Appl. Math. Inf. Sci.12, No. 5, 969-982 (2018) %N =) 969

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120510

Dynamics of Zika Virus Model with Nonlinear Incidence
and Optimal Control Strategies

Samson Olaniyi

Department of Pure and Applied Mathematics, Ladoke Akatdhiversity of Technology, PMB 4000 Ogbomoso, Nigeria

Received: 8 Nov. 2017, Revised: 8 Aug. 2018, Accepted: 11 2048
Published online: 1 Sep. 2018

Abstract: We formulate and analyze Zika virus transmission model witee nonlinear forces of infection from infected mosquito
asymptomatic and symptomatic humans. The sensitivityxesl®f the associated parameters of the model with respélee tbasic
reproduction number are calculated to identify intervemstrategies for prevention and control of Zika virus. Mlé time-dependent
optimal controls are considered. The analysis based ondteofioptimal control theory made popular by Pontryagin'scimam
principle is carried out, and the resulting optimality gystis quantitatively simulated to investigate the impadhefcontrols on the
dynamics of Zika virus. In addition, the effects of non-tmigy of the forces of infection and other key parameterstadisease
transmission are illustrated.
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1 Introduction effects of ZIKV infections while links to other
neurological disorders are also being investigatéd, ([

In recent times, Zika virus (ZIKV) disease has been foundm’ [22), [35).
to be an additional source of concerns to the public ~Mathematical epidemiological models have been
health. The disease can be transmitted to humans throug#eveloped to broaden the understanding of the
sexual intercourse, and primarily through an intermediatelransmission dynamics of diseases. More importantly, the
vector — infected femaléedesmosquito. According to models play great roles in influencing the
the World Health Organization (WHO), 69 countries or decision-making  processes regarding intervention
territories of the world have reported mosquito-bornestrategies for preventing and controlling the emergence
ZIKV transmission while 13 countries or territories have and reemergence of the disease. A number of
reported human-to-human transmission of ZIKS4] mathematical studies on ZIKV transmission dynamics
More often than not, infections with Zika are have been carried out lately. Kucharsitial [15 used a
asymptomatic because only 20% of infected humangompartmental mathematical model to examine the
develop symptoms such as mild fever, skin rashes2013-14 outbreak on the six major archipelagos of
conjuctivitis, muscle and joint pair®[. Frenc_h Polynesig. Gaet al [1]] s'gudied a model to
The emergence of Zika virus disease in humans‘”VeSt'Qat? the impact of mosquito-borne and sexual
occurred in 1952 in Uganda and the United Republic oftransmission on the spread and control of ZIKV. I}
Tanzania. Since then, there have been several outbreaks Bt stability analysis of infectious state of ZIKV in many
ZIKV in Africa, Americas, Asia and the Pacific, with the tyPes of population was presented with a view to taking
first large outbreak reported from the Island of Yap NEcessary precautions against upcoming epidemic.
(Federated States of Micronesia) in 2033|[ It has been Agusto et al [1] analyzed a deterministic model of
projected that Brazil among the Americas will have the ZIKV by incorporating human vertical transmission of
largest total number of infections by more than three fold,the virus, the birth of babies with microcephaly and
due to a combination of its size and suitability for asymptomatically infected individuals. Padmanablean
transmission 29. Complications like microcephaly and al [30] considered ZIKV model that incorporates both
Guillain-Barré syndrome have been attributed to thesexual and vector transmission modes with constant
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preventive parameters. Readers may also sk}, ([16], vector-borne and sexually transmitted disease, then the
[20], [26]) among others for some mathematical susceptible human population can be infected through the
perspectives on ZIKV transmission dynamics. In anotherbite of the infectious femalé\edesmosquito (at a rate
perspective, the time-dependent optimal control funstion 31b), and through sexual intercourse with both
have been incorporated into a few ZIKV models with a symptomatic (at a rat¢,) and asymptomatic infected
view to exploring prevention and control measures for theindividuals (at a ratg33). Where 31, 3> and 33 are the
disease spreadd[, [8], [19], [32)). disease transmission probabilities causedhayly and

