of expansion terms is 5.

Three groups cylinder head temperature prediction
experiments in three different flights are done to validate
the prediction performance. The data is processed in real
time to apply the PNN models. The prediction curves of
three prediction experiments are shown in Figures5,6,7
respectively. The statistics of prediction results are shown
in Table3.
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Fig. 5: Online prediction curves of flight 1

It is obvious that the MSE and MRE of the PNN
model optimized by BFE-ABC algorithm are smaller than
that of BFE-RBP algorithm, i.e., BFE-ABC algorithm
outperforms BFE-RBP algorithm. Moreover, unlike
BFE-RBP algorithm, the prediction results of the PNN
model optimized by BFE-ABC algorithm are stable in
these three prediction experiments. The MSE is stable at
0.8 or so, and the MRE is stable at 0.002 or so. It is
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Table 2: Training and Prediction Results of Offline Prediction

Training Prediction
Algorithm Time Consumed (second) Topology Structure Number of Expansion Items MSE MRE

BFE-RBP 0.5625 1-10-1 6 3.3113 0.0050

BFE-ABC 148.2188 1-7-1 5 1.4241 0.0032

Table 3: Results of Online Prediction

MSE MRE Mean Time Consumed (second)
Number

BFE-RBP BFE-ABC BFE-RBP BFE-ABC BFE-RBP BFE-ABC

Flight 1 0.8972 0.8332 0.0022 0.0017 0.0755 0.0633

Flight 2 1.0093 0.8734 0.0025 0.0019 0.0731 0.0601

Flight 3 7.0013 0.7254 0.0065 0.0019 0.0749 0.0633
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Fig. 6: Online prediction curves of flight 2
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Fig. 7: Online prediction curves of flight 3

obvious that the PNN model constructed through

BFE-ABC algorithm has good prediction results in all
three flight experiments. However, the PNN model
constructed through BFE-RBP algorithm sometimes (in
the third flight experiment) predicts badly.

In addition, the PNN model optimized by BFE-ABC
algorithm needs less time to predict the datum. It
consumes about 0.06s after collecting new data,
meanwhile, the PNN model optimized by BFE-RBP
algorithm consumes about 0.07s. This is because the PNN
model optimized by BFE-ABC algorithm is simpler
(smaller topology structure and fewer expansion items)
that the processor consumes less time.

It can be concluded from the analysis of prediction
results above that BFE-ABC algorithm has better
performance than BFE-RBP algorithm. It can give PNN
more powerful learning capability and much better
generalization capability. The BFE-ABC algorithm can
build a simpler and more precise PNN model. It is more
suitable for the time-dependent parameter prediction.

6 Conclusions

A novel learning algorithm named BFE-ABC algorithm is
proposed in this paper. BFE-ABC algorithm takes
advantage of parameter space transformation in BFE
algorithm and global optimization in ABC algorithm.
BFE-ABC algorithm also realizes the automatic design of
PNN through introducing parametric representation of
PNN. The prediction experiment of Mackey-Glass
chaotic time series validates the algorithm. The prediction
experiment of cylinder head temperature proves that the
PNN model optimized by BFE-ABC algorithm has higher
prediction precision and consumes less prediction time
than the PNN model optimized by BFE-RBP algorithm.
The experiment results show that BFE-ABC algorithm
can design an optimal PNN automatically in the sense
that the number of hidden neurons and expansion items
are minimal without losing efficiency. The PNN
optimized through BFE-ABC algorithm has higher
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generalization capability and more effective in
time-dependent parameter prediction.
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