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Abstract: We formulate and analyze Zika virus transmission model withthree nonlinear forces of infection from infected mosquito,
asymptomatic and symptomatic humans. The sensitivity indexes of the associated parameters of the model with respect tothe basic
reproduction number are calculated to identify intervention strategies for prevention and control of Zika virus. Multiple time-dependent
optimal controls are considered. The analysis based on the use of optimal control theory made popular by Pontryagin’s maximum
principle is carried out, and the resulting optimality system is quantitatively simulated to investigate the impact ofthe controls on the
dynamics of Zika virus. In addition, the effects of non-linearity of the forces of infection and other key parameters on the disease
transmission are illustrated.
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1 Introduction

In recent times, Zika virus (ZIKV) disease has been found
to be an additional source of concerns to the public
health. The disease can be transmitted to humans through
sexual intercourse, and primarily through an intermediate
vector – infected femaleAedesmosquito. According to
the World Health Organization (WHO), 69 countries or
territories of the world have reported mosquito-borne
ZIKV transmission while 13 countries or territories have
reported human-to-human transmission of ZIKV [34].
More often than not, infections with Zika are
asymptomatic because only 20% of infected humans
develop symptoms such as mild fever, skin rashes,
conjuctivitis, muscle and joint pain [9].

The emergence of Zika virus disease in humans
occurred in 1952 in Uganda and the United Republic of
Tanzania. Since then, there have been several outbreaks of
ZIKV in Africa, Americas, Asia and the Pacific, with the
first large outbreak reported from the Island of Yap
(Federated States of Micronesia) in 2007 [35]. It has been
projected that Brazil among the Americas will have the
largest total number of infections by more than three fold,
due to a combination of its size and suitability for
transmission [29]. Complications like microcephaly and
Guillain-Barré syndrome have been attributed to the

effects of ZIKV infections while links to other
neurological disorders are also being investigated ([5],
[7], [22], [35]).

Mathematical epidemiological models have been
developed to broaden the understanding of the
transmission dynamics of diseases. More importantly, the
models play great roles in influencing the
decision-making processes regarding intervention
strategies for preventing and controlling the emergence
and reemergence of the disease. A number of
mathematical studies on ZIKV transmission dynamics
have been carried out lately. Kucharskiet al [15] used a
compartmental mathematical model to examine the
2013–14 outbreak on the six major archipelagos of
French Polynesia. Gaoet al [11] studied a model to
investigate the impact of mosquito-borne and sexual
transmission on the spread and control of ZIKV. In [14],
the stability analysis of infectious state of ZIKV in many
types of population was presented with a view to taking
necessary precautions against upcoming epidemic.

Agusto et al [1] analyzed a deterministic model of
ZIKV by incorporating human vertical transmission of
the virus, the birth of babies with microcephaly and
asymptomatically infected individuals. Padmanabhanet
al [30] considered ZIKV model that incorporates both
sexual and vector transmission modes with constant
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preventive parameters. Readers may also see ([13], [16],
[20], [26]) among others for some mathematical
perspectives on ZIKV transmission dynamics. In another
perspective, the time-dependent optimal control functions
have been incorporated into a few ZIKV models with a
view to exploring prevention and control measures for the
disease spread ([3], [8], [19], [32]).

In this paper, a mathematical model is designed to
analyse the ZIKV transmission dynamics with nonlinear
forces of infection induced by infected mosquito,
asymptomatic and symptomatic infectious humans. The
optimal control analysis is performed on the
non-autonomous version of the formulated model. The
effects of the nonlinearity of the incidence terms and the
five control variables, including human-mosquito contact
prevention, human-human sexual contact prevention,
routine check for asymptomatic individuals, treatment
and mosquito reduction strategies, in preventing and
controlling the spread process of the ZIKV disease are
investigated.

The rest of the paper is arranged as follows. Section2
presents the formulation of the autonomous model with
its basic qualitative properties. In Section3, the sensitivity
indexes of the parameters of the model with respect to the
basic reproduction number are investigated. In Section4,
optimal control analysis of the non-autonomous model
based on Pontryagin’s maximum principle is carried out.
Section 5 provides the discussion of the quantitative
results obtained from simulations. In Section6, the paper
is wrapped up with concluding remarks.

2 Model formulation

The human population comprises four compartments,
namely susceptibleSH(t) (number of humans who are
liable to be infected with ZIKV at timet), asymptomatic
infectedAH(t) (number of humans infected with ZIKV
without showing symptoms of the disease but are capable
of infecting both humans and mosquitoes at timet),
symptomatic infectedIH(t) (number of infected humans
with ZIKV symptoms and are capable of transmitting the
disease to both humans and mosquitoes at timet) and
recovered RH(t) (those recovered from the ZIKV
infection spontaneously or therapeutically). Then, the
total human population at timet, denoted byNH(t) is
given byNH(t) = SH(t)+AH(t)+ IH(t)+RH(t).