In this paper, a mathematical model is designed toAy respectively, and is the mosquito biting rate. It is apt
analyse the ZIKV transmission dynamics with nonlinearto assume thagk, < f33 since infectious humans who show
forces of infection induced by infected mosquito, the symptoms of ZIKV disease are less likely to engage in
asymptomatic and symptomatic infectious humans. Thesexual intercourse than the asymptomatic individuals.
optimal control analysis is performed on the Further, the infection of the susceptible human population
non-autonomous version of the formulated model. Thegenerates either the population of asymptomatic or
effects of the nonlinearity of the incidence terms and thesymptomatic infectious humans. If it is assumed that
five control variables, including human-mosquito contactO < 68 < 1 is the fraction of the susceptible human
prevention, human-human sexual contact preventionpopulation who becomes asymptomatic due to infection,
routine check for asymptomatic individuals, treatmentthen the remaining fractiofl — 6) is symptomatic due to
and mosquito reduction strategies, in preventing andnfection. The population of the recovered hunan is
controlling the spread process of the ZIKV disease aregenerated by the spontaneous recovery of both
investigated. asymptomatic and symptomatic infectious individuals at

The rest of the paper is arranged as follows. Se@ion ratesyy and gy respectively. The natural death rate of
presents the formulation of the autonomous model withhuman is represented Ipy,.
its basic qualitative properties. In Secti8rthe sensitivity On the other hand, the population of the susceptible
indexes of the parameters of the model with respect to thenosquito is reduced by infection due to effective contact
basic reproduction number are investigated. In Secetion with symptomatic (at a ratg,b) and asymptomatic (at a
optimal control analysis of the non-autonomous modelrate 33b) humans. As a result of the infection of the
based on Pontryagin’s maximum principle is carried out.susceptible mosquito, the population of the infectious
Section 5 provides the discussion of the quantitative mosquito is produced. Lety be the natural death rate for
results obtained from simulations. In Secti®rthe paper both susceptible and infectious mosquito populations.
is wrapped up with concluding remarks. Based on the foregoing assumptions, a system of

ordinary differential equations describing the ZIKV
transmission is given by

d$y
The human population comprises four compartments,  dt
namely susceptibl&y(t) (number of humans who are —HHSH
liable to be infected with ZIKV at timé¢), asymptomatic
infected Ay (t) (number of humans infected with ZIKV dAy — 9( Bibly | Poln  _PsAw )SH
without showing symptoms of the disease but are capable ~ dt Lrogly  dagly - Itashy
of infecting both humans and mosquitoes at ti)e —(f + HH)AR
symptomatic infectedy (t) (number of infected humans dl
with ZIKV symptoms and are capable of transmitting the ~ —2 = (1—6) (l’ilg'\l’ b Bt ) S
disease to both humans and mosquitoes at timand dt (o4 +HH)|1HV Zn ¥
recovered Ry(t) (those recovered from the ZIKV
infection spontaneously or therapeutically). Then, the dRy
total human population at timg denoted byNy(t) is —— = WHAH + OHlH — UHRH

2 Moddl formulation

= Ay — ( Bibly + 1ﬁle + lI33AH )SH

1+aqly +asly +03AH

1)

. t
given byNe(t) = S (t) + Au(t) + (1) + Ra 1): d
The total vector (mosquito) population at tinte dsy bl b
denoted byNy (1), is sub-classified into susceptibe(t) at N — (1&2a2TH + 1&301:& ) S-S

(number of mosquitoes not yet infected with ZIKV but
are capable of being infected by both asymptomatic and dlv /gy, BabAy |
symptomatic infectious humans at tinip and infected dat (1+azIH T 1+a3AH)SV —Hvlv,
Iv (t) (number of infectious mosquitoes that are capable of

transmitting ZIKV to the susceptible humans at tie where the nonlinear forces of infection induced by
so thatNy (t) = Sy (t) + Iy (t). infectious mosquito, symptomatic and asymptomatic

Let the recruitment terms for human and mosquno”"fe‘:t'ousI humans are given, respectively, by
populations (both assumed susceptible) be representeg,w,ﬂw1+(§'2|H and 1+a a7 Which are of saturated form
respectively byAy and Ay. Since Zika virus is a introduced by Capasso and Ser@).[Noting thatay, a2
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andasz are positive saturation constants that determine thdroof.
level at which the force of infection saturates. This js given by
nonlinear force of infection of saturated form which can Ny

also be referred to as Holling-type Il (see, e.@g|[[31])

has been used in vector-borne related disease (malari

models (R4, [27]). The choice of this form is informed

by the fact that the number of effective contacts (sexual 0Ny (t
vector transmission) between susceptible and infectiou
individuals may saturate at high infective levels due to

crowding of infectious individuals or due to the

The rate of change of the total human population
= Ay — ugNy which on solving yields
(t) = NH(O)e‘“H‘ + ZH(1 — e Ml A similar
proach for the total mosquito population gives

