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Abstract: In this article, point and interval estimators are derived for the reliability model when both strength and stress variables are
independent and follow generalized length-biased Maxwell distributions, utilizing ranked set sampling. Further, Monte Carlo
simulations are performed to evaluate and compare the performance of the maximum likelihood estimator (MLE) based on RSS with
that based on SRS. Finally, the proposed methodology is applied to real data to demonstrate its effectiveness. AIC and BIC values are
used to determine the Goodness of fit of the fitted probability distributions to the real data sets. We concluded that maximum
likelihood estimator of R based on RSS outperforms its SRS counterpart.

Keywords: Monte Carlo simulation, maximum likelihood estimator, Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) values.

1 Introduction

The stress-strength reliability model, represented as R = P(X > Y), is commonly used to describe the life of a component
that is subjected to a random stress variable Y and has a random strength variable X. The component fails when Y
exceeds X. Inference for the stress-strength model is a widely studied problem in various fields such as medicine and
quality control, with extensive bibliography available on the topic. Ranked set sampling (RSS) has gained popularity as
a method for estimating R. RSS provides a more informative sample compared to simple random sampling (SRS) of
the same size, as it incorporates information from the ranking process in addition to the quantified observations. This
paper focuses on estimating R when the stress and strength variables follow two independent Generalized Length biased
Maxwell distributions, with a common scale parameter and different shape parameters, using RSS. This paper focuses on
the stress-strength model and its application in estimating the reliability parameter R. The stress-strength model has been
extensively studied in the literature, with notable works by Kotz et al.(2003), Chaturvedi et al.(2016), and Hassan (2017).
The concept of stress-strength modeling in a multi-component system was introduced by Bhattacharyya and Johnson in
1974, and more recent investigations have been carried out by Rao and Kantam (2010), Rao et al. (2017), Hassan (2017),
and Hassan and Alohali (2018). The ranked set sampling (RSS) method is employed to estimate R in this study, as it has
gained popularity in statistical inference due to its ability to yield a more informative sample of the underlying population
compared to simple random sampling (SRS). The method leverages not only the quantified observations but also the
ranking process, making it suitable for the stress-strength modeling scenario. We derive the point estimator of R based on
the Generalized length biased Maxwell distribution and RSS using the maximum likelihood (ML) method.

The paper is structured as follows: In Section 2, advantages and benefits of Ranked Set Sampling have been discussed.
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In Section 3, an overview of the Generalized Length biased Maxwell distribution and the point estimator of R using the
maximum likelihood method based on SRS is presented. Section 3 provides a brief description of RSS and the derivation
of the point estimator for R using maximum likelihood based on RSS. In Section 4, we presented some numerical findings
based on simulated as well as real data sets. Finally, in Section 5 We presented few remarks and conclusions.

2 Advantages and Benefits of Ranked Set Sampling

Ranked Set Sampling (RSS) is a statistical sampling technique that offers several advantages, particularly in reliability
and life testing. Here are some key benefits:

2.1 Improved Efficiency

More accurate estimates: RSS can provide more precise estimates of population parameters (such as mean and variance)
compared to simple random sampling (SRS), especially when the ranking process is effective.

Efficiency in small sample sizes: RSS is more efficient in estimating parameters even with smaller sample sizes, making
it suitable for life testing where only a limited number of units are available.

2.2 Cost-effectiveness

Reduction in measurement cost: In some cases, the measurement of lifetimes or failure times can be expensive or
destructive. With RSS, not all units need to be fully measured, reducing overall costs while still obtaining reliable results.
Partial rankings reduce effort: Since only the ranking of units is required in the preliminary stage, this reduces the need
for full measurements on all sampled items.

2.3 Enhanced estimation in life testing

Better parameter estimation: In life testing and reliability analysis, parameters such as failure rates, hazard functions,
and reliability functions can be estimated more accurately using RSS, leading to more reliable predictions of product
lifetimes or failure times.

Handling censored data: In life testing, failure times may be censored (due to time constraints or non-failures within the
test period). RSS can handle such censored data better, improving the reliability of the estimates.