The total vector (mosquito) population at timet,
denoted byNV(t), is sub-classified into susceptibleSV(t)
(number of mosquitoes not yet infected with ZIKV but
are capable of being infected by both asymptomatic and
symptomatic infectious humans at timet) and infected
IV(t) (number of infectious mosquitoes that are capable of
transmitting ZIKV to the susceptible humans at timet),
so thatNV(t) = SV(t)+ IV(t).

Let the recruitment terms for human and mosquito
populations (both assumed susceptible) be represented,
respectively byΛH and ΛV . Since Zika virus is a

vector-borne and sexually transmitted disease, then the
susceptible human population can be infected through the
bite of the infectious femaleAedesmosquito (at a rate
β1b), and through sexual intercourse with both
symptomatic (at a rateβ2) and asymptomatic infected
individuals (at a rateβ3). Whereβ1, β2 and β3 are the
disease transmission probabilities caused byIV , IH and
AH respectively, andb is the mosquito biting rate. It is apt
to assume thatβ2 ≤ β3 since infectious humans who show
the symptoms of ZIKV disease are less likely to engage in
sexual intercourse than the asymptomatic individuals.
Further, the infection of the susceptible human population
generates either the population of asymptomatic or
symptomatic infectious humans. If it is assumed that
0 < θ < 1 is the fraction of the susceptible human
population who becomes asymptomatic due to infection,
then the remaining fraction(1−θ ) is symptomatic due to
infection. The population of the recovered humanRH is
generated by the spontaneous recovery of both
asymptomatic and symptomatic infectious individuals at
ratesγH and σH respectively. The natural death rate of
human is represented byµH .

On the other hand, the population of the susceptible
mosquito is reduced by infection due to effective contact
with symptomatic (at a rateβ2b) and asymptomatic (at a
rate β3b) humans. As a result of the infection of the
susceptible mosquito, the population of the infectious
mosquito is produced. LetµV be the natural death rate for
both susceptible and infectious mosquito populations.

Based on the foregoing assumptions, a system of
ordinary differential equations describing the ZIKV
transmission is given by

dSH

dt
= ΛH −

(

β1bIV
1+α1IV

+ β2IH
1+α2IH

+ β3AH
1+α3AH

)

SH

−µHSH

dAH

dt
= θ

(

β1bIV
1+α1IV

+ β2IH
1+α2IH

+ β3AH
1+α3AH

)

SH

−(γH + µH)AH

dIH
dt

= (1−θ )
(

β1bIV
1+α1IV

+ β2IH
1+α2IH

+ β3AH
1+α3AH

)

SH

−(σH + µH)IH

dRH

dt
= γHAH +σH IH − µHRH

dSV

dt
= ΛV −

(

β2bIH
1+α2IH

+ β3bAH
1+α3AH

)

SV − µVSV

dIV
dt

=
(

β2bIH
1+α2IH

+ β3bAH
1+α3AH

)

SV − µV IV ,

(1)

where the nonlinear forces of infection induced by
infectious mosquito, symptomatic and asymptomatic
infectious humans are given, respectively, by

IV
1+α1IV

,
IH

1+α2IH
and AH

1+α3AH
which are of saturated form

introduced by Capasso and Serio [6]. Noting thatα1, α2
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andα3 are positive saturation constants that determine the
level at which the force of infection saturates. This
nonlinear force of infection of saturated form which can
also be referred to as Holling-type II (see, e.g., [18], [31])
has been used in vector-borne related disease (malaria)
models ([24], [27]). The choice of this form is informed
by the fact that the number of effective contacts (sexual or
vector transmission) between susceptible and infectious
individuals may saturate at high infective levels due to
crowding of infectious individuals or due to the
precautionary strategies put in place by the susceptible
individuals.

2.1 Basic properties

Since model (1) monitors human and vector populations,
all its associated parameters are nonnegative. It thus
remains to show that the state variables of the model (1)
are nonnegative.

Theorem 1. The solutions SH(t), AH(t), IH(t), RH(t),
SV(t), IV(t), of the ZIKV model(1) with nonnegative
initial data SH(0), AH(0), IH(0), RH(0), SV(0), IV(0),
remain nonnegative for all time t> 0.

Proof. The first equation of model (1) can be written as
dSH
dt +

(

β1bIV
1+α1IV

+ β2IH
1+α2IH

+ β3AH
1+α3AH

+ µH

)

SH ≥ 0,

so that

d
dt

[

SH(t)exp
(

∫ t
0

β1bIV (ζ )
1+α1IV (ζ )

+ β2IH (ζ )
1+α2IH (ζ )

+ β3AH(ζ )
1+α3AH(ζ )dζ + µHt

)]

≥ 0.