(t) = Ny(0)e At + 2v(1 — e W) It follows that
t) — AE and Ny (t) — /;X// ast — oo. In particular,

Al Al Al ;
?\I(t)fu—H it Nu(0) < 2% and Ny(t) < 4 if
Ny (0) < —V Hence,® is positively invariant. O

precautionary strategies put in place by the susceptible

individuals.

2.1 Basic properties

Since model I) monitors human and vector populations,

Therefore, it is sufficient to study the dynamics of
model @) in region® where the model can be considered
as being epidemiologically and mathematically
well-posed 12].

all its associated parameters are nonnegative. It thu8 Basic reproduction number and sensitivity

remains to show that the state variables of the motlel (
are nonnegative.

Theorem 1. The solutions $(t), A4 (t), I (t), Ra(t),
S/(t), Iv(t), of the ZIKV model(1) with nonnegative
initial data $4(0), Au(0), 11(0), R4(0), S/(0), Iv(0),
remain nonnegative for all timext 0.

Proof. The first equation of modellj can be written as
d b | A
d_? + (lilC{lY\/ + 15%7'2_|IH + lfi!giH +IJH) S_| 2 O’
so that
d t _Piblv () Baln ({)
a [SH( >eXp(f0 e Toaae
. 2)
A
+ 22+ pt) | > 0
Integrating ) gives
bl [
SH(t) > Su(0) exp| - (J§ L) | LilnlE)
. 3)
A
+ l+C!3KH dZ T HH t):| >0.

In a similar manner, it can be shown that other stateand

variables Ay (t), In(t),

Ra(t), Sy(t) and Iy(t) are
nonnegative for all > 0. O

Next, consider the biologically feasible region defined by

D =Dy x Dy C RY xRZ, where

analysis

An important epidemiological threshold which measures

the spread potential of an infectious disease in a given

population is a basic reproduction number, usually

denoted byZy. For ZIKV model (1), Zo can be defined

as the average number of secondary infections, in a

completely susceptible human or mosquito population,

caused by a typical infectious (mosquito or symptomatic

or asymptomatic) individual over its period of

infectiousness. Using the technique and notatior3@}, [

the matrixF of the new infection terms and matnix of

the remaining transition terms are given, respectively, by

6B
HH

/\H /\v
0B3,— 0B, —
B2 I B Y

M A A
(1- 6)B3u_H (1- G)Bz“—H (1- Q)Blm

Y,
Bs Y

W+pus O 0
V= —a Ox+py O ).

Ny
— 0
B2 Y

0 0 v

Consequently, the basic reproduction number of the ZIKV
model @) is given by

N
@H:{(S{,AH,IH,RH)GR‘l NH<H_:} :@ozp(val)
AL . NAR  ABIDPNG (4)
and =5 + 4| % 2 + 3 )
5 Ay 2| MH M5 Hy
Dy = {(S«/,lv,) ERTINy < —}
Hv where
It can be shown thad is a positive invariant region. _(1-9)B 6B
Theorem 2. The region® is positively invariant with (O ) (W )
respect to the modél).
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It is necessary at this stage to carry out sensitivity amglys
of the model 1) with a view to determining the relative
change in the basic reproduction numb&yto the relative
change in its associated parameters. In what follows, the
normalized forward sensitivity index o#, that depends
differentiably on any of its parameteris defined as

r/i’o_% P

= (5)
Based on the values of the parameters in Table 1, the
sensitivity indexes presented in Table 2 with respect to all
the parameters in4f are calculated using5). The
parameters with positive sensitivity index indicate that a
increase (or decrease) in the value of each of the
parameters leads to a corresponding increase (or

Table 2: Sensitivity indexes o7, with respect to the

model parameters

Parameter  Sensitivity

index
MH 0.03972
Ny 0.96028
By 0.48014
B> 0.03999
Bs 0.47987
b 0.96028
0 0.31991
UH —0.03984
Ty, —1.44042
Y —0.47976
OH —0.03998

decrease) in the basic reproduction number. Converselffor example, increasing the natural death rate of

the parameters with negative index means that an increasaosquito, 14y, by 10% decreases the basic reproduction

(or decrease) in the value of the parameters causes mumber,%,, by 14%. Hence, sensitivity analysis, when

decrease (or increase) in the basic reproduction number afarried out on a disease model, helps in focusing on

the ZIKV model @). appropriate intervention strategies for preventing and
controlling the spread of the diseag].