2.4 Flexibility in sampling design

Adaptability to various distributions: RSS is not restricted to a particular distribution and can be applied to different
types of populations, including those with skewed or heavy-tailed distributions, which are common in reliability and life
testing data.

Use with different ranking methods: Expert judgment or auxiliary variables can be used to rank units, making RSS
versatile in its application to various reliability scenarios. e) Reduction in bias

More representative sample: Since ranking helps select more representative units from the population, RSS reduces the
bias that may occur in traditional random sampling techniques, providing better inference about the population.
Balanced data for extreme values: In life testing, extreme values (such as long survival times or early failures) are
of significant interest. RSS helps ensure that such values are well-represented, leading to more balanced and insightful
results.

2.5 Improved Inferences

Enhanced hypothesis testing: RSS improves the power of hypothesis tests in reliability studies. This means that tests for
differences in failure rates, lifetimes, or reliability between groups are more sensitive, leading to more robust conclusions.
Better confidence intervals: The confidence intervals for life testing parameters (e.g., mean time to failure) are narrower
and more precise using RSS compared to traditional sampling methods.
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2.6 Applications in Reliability Studies

Failure-time analysis: In reliability studies, ranked set sampling allows for more efficient estimation of failure-time
distributions, such as the exponential, Weibull, or lognormal distributions, which are often used to model lifetimes.
Estimation of reliability functions: RSS can be used to estimate the reliability function more effectively, particularly
when the ranking process is informative and consistent with the underlying failure process.

3 Properties and Characteristics

The Generalized Length Biased Maxwell distribution, a continuous probability distribution, finds extensive utility across
various fields such as demography, actuarial science, biology, survival analysis, and computer science. Its prevalence
stems from its characteristic of possessing a rising hazard rate concerning the lifespan of systems.

The probability density function (PDF) and cumulative distribution function (CDF) of Generalized Length Biased
Maxwell Distribution are given respectively as,
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respectively where x > 0,0 >0,k > 0. I'(k+ %) is the gamma function and 7(-) is the incomplete gamma function.
The Hazard Rate of GLBM distribution is given by,
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Whereas the reverse hazard rate is given by,
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In Figure 1, we plot pdf of GLBM distribution for different scale parameter values. In figure 2 and 3, we plot Hazard rate
and Reversed hazard rate of the distribution.
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Fig. 1: PDF plot for 6 =2
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Fig. 3: Reverse hazard plot for 6 =2

3.1 Point Estimator for R = P[X > Y| based on SRS

In this section, we first derive expression of stress strength reliability function R = P[Y < X]. Let us consider X as
strength variable and Y as stress variable both follow generalized length biased Maxwell distribution with known scale
parameter k and different shape parameter 8; and 6, i.e.

X~GLBM(8,,k)=f (8,,k)

and

¥Y~GLBM(8,,k)=g (6,, k)

then
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This integral does not have closed form so it would be evaluated using numerical approximation methods.

Next we derive the ML estimators of 6; and 6,. Let x,x2,...... ,Xn, be a random sample from GLBM(theta;,k) and
VI3 V2 ennnns ,¥n»> be a random sample from GLBM(thetay, k) respectively.

The joint pdf of x1,x,...... ,Xp and y1,y2, ...... ,yn represented by fi(-) and g; (-) are given by,
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The log likelihood functions are given by,
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and
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The ML estimators of 0; and 6, are obtained by solving the following questions.
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Which gives the ML estimators of 8; and 8, respectively.
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Using the invariance property of ML estimators, the ML estimators of R based on SRS is given as,
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3.2 Point estimator for R = P(X >Y) based on RSS

We first generate ranked set sample of size n; = rimy) and np, = ram(y) from GLBM distribution with parameters (6;,k)
and (6,,k) respectively using the algorithm used to generate RSS.