(2)

Integrating (2) gives

SH(t)≥ SH(0)exp
[

−
(

∫ t
0

β1bIV (ζ )
1+α1IV (ζ )

+
β2IH (ζ )

1+α2IH (ζ )

+ β3AH(ζ )
1+α3AH(ζ )dζ + µHt

)]

> 0.

(3)

In a similar manner, it can be shown that other state
variables AH(t), IH(t), RH(t), SV(t) and IV(t) are
nonnegative for allt > 0. �

Next, consider the biologically feasible region defined by
D=DH ×DV ⊂ R

4
+×R

2
+, where

DH =

{

(SH ,AH , IH ,RH) ∈ R
4
+ : NH ≤

ΛH

µH

}

and

DV =

{

(SV , IV ,) ∈ R
2
+ : NV ≤

ΛV

µV

}

.

It can be shown thatD is a positive invariant region.

Theorem 2. The regionD is positively invariant with
respect to the model(1).

Proof. The rate of change of the total human population
is given by dNH

dt = ΛH − µHNH which on solving yields

NH(t) = NH(0)e−µHt + ΛH
µH

(1 − e−µHt). A similar
approach for the total mosquito population gives
NV(t) = NV(0)e−µVt + ΛV

µV
(1 − e−µVt). It follows that

NH(t) →
ΛH
µH

and NV(t) →
ΛV
µV

as t → ∞. In particular,

NH(t) ≤ ΛH
µH

if NH(0) ≤ ΛH
µH

and NV(t) ≤ ΛV
µV

if

NV(0)≤
ΛV
µV

. Hence,D is positively invariant. �

Therefore, it is sufficient to study the dynamics of
model (1) in regionD where the model can be considered
as being epidemiologically and mathematically
well-posed [12].

3 Basic reproduction number and sensitivity
analysis

An important epidemiological threshold which measures
the spread potential of an infectious disease in a given
population is a basic reproduction number, usually
denoted byR0. For ZIKV model (1), R0 can be defined
as the average number of secondary infections, in a
completely susceptible human or mosquito population,
caused by a typical infectious (mosquito or symptomatic
or asymptomatic) individual over its period of
infectiousness. Using the technique and notation in [33],
the matrixF of the new infection terms and matrixV of
the remaining transition terms are given, respectively, by

F =























θβ3
ΛH

µH
θβ2

ΛH

µH
θβ1

ΛV

µV

(1−θ )β3
ΛH

µH
(1−θ )β2

ΛH

µH
(1−θ )β1

ΛV

µV

β3
ΛV

µV
β2

ΛV

µV
0























and

V =





γH + µH 0 0
−α σH + µH 0
0 0 µV



 .

Consequently, the basic reproduction number of the ZIKV
model (1) is given by

R0 = ρ(FV−1)

=
1
2

[

ΛHR∗

µH
+

√

R∗

(

Λ2
HR∗

µ2
H

+
4β1b2Λ2

V

µ3
V

)

]

,
(4)

where

R∗ =
(1−θ )β2

(σH + µH)
+

θβ3

(γH + µH)
.
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It is necessary at this stage to carry out sensitivity analysis
of the model (1) with a view to determining the relative
change in the basic reproduction numberR0 to the relative
change in its associated parameters. In what follows, the
normalized forward sensitivity index ofR0 that depends
differentiably on any of its parameterp is defined as

ϒ R0
p =

∂R0

∂ p
×

p
R0

. (5)

Based on the values of the parameters in Table 1, the
sensitivity indexes presented in Table 2 with respect to all
the parameters in (4) are calculated using (5). The
parameters with positive sensitivity index indicate that an
increase (or decrease) in the value of each of the
parameters leads to a corresponding increase (or
decrease) in the basic reproduction number. Conversely,
the parameters with negative index means that an increase
(or decrease) in the value of the parameters causes a
decrease (or increase) in the basic reproduction number of
the ZIKV model (1).