Table 1: Description of variables and parameters

Variable Description

SH(t) Population of susceptible humans
An(t) Asymptomatic infectious humans population
In () Symptomatic infectious humans population
Ry (t) Population of recovered humans
S/ (t) Population of susceptible mosquitoes
Iy (t) Population of infectious mosquitoes
NH (t) Total human population
Ny (t) Total mosquito population
Parameter  Description Range Baseline  Source
value
AH Human recruitment term 0.000011 19
Ny Mosquito recruitment term 0.05-0.5 0.13 27
B Transmission probability per contact
by infectious mosquito 0-0.75 0.4 17, [19], [30]
B Transmission probability per contact
by symptomatic infectious human 0-0.5 0.05 19]
B3 Transmission probability per contact
by asymptomatic infectious human 0-1 0.15 Assumed
b Mosquito biting rate 0.5 1, [19
6 Fraction of susceptible human that becomes
asymptomatic due to infection 0-1 0.8 Assumed
i Human natural death rate 02365 — a53gs  0.000046 ], [21]
L Mosquito natural death rate 0.05-0.5 0.066 4], [24]
Yo Recovery rate
for asymptomatic human 0.05-0.33 0.2 Assumed
OH Recovery rate
for symptomatic human 0.0667-0.33 0.2 19
(@© 2018 NSP
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4 Analysis of optimal control problem of the objective functional given by
Arising from the results of the sensitivity analysis, J= éf (B1AH + Baln +B3(Sy + Iv) 7
time-dependent optimal control ~measures are + 3 (caUZ + coU + C3U3 + cauZ + csU2) ) dit,

incorporated into the modell) in this section. And
optimal control theory based on the Pontryagin's whereBy, By, Bs, C1, C2, C3, C4 andcs are positive weight
maximum principle 28] is employed to obtain the constants. The termluf represents the cost associated
necessary conditions for the optimal strategies aimed awith mosquito-human contact protection efforts where
preventing and controlling the disease spread. Thus, th€2U3 represents the cost associated with human-human
following five optimal control variables are considered:  sexual contact protection efforts. Further, the tetmz%,
cauZ and csuZ represent the cost associated with routine
check efforts for diagnosing asymptomatic individuals,
Jreatment efforts for symptomatic patients and
skin repellent lotions. mosquito-reduction efforts respectively. .The costs of
(i)).The control uy(t) which represents a measure for cqntrols h*’?“’e. been chosen to be quadraqc in accordance
preventing human-to-human  sexual ZIKV with what is in other literature on epidemic modelg]([

transmission through the use of condoms. (211, [2.3]’ [36])'. . .

(iii). The controlus(t) represents a surveillance measure or C,)kf |r>1kterest*|s to seek an optimal control quintupe
routine check for identifying and treating U3, U3, Uz andug such that
asymptomatic ZIKV infected individuals.

(iv).The controluy(t) represents a treatment measure for
symptomatic individuals.

(v).The control us(t) represents a mosquito-reduction \yhere the control set is defined by

strategy targeted at the mosquito breeding sites andy, — {u 10 < ui(t) < 1,Lebesgue measurabie|0, ]}
indoors through the use of residual spraying. fori=1,...,5.

().The controlusi(t) which represents a measure for
preventing mosquito-borne  ZIKV  transmission
through the use of insecticide-treated bed nets an

J(ug, U3, uz, U, Ug) =
min{J(uy, Uz, U3, Us, Us) : U1, U2, U3, Us,Us € % },

(8)

Based on the use of the aforementioned five control
variables, the autonomous model) (becomes ZIKV ) )
model @) governed by a non-autonomous system of4.1 Existence of an optimal control

ordinary differential equations of the form: _ _ .
To determine the existence of an optimal control to the

9% _ Ay — ((1*U1(t>)ﬁlb|\/ + (1*U2(t))32|H>S_| non-autonomous model governed b§),(a result from
d Lraily Lrazly Fleming and Rischel 10] is employed, where the
+ (%) Sy — UnSy : . L
T4 Ay H following properties must be satisfied:
P1.The control set is convex and closed.
1— b 1— | 1— A A I .
dif =0 (( ﬁ(gl)f,l v L 1%;?52 iy 1%52);\% : ) SH P2.The right hand side of the state system is bounded by
— (W + kaus(t) + pr)An a linear function in the state and control variables.
P3.The integrand of the objective functional is convex
dl_? = (1-9) <1—i|1+(21)|€1b|v + <1—1u+22352m ) Sy with respe;ct to the control, and
(1—tn(1)) BoA P4.There exist constanls, b, > 0 andbs > 1 such that
+(1-90) <—1+a3AH )SH — Only the objective functional is bounded below by
+(koug(t) + pn)IH bs
b1 (|Ui|2) z_ b2.
9 — (Y + kaUs(t))An + (O + kola(t))In — Hp R One sees that P1 is satisfied by the definition of the
control setuy, Uy, Uz, Uy, Us € % . Considering Theorem 2,
9% _ (21— us(t))Av — (”’fﬁ;ﬁzb'“ + ”’ﬂfﬁs)fab‘\“)sv the state variables angriori bounded so that the right
— (v -+ CoUs(t))Sy hand side of the non-autonomous system given &y (
satisfies P2. Furthermore, the integrand in the objective
dv _ <(1*U1(t)>32b|H + (kw(t))ﬁmm)s\/ functional J obtained by 7) is convex on% satisfying
dt Lrazly o Lrashn P3. Finally, P4 is satisfied since the state variables are
— (kv +couis(t)lv, ) bounded, then some constabisb, > 0 andbs > 1 can
whereky, ky, andcy are positive rate constants. The goal be obtained satisfying the bound, by

of the optimal control strategies is to minimize the .2 > by (Jug|?+|up|?+ |ug|? + [ua?+ us|?) 2 — by,
number of infectious humans (asymptomatic andwhere.Z is the Lagrangian referred to as the integrand of
symptomatic) and the vector population while keeping thethe objective functional given byry.

costs of applying the controlsi(t), ux(t), us(t), ua(t) Arising from the above analysis, the following
andus(t), as low as possible. To do this, the use is madeexistence result is claimed.
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Lemmal. If the objective functional J given by) is
defined on a set of bounded cont@ and is subject to
the non-autonomous systgB) with initial conditions at
t = 0, then3 an optimal control t = (uj,us,us, u;, us)
such that Ju*) = min{J(u) 1w e 7}, fori=1,2,...,5

The Pontryagin’'s maximum principle2§] converts
system 6), with (7) and @) into a problem of minimizing
pointwise a Hamiltonian#’, with respect tai;, Uy, Uz, Ug
andus of the form given by

J = B1Aq +Baolp +B3(Sy +1v)
+% (Cluf + CzU% + C3U% + C4U£21 + —I—C5U%)

[ 1—uy)Bibl 1—w)Bol
AL | Ak~ (( 1+1o)rlli/ v L 1+c21)2|H ;

e ) TERTILY

|_;

[ 1—uq)B1bl 1-up) ol
g [0 (Cpth 4 G

%) SH— (M +klu3+UH)AH}

=

4!

[ 1— bl 1- I
R e

+ %)S—I — (OH +KoUa + ) I

+A4 [(VH + klu3)AH + (UH + k2U4)|H
— HUH Ry ]

+As [(1— Us) Ay — (%

+ G ) s, — (v + o))

+Ae [((1—U1)sz|H 4 (1) BsbAyy ) s,

1+azoly 1+03AH
— (pv +Cous)lv],
whereA;, i =1,2,...,6, are the adjoint variables. The next

result presents the adjoint system and characterization ot

the optimal control.