Table 1: Description of variables and parameters

Variable Description
SH(t) Population of susceptible humans
AH(t) Asymptomatic infectious humans population
IH(t) Symptomatic infectious humans population
RH(t) Population of recovered humans
SV(t) Population of susceptible mosquitoes
IV(t) Population of infectious mosquitoes
NH(t) Total human population
NV(t) Total mosquito population
Parameter Description Range Baseline Source

value
ΛH Human recruitment term 0.000011 [19]
ΛV Mosquito recruitment term 0.05-0.5 0.13 [27]
β1 Transmission probability per contact

by infectious mosquito 0-0.75 0.4 [11], [19], [30]
β2 Transmission probability per contact

by symptomatic infectious human 0-0.5 0.05 [19]
β3 Transmission probability per contact

by asymptomatic infectious human 0-1 0.15 Assumed
b Mosquito biting rate 0.5 [1], [11]
θ Fraction of susceptible human that becomes

asymptomatic due to infection 0-1 0.8 Assumed
µH Human natural death rate 1

80×365−
1

45×365 0.000046 [3], [21]
µV Mosquito natural death rate 0.05-0.5 0.066 [4], [24]
γH Recovery rate

for asymptomatic human 0.05-0.33 0.2 Assumed
σH Recovery rate

for symptomatic human 0.0667-0.33 0.2 [11]

Table 2: Sensitivity indexes ofR0 with respect to the
model parameters

Parameter Sensitivity
index

ΛH 0.03972
ΛV 0.96028
β1 0.48014
β2 0.03999
β3 0.47987
b 0.96028
θ 0.31991
µH −0.03984
µV −1.44042
γH −0.47976
σH −0.03998

For example, increasing the natural death rate of
mosquito,µV , by 10% decreases the basic reproduction
number,R0, by 14%. Hence, sensitivity analysis, when
carried out on a disease model, helps in focusing on
appropriate intervention strategies for preventing and
controlling the spread of the disease [25].
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4 Analysis of optimal control problem

Arising from the results of the sensitivity analysis,
time-dependent optimal control measures are
incorporated into the model (1) in this section. And
optimal control theory based on the Pontryagin’s
maximum principle [28] is employed to obtain the
necessary conditions for the optimal strategies aimed at
preventing and controlling the disease spread. Thus, the
following five optimal control variables are considered:

(i).The control u1(t) which represents a measure for
preventing mosquito-borne ZIKV transmission
through the use of insecticide-treated bed nets and
skin repellent lotions.

(ii).The control u2(t) which represents a measure for
preventing human-to-human sexual ZIKV
transmission through the use of condoms.

(iii).The controlu3(t) represents a surveillance measure or
routine check for identifying and treating
asymptomatic ZIKV infected individuals.

(iv).The controlu4(t) represents a treatment measure for
symptomatic individuals.

(v).The control u5(t) represents a mosquito-reduction
strategy targeted at the mosquito breeding sites and
indoors through the use of residual spraying.

Based on the use of the aforementioned five control
variables, the autonomous model (1) becomes ZIKV
model (6) governed by a non-autonomous system of
ordinary differential equations of the form:














































































































































dSH
dt = ΛH −

(

(1−u1(t))β1bIV
1+α1IV

+ (1−u2(t))β2IH
1+α2IH

)

SH

+
(

(1−u2(t))β3AH
1+α3AH

)

SH − µHSH

dAH
dt = θ

(

(1−u1(t))β1bIV
1+α1IV

+
(1−u2(t))β2IH

1+α2IH
+

(1−u2(t))β3AH
1+α3AH

)

SH

−(γH + k1u3(t)+ µH)AH

dIH
dt = (1−θ )

(

(1−u1(t))β1bIV
1+α1IV

+ (1−u2(t))β2IH
1+α2IH

)

SH

+(1−θ )
(

(1−u2(t))β3AH
1+α3AH

)

SH −σH IH
+(k2u4(t)+ µH)IH

dRH
dt = (γH + k1u3(t))AH +(σH + k2u4(t))IH − µHRH

dSV
dt = (1−u5(t))ΛV −

(

(1−u1(t))β2bIH
1+α2IH

+
(1−u1(t))β3bAH

1+α3AH

)

SV

−(µV + c0u5(t))SV

dIV
dt =

(

(1−u1(t))β2bIH
1+α2IH

+ (1−u1(t))β3bAH
1+α3AH

)

SV

−(µV + c0u5(t))IV ,
(6)

wherek1, k2 andc0 are positive rate constants. The goal
of the optimal control strategies is to minimize the
number of infectious humans (asymptomatic and
symptomatic) and the vector population while keeping the
costs of applying the controls;u1(t), u2(t), u3(t), u4(t)
andu5(t), as low as possible. To do this, the use is made

of the objective functionalJ given by

J =
∫ t f

0 (B1AH +B2IH +B3(SV + IV)
+ 1

2

(

c1u2
1+ c2u2

2+ c3u2
3+ c4u2

4+ c5u2
5

))

dt,
(7)

whereB1, B2, B3, c1, c2, c3, c4 andc5 are positive weight
constants. The termc1u2

1 represents the cost associated
with mosquito-human contact protection efforts where
c2u2

2 represents the cost associated with human-human
sexual contact protection efforts. Further, the termsc3u2

3,
c4u2

4 and c5u2
5 represent the cost associated with routine

check efforts for diagnosing asymptomatic individuals,
treatment efforts for symptomatic patients and
mosquito-reduction efforts respectively. The costs of
controls have been chosen to be quadratic in accordance
with what is in other literature on epidemic models ([2],
[21], [23], [36]).

Of interest is to seek an optimal control quintupleu∗1,
u∗2, u∗3, u∗4 andu∗5 such that

J(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) =

min{J(u1,u2,u3,u4,u5) : u1,u2,u3,u4,u5 ∈ U } ,
(8)

where the control set is defined by
U =

{

ui : 0≤ ui(t)≤ 1,Lebesgue measurable,∈ [0, t f ]
}

for i = 1, ...,5.

4.1 Existence of an optimal control

To determine the existence of an optimal control to the
non-autonomous model governed by (6), a result from
Fleming and Rischel [10] is employed, where the
following properties must be satisfied:

P1.The control set is convex and closed.
P2.The right hand side of the state system is bounded by

a linear function in the state and control variables.
P3.The integrand of the objective functional is convex

with respect to the control, and
P4.There exist constantsb1,b2 > 0 andb3 > 1 such that

the objective functional is bounded below by

b1
(

|ui |
2
)

b3
2 −b2.

One sees that P1 is satisfied by the definition of the
control setu1,u2,u3,u4,u5 ∈ U . Considering Theorem 2,
the state variables arepriori bounded so that the right
hand side of the non-autonomous system given by (6)
satisfies P2. Furthermore, the integrand in the objective
functional J obtained by (7) is convex onU satisfying
P3. Finally, P4 is satisfied since the state variables are
bounded, then some constantsb1,b2 > 0 andb3 > 1 can
be obtained satisfying the bound,

L ≥ b1
(

|u1|
2+ |u2|

2+ |u3|
2+ |u4|

2+ |u5|
2
)

b3
2 − b2,

whereL is the Lagrangian referred to as the integrand of
the objective functional given by (7).

Arising from the above analysis, the following
existence result is claimed.
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Lemma 1. If the objective functional J given by(7) is
defined on a set of bounded controlU and is subject to
the non-autonomous system(6) with initial conditions at
t = 0, then∃ an optimal control u∗ = (u∗1,u

∗
2,u

∗
3,u

∗
4,u

∗
5)

such that J(u∗) = min{J(ui) : ui ∈ U }, for i = 1,2, ...,5.

The Pontryagin’s maximum principle [28] converts
system (6), with (7) and (8) into a problem of minimizing
pointwise a HamiltonianH , with respect tou1, u2, u3, u4
andu5 of the form given by

H = B1AH +B2IH +B3(SV + IV)
+ 1

2

(

c1u2
1+ c2u2

2+ c3u2
3+ c4u2

4++c5u2
5

)

+λ1

[

ΛH −
(

(1−u1)β1bIV
1+α1IV

+ (1−u2)β2IH
1+α2IH

+ (1−u2)β3AH
1+α3AH

)

SH − µHSH

]

+λ2

[

θ
(

(1−u1)β1bIV
1+α1IV

+ (1−u2)β2IH
1+α2IH

+ (1−u2)β3AH
1+α3AH

)

SH − (γH + k1u3+ µH)AH

]

+λ3

[

(1−θ )
(

(1−u1)β1bIV
1+α1IV

+ (1−u2)β2IH
1+α2IH

+ (1−u2)β3AH
1+α3AH

)

SH − (σH + k2u4+ µH)IH
]

+λ4 [(γH + k1u3)AH +(σH + k2u4)IH
− µHRH ]

+λ5

[

(1−u5)ΛV −
(

(1−u1)β2bIH
1+α2IH

+ (1−u1)β3bAH
1+α3AH

)

SV − (µV + c0u5)SV

]

+λ6

[(

(1−u1)β2bIH
1+α2IH

+ (1−u1)β3bAH
1+α3AH

)

SV

− (µV + c0u5)IV ] ,

(9)

whereλi , i = 1,2, ...,6, are the adjoint variables. The next
result presents the adjoint system and characterization of
the optimal control.