Theorem 3. Given an optimal control quintuple
(uj,u3, Us, Uy, , ug) that minimizes J ove#/ and solutions
of the associated non-autonomous sys(émthere exist
adjoint variablesA;, i = 1,2, ..., 6, satisfying

d/\1 = (A1— 02— (1— 6)A3) {((1*U1)Blb|v + (1-up)Boln

1+aqly 1+asly
(1-U2) BsAy
+ W) + “H)\l}

92 = (M — 20— (1- 0)hg) 02005

+(As — )\6)% + (A2 = Ag) (W +Kag)

+UnA2— By

U2 = (M- 04— (1- 0)Aq) 2y

(1+azln)

+(As — Ae) TP 1 (A3 — Ag) (01 + kolia)

+UnAz— By

dA“ = UHA4

d)\ | Al
G = (s —Ae)(1—un)b (B + B )

+ (v + CoUs)As — Bs

d)\e = (AM1—6A— (1—6)A3 )(l Ul)Ble-I

(1+aqly)?
+ (v + CoUs)Ag — Bs
(10)
with transversality conditions
Aits)=0,i=12,...,6. (112)

Then, the optimal control@;, us, uj, u;, ug) are given by

uj = min{max{o, C—ll {((1— 0)A3+ 622 — A1) ﬁf{'}\{ﬁ

+ (Ao As) (Bt + b )|} 1}

u;:min{max{ [(eAz M) BelnS

1+asly

+ <<1—6>A3—A1>ﬁagz]},1},

uj = min{ max 0, (A2—A4) klAH},l},

o
- e =t} )
(o'

(A A IvA
maxd 0, v+CoS/ )As5+ ColvAe 1

(12)

L
ug = min

Proof. To do this, the use is made of the Hamiltonigfi
given by Q) following Pontryagin’s maximum principle
[28]. The differential equationslQ) governing the adjoint
variablesj;, i = 1,...,6, are obtained by taking the partial
derivatives of# with respect to the corresponding state

(@© 2018 NSP
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Similarly, the population sizes of both susceptible and

variables, so that
infectious mosquitoes decrease with control when

% — _% % — _% compared with the case without control.
dt 0y’ dt oAy’
Ay ox dh_ on
dt  dly’ dt ORy’
ds o7 dhe __0H ea
dt  9S,’ dt  aly’

with  terminal  conditions 11). Further, the

characterization of the optimal control given by2 is
derived by solving the partial differential equations;

Asymptomatic Infectious Human

o d%_od%_od%_Oanddﬁ_

dul o dUZ o 5U3 o 5U4 o 5U5 o

for uj, u3, U3, u; andug respectively. This completes the

proof. H O B SN S

Time (days)

. . . . Fig. 1(a): Simulations of model&) showing effects of controls
5 Simulations and discussion of results u; andus on asymptomatic human population.
The optimality system (state equatior® €oupled with
adjoint equationsl(0)) is solved using an iterative method
of order four Runge-Kutta scheme. The state equations
are solved forward in time with initial guess for the
controls over the simulated time. Owing to the -
transversality conditionsl(l), the adjoint equations are o
solved backward in time using the current iteration
solutions of the state equations. Then the controls are
updated by using a convex combination of the previous
controls and the value from the characterizatib®) (This
process continues until the difference between the values
of unknowns at the previous iteration and that of the
present iteration is negligibly small7].

Using the parameter values provided in Table 1 such
that %y = 2.03374 > 1 with initial conditions % s m " P P o
$4(0) = 500, A4(0) = 30, I4(0) = 20, R4(0) = 10, Time (@259
S/(0) = 1000 andly (0) = 50. The values of the weight
constants in the objective functional)(are chosen as
B; = 20,B; = 500,B3 = 30, ¢; = 10, ¢c; = 10, c3 = 20,
¢4 = 15 andcs = 20. The effects of the optimal control
strategies on the dynamical spread of ZIKV represented
by model @) are illustrated by considering the following
few scenarios combined with the mosquito-reduction
strategy:

u# 0, u= 0, ug= 0, us= 0, ug# 0

v - = = U, ZU,=U,=U ==
u1u2u3u4u50

Symptomatic Infectious Human
IS
5

Fig. 1(b): Simulations of model&) showing effects of controls
u; andus on symptomatic human population.

1000 T T T

u# 0, u= 0, ug= 0, us= 0, ug# 0 i

= = =U,=U,=070, 50 =0

Scenario 1: Prevention ¢ and mosquito
reduction measure g)

Susceptible Mosquito

The combined effects of the use of controjsandus, for
minimizing the objective functionalr§, on the dynamical
spread of ZIKV are shown in Figures 1(a)-1(d). It is
observed that the sizes of asymptomatic humans decrease
in the presence of controlg andu, when compared with

the case without controls. As expected, the magnitude ofFig. 1(c): Simulations of model)) showing effects of controls
symptomatic infectious humans also reduces with control. u; andus on susceptible mosquito population.