Theorem 3. Given an optimal control quintuple
(u∗1,u

∗
2,u

∗
3,u

∗
4, ,u

∗
5) that minimizes J overU and solutions

of the associated non-autonomous system(6), there exist
adjoint variablesλi , i = 1,2, ...,6, satisfying












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dλ1
dt = (λ1−θλ2− (1−θ )λ3)

[(

(1−u1)β1bIV
1+α1IV

+ (1−u2)β2IH
1+α2IH

+ (1−u2)β3AH
1+α3AH

)

+ µHλ1

]

dλ2
dt = (λ1−θλ2− (1−θ )λ3)

(1−u2)β3SH
(1+α3AH)2

+(λ5−λ6)
(1−u1)β3bSV
(1+α3AH)2

+(λ2−λ4)(γH + k1u3)

+µHλ2−B1

dλ3
dt = (λ1−θλ2− (1−θ )λ3)

(1−u2)β2SH
(1+α2IH )2

+(λ5−λ6)
(1−u1)β2bSV
(1+α2IH )2

+(λ3−λ4)(σH + k2u4)

+µHλ3−B2

dλ4
dt = µHλ4

dλ5
dt = (λ5−λ6)(1−u1)b

(

β2IH
1+α2IH

+ β3AH
1+α3AH

)

+(µV + c0u5)λ5−B3

dλ6
dt = (λ1−θλ2− (1−θ )λ3)

(1−u1)β1bSH
(1+α1IV )2

+(µV + c0u5)λ6−B3
(10)

with transversality conditions

λi(t f ) = 0, i = 1,2, ...,6. (11)

Then, the optimal controls(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) are given by
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u∗1 = min
{

max
{

0, 1
c1

[

((1−θ )λ3+θλ2−λ1)
β1bIV SH
1+α1IV

+ (λ6−λ5)
(

β2bIH SV
1+α2IH

+ β3bAHSV
1+α3AH

)]}

,1
}

,

u∗2 = min
{

max
{

0, 1
c2

[

(θλ2−λ1)
β2IH SH
1+α2IH

+ ((1−θ )λ3−λ1)
β3AHSH
1+α3AH

]}

,1
}

,

u∗3 = min

{

max

{

0,
(λ2−λ4)k1AH

c3

}

,1

}

,

u∗4 = min

{

max

{

0,
(λ3−λ4)k2IH

c4

}

,1

}

,

u∗5 = min

{

max

{

0,
(ΛV + c0SV)λ5+ c0IVλ6

c5

}

,1

}

.

(12)

Proof. To do this, the use is made of the HamiltonianH

given by (9) following Pontryagin’s maximum principle
[28]. The differential equations (10) governing the adjoint
variablesλi , i = 1, ...,6, are obtained by taking the partial
derivatives ofH with respect to the corresponding state
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variables, so that

dλ1

dt
=−

∂H

∂SH
,

dλ2

dt
=−

∂H

∂AH
,

dλ3

dt
=−

∂H

∂ IH
,

dλ4

dt
=−

∂H

∂RH
,

dλ5

dt
=−

∂H

∂SV
,

dλ6

dt
=−

∂H

∂ IV
,

with terminal conditions (11). Further, the
characterization of the optimal control given by (12) is
derived by solving the partial differential equations;
∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0,

∂H

∂u4
= 0 and

∂H

∂u5
= 0

for u∗1, u∗2, u∗3, u∗4 andu∗5 respectively. This completes the
proof. �

5 Simulations and discussion of results

The optimality system (state equations (6) coupled with
adjoint equations (10)) is solved using an iterative method
of order four Runge-Kutta scheme. The state equations
are solved forward in time with initial guess for the
controls over the simulated time. Owing to the
transversality conditions (11), the adjoint equations are
solved backward in time using the current iteration
solutions of the state equations. Then the controls are
updated by using a convex combination of the previous
controls and the value from the characterization (12). This
process continues until the difference between the values
of unknowns at the previous iteration and that of the
present iteration is negligibly small [17].

Using the parameter values provided in Table 1 such
that R0 = 2.03374 > 1 with initial conditions
SH(0) = 500, AH(0) = 30, IH(0) = 20, RH(0) = 10,
SV(0) = 1000 andIV(0) = 50. The values of the weight
constants in the objective functional (7) are chosen as
B1 = 20, B2 = 500,B3 = 30, c1 = 10, c2 = 10, c3 = 20,
c4 = 15 andc5 = 20. The effects of the optimal control
strategies on the dynamical spread of ZIKV represented
by model (6) are illustrated by considering the following
few scenarios combined with the mosquito-reduction
strategy:

Scenario 1: Prevention (u1) and mosquito
reduction measure (u5)

The combined effects of the use of controlsu1 andu5, for
minimizing the objective functional (7), on the dynamical
spread of ZIKV are shown in Figures 1(a)–1(d). It is
observed that the sizes of asymptomatic humans decrease
in the presence of controlsu1 andu2 when compared with
the case without controls. As expected, the magnitude of
symptomatic infectious humans also reduces with control.

Similarly, the population sizes of both susceptible and
infectious mosquitoes decrease with control when
compared with the case without control.
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Fig. 1(a): Simulations of model (6) showing effects of controls
u1 andu5 on asymptomatic human population.
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Fig. 1(b): Simulations of model (6) showing effects of controls
u1 andu5 on symptomatic human population.
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Fig. 1(c): Simulations of model (6) showing effects of controls
u1 andu5 on susceptible mosquito population.
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Fig. 1(d): Simulations of model (6) showing effects of controls
u1 andu5 on infectious mosquito population.

Scenario 2: Prevention (u1), routine check (u3)
and mosquito-reduction measure (u5)
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Fig. 2(a): Simulations of model (6) showing effects of controls
u1, u3 andu5 on asymptomatic human population.
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Fig. 2(b): Simulations of model (6) showing effects of controls
u1, u3 andu5 on symptomatic human population.

Figures 2(a)–2(d) illustrate how the combination of the
controlsu1, u3 andu5 minimizes the objective functional
(7). In this scenario with the inclusion ofu3, the number
of asymptomatic infectious humans in Figure 2(a)
decreases more rapidly with control, especially when
compared with Figure 1(a), than the case without control.
Moreover, the numbers of symptomatic humans,

susceptible and infectious mosquitoes decline in the
presence of control when compared with the case without
control.
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Fig. 2(c): Simulations of model (6) showing effects of controls
u1, u3 andu5 on susceptible mosquito population.
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Fig. 2(d): Simulations of model (6) showing effects of controls
u1, u3 andu5 on infectious mosquito population.

Scenario 3: Prevention (u1), routine check (u3),
treatment (u4) and mosquito-reduction measure
(u5)
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Fig. 3(a): Simulations of model (6) showing effects of controls
u1, u3, u4 andu5 on asymptomatic human population.

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 5, 969-982 (2018) /www.naturalspublishing.com/Journals.asp 977

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Time (days)

S
ym

p
to

m
a

tic
 I

n
fe

ct
io

u
s 

H
u

m
a

n

 

 
u

1
≠ 0, u

2
= 0, u

3
≠ 0, u

4
≠ 0, u

5
≠ 0

u
1
=u

2
=u

3
=u

4
=u

5
=0

Fig. 3(b): Simulations of model (6) showing effects of controls
u1, u3, u4 andu5 on symptomatic human population.
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Fig. 3(c): Simulations of model (6) showing effects of controls
u1, u3, u4 andu5 on susceptible mosquito population.
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Fig. 3(d): Simulations of model (6) showing effects of control
u1, u3, u4 andu5 on infectious mosquito population.

Due to the inclusion of controlu4 in scenario 3, the
number of symptomatic infectious humans in Figure 3(b)
diminish more rapidly with control, especially when
compared with Figure 2(b), than the case without control.
Whereas, the effects observed on asymptomatic humans,
susceptible and infectious mosquitoes in Figures 3 are the
same when compared with the scenario in Figures 2
accordingly.

Scenario 4: Prevention (u2) and mosquito
reduction measure (u5)
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Fig. 4(a): Simulations of model (6) showing effects of controls
u2 andu5 on asymptomatic human population.
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Fig. 4(b): Simulations of model (6) showing effects of controls
u2 andu5 on symptomatic human population.
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Fig. 4(c): Simulations of model (6) showing effects of controls
u2 andu5 on susceptible mosquito population.
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Fig. 4(d): Simulations of model (6) showing effects of controls
u2 andu5 on infectious mosquito population.

There is no significant difference in the numbers of
asymptomatic and symptomatic humans between the case
with control and the case without control in Figures 4(a)
and 4(b). This shows that the use of controlu2 is less
important in curtailing ZIKV when compared with the
use of controlu1 as shown in Figures 1.

Scenario 5: Prevention (u2), routine check (u3),
treatment (u4) and mosquito-reduction measure
(u5)
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Fig. 5(a): Simulations of model (6) showing effects of controls
u2, u3, u4 andu5 on asymptomatic human population.
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Fig. 5(b): Simulations of model (6) showing effects of controls
u2, u3, u4 andu5 on symptomatic human population.

With the optimal control strategies used in Figures
5(a)–5(d), the reduction in the numbers of asymptomatic
and symptomatic infectious individuals as well as the
reduction in the number of infectious mosquito are less
when compared with the optimal control strategies in
Figure 3. This again confirms that combination of
intervention strategies without the use of controlu1 may
not yield the desired results in curtailing ZIKV spread.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Time (days)

S
u

sc
e

p
tib

le
 M

o
sq

u
ito

 

 
u

1
= 0, u

2
≠ 0, u

3
≠ 0, u

4
≠ 0, u

5
≠ 0

u
1
=u

2
=u

3
=u

4
=u

5
=0

Fig. 5(c): Simulations of model (6) showing effects of controls
u2, u3, u4 andu5 on susceptible mosquito population.
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Fig. 5(d): Simulations of model (6) showing effects of controls
u2, u3, u4 andu5 on infectious mosquito population.