~a.
15 20 25 30
Time (days)
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600 T T T T T . - . - . -
07 0.U;70,u;20,4,0, U2 0 susceptible and infectious mosquitoes decline in the
- = = U =U=u=u,=0.=0 . .
00 e B R presence of control when compared with the case without
; control.
g 400¢ ; \\
2 ! .
g 1 s‘
é 300F ,' ‘\ 1000 : : :
g ! . u,#0,u,=0,u#0,u,=0,u0
% 200k l‘ ~~~~ - .u1:u2:u3:u4:u5:0
: ~~‘.~
100" 2
\ H
N g
0 K
0 5 10 15 20 25 30 2
Time (days) g‘;
3

Fig. 1(d): Simulations of model&) showing effects of controls
u; andus on infectious mosquito population.

Scenario 2: Prevention g, routine check ()
and mosquito-reduction measure;u

300 T T T

u# 0, u= 0, u# 0, uz= 0, ug# 0
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Fig. 2(a): Simulations of model®) showing effects of controls
Uz, uz andus on asymptomatic human population.
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Fig. 2(b): Simulations of model&) showing effects of controls
Uz, uz andus on symptomatic human population.

Figures 2(a)-2(d) illustrate how the combination of the
controlsuy, uz andus minimizes the objective functional
(7). In this scenario with the inclusion af, the number
of asymptomatic infectious humans in Figure 2(a)
decreases more rapidly with control, especially when
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Time (days)

Fig. 2(c): Simulations of model®) showing effects of controls

U1, Uz andus on susceptible mosquito population.
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Fig. 2(d): Simulations of model&) showing effects of controls

U1, Uz andus on infectious mosquito population.
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: Scenario 3: Prevention ¢, routine check (),
treatment (y) and mosquito-reduction measure

300

u# 0, u= 0, ug# 0, u# 0, ug# 0

= = =U,7U,=0,50, 50,20

15
Time (days)

10

30

compared with Figure 1(a), than the case without control. Fig. 3(a): Simulations of model) showing effects of controls
Uz, Uz, Ug andus on asymptomatic human population.

Moreover, the numbers of symptomatic humans,

(@© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 5, 969-982 (2018)www.naturalspublishing.com/Journals.asp

977

N SS ¥

Symptomatic Infectious Human

.
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Fig. 3(b): Simulations of model&) showing effects of controls
Uz, Uz, Ug andus on symptomatic human population.
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Fig. 3(c): Simulations of model&) showing effects of controls
Uz, Uz, Ug andus on susceptible mosquito population.

Infectious Mosquito

Fig. 3(d): Simulations of model&) showing effects of control
Uz, Uz, Ug andus on infectious mosquito population.

Due to the inclusion of controli; in scenario 3, the
number of symptomatic infectious humans in Figure 3(b)
diminish more rapidly with control, especially when
compared with Figure 2(b), than the case without control.
Whereas, the effects observed on asymptomatic humans,
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Fig. 4(a): Simulations of model&) showing effects of controls
Uz andus on asymptomatic human population.
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000U 0D With the optimal control strategies used in Figures
R 5(a)-5(d), the reduction in the numbers of asymptomatic
! and symptomatic infectious individuals as well as the
goor J reduction in the number of infectious mosquito are less
; wl when compared with the optimal control strategies in
H Figure 3. This again confirms that combination of
iﬁm,:' intervention strategies without the use of contplmay
! T not yield the desired results in curtailing ZIKV spread.
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Fig. 4(d): Simulations of model&) showing effects of controls
U andus on infectious mosquito population.