Scenario 6: Prevention (u1 and u2), routine
check (u3), treatment (u4) and mosquito
reduction measure (u5)

The effects of using all the optimal control strategies in
optimizing the objective functional (7) are illustrated in
Figures 6(a)–6(d). It is shown that the sizes of both
asymptomatic and symptomatic infectious humans reduce
when control is applied. Figure 6(c) shows that the total
size of the mosquito population,NV , decreases more
rapidly with control than the case without control. Control
profiles in Figure 6(d) reveal that the optimal controlu1 is
at the upper bound for about 12 days before dropping to
the lower bound while the controlu2 is initially at the
lower bound till around 9 days plus few hours before it is
sustained at the upper bound until 28th day and then
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drops back to the lower bound. Further, the controlu3 is
at the upper bound fort = 19 days before dropping to the
lower bound. The controlu4 is at the upper bound till
about 25 days before reducing to the lower bound. The
last controlu5 is at the upper bound for 10 days before it
is sustained around 0.6 and gradually reduces to the lower
bound at final time.
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Fig. 6(a): Simulations showing the combined effects of all
controls on asymptomatic human population.
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Fig. 6(b): Simulations showing the combined effects of all
controls on symptomatic human population.
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Fig. 6(c): Simulations showing the combined effects of all
controls on the total mosquito population size.
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Fig. 6(d): Simulations of model (6) showing the profile of all
the control functions.

Figures 7(a)–7(c) illustrate the influence of the
saturation constantsα1, α2 and α3 of the nonlinear
incidence rates on the behaviour of asymptomatic and
symptomatic humans as well as the infectious mosquito
population. It is shown that as the saturation constants
increase, the sizes of the infectious humans and mosquito
populations decrease accordingly.
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Fig. 7(a): Simulations of system (1) showing the effect of the
saturation constants on the behaviour of asymptomatic human

population.
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Fig. 7(b): Simulations of system (1) showing the effect of the
saturation constants on the behaviour of symptomatic human

population.
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Fig. 7(c): Simulations of system (1) showing the effect of the
saturation constants on the behaviour of infectious mosquito

population.

Further investigation to justify the need for preventive
and control measures is carried out in Figures 8(a)–8(d).
It is observed in Figure 8(a) that the magnitude of the
symptomatic infectious human population increases as
the value ofβ3 increases fromβ3 = 0.02(R0 = 0.8897)
via β3 = 0.15(R0 = 2.0337) to β3 = 0.25(R0 = 2.6128).
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Fig. 8(a): Simulations investigating the influence ofβ3 on the
magnitude of the symptomatic infectious human population.
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Fig. 8(b): Simulations investigating the influence ofβ3 on the
magnitude of the infectious mosquito population.
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Fig. 8(c): Simulations investigating the influence ofµV on the
basic reproduction number of the ZIKV model
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Fig. 8(d): 2D-contour plot ofR0 as a function ofΛV andb.

Similar feature is observed in Figure 8(b) on the
magnitude of the infectious mosquito population. In
addition, Figure 8(c) shows that∂R0

∂ µV
< 0, which implies

that intensifying mosquito-reduction effort will go a long
way in decreasing the ZIKV spread in the population. In
another perspective, a 2D-contour plot of the basic
reproduction numberR0 as a function of mosquito
recruitment rateΛV and mosquito biting rateb is shown
in Figure 8(d). It can be seen that effort that forbids the
presence of mosquito in the population has the capacity to
bring the value ofR0 below unity leading to the reduction
of ZIKV burden in the population. However, any attitude
that encourages proliferation of mosquito population
would bring the basic reproduction number to a value
greater than unity as depicted in Figure 8(d).

6 Conclusion

A mathematical model, representing the ZIKV
transmission dynamics with nonlinear forces of infection
induced by infected mosquito, asymptomatic and
symptomatic infectious humans, has been developed and
analyzed. With sensitivity analysis carried out on the
model parameters, five intervention strategies signaling a
possible reduction of the basic reproduction number of
the disease are identified. Conditions for the optimal
control of these strategies, which include
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human-mosquito contact prevention, human-human
sexual contact protection, routine check for asymptomatic
individuals, treatment and mosquito reduction strategies,
are derived and analyzed based on the use of optimal
control theory. Therefore, the results of the analysis aided
by simulations show that the combination of the five
intervention strategies could help in preventing and
controlling the transmission of the Zika virus disease.
Moreover, the sizes of the infected mosquito,
asymptomatic and symptomatic infectious humans in the
population could be inhibited by increase in the saturation
constants of the nonlinear forces of infection.
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