There is no significant difference in the numbers of
asymptomatic and symptomatic humans between the case
with control and the case without control in Figures 4(a)
and 4(b). This shows that the use of contmlis less
important in curtailing ZIKV when compared with the
use of controli; as shown in Figures 1.
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Fig. 5(c): Simulations of model&) showing effects of controls
Scenario 5: Prevention @" routine check (g)’ Uy, U3, Ug andus on susceptible mosquito population.
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. Fig. 5(d): Simulations of model&) showing effects of controls
Uz, U3, Ug andus on infectious mosquito population.
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Fig. 5(a): Simulations of model®) showing effects of controls

Up, Ug, Us andus on asymptomatic human population. Scenario 6: Prevention guand ), routine

check (4), treatment (4) and mosquito
reduction measure )
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y The effects of using all the optimal control strategies in

optimizing the objective functional7] are illustrated in

Figures 6(a)-6(d). It is shown that the sizes of both

asymptomatic and symptomatic infectious humans reduce

when control is applied. Figure 6(c) shows that the total

size of the mosquito populatior\ly, decreases more

rapidly with control than the case without control. Control

. profiles in Figure 6(d) reveal that the optimal contuglis

% 5 o B 2 5@ at the upper bound for about 12 days before dropping to
the lower bound while the contral, is initially at the
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Fig. 5(b): Simulations of model&) showing effects of controls  lower bound till around 9 days plus few hours before it is
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drops back to the lower bound. Further, the contrpls

at the upper bound fdr= 19 days before dropping to the
lower bound. The control, is at the upper bound till
about 25 days before reducing to the lower bound. The
last controlus is at the upper bound for 10 days before it
is sustained around®and gradually reduces to the lower
bound at final time.
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Fig. 6(d): Simulations of model&) showing the profile of all
the control functions.

Figures 7(a)-7(c) illustrate the influence of the

Asymptomatic Infectious Human

0 5 10 15
Time (days)

30

saturation constantsr;, a, and as of the nonlinear

incidence rates on the behaviour of asymptomatic and
symptomatic humans as well as the infectious mosquito
population. It is shown that as the saturation constants
increase, the sizes of the infectious humans and mosquito

Fig. 6(a): Simulations showing the combined effects of all
controls on asymptomatic human population.
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Fig. 6(b): Simulations showing the combined effects of all
controls on symptomatic human population.
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Fig. 6(c): Simulations showing the combined effects of all
controls on the total mosquito population size.

populations decrease accordingly.
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Fig. 7(a): Simulations of systemlj showing the effect of the
saturation constants on the behaviour of asymptomatic huma
population.
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Fig. 7(b): Simulations of systeml] showing the effect of the
saturation constants on the behaviour of symptomatic human
population.
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Fig. 7(c): Simulations of systeml] showing the effect of the
saturation constants on the behaviour of infectious masqui
population.

Further investigation to justify the need for preventive

and control measures is carried out in Figures 8(a)—8(d).

It is observed in Figure 8(a) that the magnitude of the

symptomatic infectious human population increases as

the value off33 increases fronBs = 0.02(%, = 0.8897)
via B3 = 0.15(% = 2.0337) to B3 = 0.25(%o = 2.6128).

a o
s 3

N
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Fig. 8(a): Simulations investigating the influence & on the
magnitude of the symptomatic infectious human population.

600

o
3
3

@ IS
S S
3 3

N
S
3

Infectious Mosquito Population

100!

15 20 25 30
Time(years)

0 5 10

Fig. 8(b): Simulations investigating the influence @f on the
magnitude of the infectious mosquito population.
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Fig. 8(c): Simulations investigating the influence @§ on the
basic reproduction number of the ZIKV model
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Fig. 8(d): 2D-contour plot of%y as a function of\y andb.

Similar feature is observed in Figure 8(b) on the
magnitude of the infectious mosquito population. In
addition, Figure 8(c) shows th%% < 0, which implies
that intensifying mosquito-reduction effort will go a long
way in decreasing the ZIKV spread in the population. In
another perspective, a 2D-contour plot of the basic
reproduction number%, as a function of mosquito
recruitment rate’\y and mosquito biting raté is shown

in Figure 8(d). It can be seen that effort that forbids the
presence of mosquito in the population has the capacity to
bring the value ofZy below unity leading to the reduction
of ZIKV burden in the population. However, any attitude
that encourages proliferation of mosquito population
would bring the basic reproduction number to a value
greater than unity as depicted in Figure 8(d).

6 Conclusion

A mathematical model, representing the ZIKV
transmission dynamics with nonlinear forces of infection
induced by infected mosquito, asymptomatic and
symptomatic infectious humans, has been developed and
analyzed. With sensitivity analysis carried out on the
model parameters, five intervention strategies signaling a
possible reduction of the basic reproduction number of
the disease are identified. Conditions for the optimal
control of these strategies, which include
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