Letx;j(i=1,...... my,j=1,...... r1) denote the generated RSS of size n; = rim(yy from GLBM(0,,k)
and
yulk=1,...... my,l=1,...... r2) denote the generated RSS of size ny = rym,) from GLBM(6,,k)

The PDF of X;; and Y}, are given by,

,ﬂ-(x:-}-) = ,E_l:ﬁ [F[xz'j)}i_l- [ F[xa}-)?ﬂ;_i-f{:«"fgj-)]
and
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Likelihood function is given by,
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Log likelihood is given by,

logL =
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Differentiating the above equation (10) with respect to 0; and 6, and equating to 0, we have,
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By solving equations 11 and 12 using numerical methods, we get the ML estimators of 6; and 6.
Using the invariance property of maximum likelihood estimators, we get the maximum likelihood estimator of
R = P(X >Y), under ranked set sampling as
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4 Numerical Findings

4.1 Simulation Study

In this part, we first generated data from Generalized Length Biased Maxwell distribution. Two Types of Sampling
Schemes namely Simple Random Sampling (SRS) and Ranked Set Sampling (RSS) are used to generate samples. To
compare the estimators of Stress-Strength Reliability R = P(X > Y) derived using the two sampling schemes, we
calculated the Mean Square Error (MSE) and Bias using which we finally calculated Relative efficiency of the proposed
estimators. Following are the steps of simulation study:

1.We first generate 1500 Simple Random Samples say xi,x2,...... Xn, and yi,y2,...... ¥, of sizes (n1,n2) = (10,10),
(10,15), (15,15), (15,20) (20,20) (20,25) (25,25) (25,30), (30,30), (30,35), (35,40), (40,40) from Generalized Length
Biased Maxwell distribution.

2.Next we generate 1500 Ranked set Samples from Generalized Length Biased Maxwell distribution say
X{lyevenn- Xy and Yig,... .. s Ymyr, With set sizes my=my= 2, 4, 6 and number of cycles r1=rp= 10, 15.

3.The value of scale parameter k is taken to be 1 and value of 6,=2,6,=3,4,5.

4.Bias, MSE and Relative efficiencies are calculated. All the computations were performed in R. The results are
summarized in Table 1.

4.2 Real Data Analysis

In this segment, we delve into an analysis of a dataset previously documented by Bader and Priest (1982), which
encapsulates the tensile strength of individual carbon fibers, quantified in GPA, alongside impregnated 1000-carbon fiber
tows. The individual fibers underwent testing under tension, utilizing gauge lengths of 20 mm and 10 mm. In their 2017
study, Chaudhary et al. fitted a Maxwell distribution to these datasets, extracting estimations for stress-strength
reliability, denoted as P. Our analysis demonstrates that the Generalized Length Biased Maxwell distribution yields a
superior fit to these datasets, evidenced by lower Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) values. Table 2 showcases the fitted models, parameter estimates, and their corresponding AIC and BIC values.
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Table 2: Fitted models to carbon fibers data, parameter estimates, AIC and
BIC values

Data set Madel Parameter estimates AlC BIC

Single fibers of 2 Mezxwell 3 1629647 164.5683
wers of Maxwell i 1 1
fibers of GLE Maxwell i
i
.f.'
Single fibers of 10mm GLE Mawwsll fo= 04 547) 1206971

= 0.5999(0.0994)
k =3315(3.5149)
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TABLE 1: Comparison of Estimators of R based on two samplings using Bias, MSE and Relative

Efficiency
SRS RSS
rn=r;=10
B | (ng,ng) | (my,m:) | Ry Biiic =ns | Bias MSE Riaie s Bias MSE RE
(10,20) | (2,2) 0.3571 | 0.0140 | 0.000196 | 0.3331 -0.0100 | 0.000100 | 1.96
(10,15) | (2,4) 0.4271 | 0.0840 | 0.007056 | 0.2752 -0.0679 | 0.004610 | 1.53
3 | (20,20) | (4,4) 0.3431 | 0.3542 | 0.0111 | 0.000123 | 0.3517 0.0086 | 0.000074 |1.67
(25,30) | (4,6) 0.4275 | 0.0844 | 0.007123 | 0.4215 0.0784 | 0.006147 | 1.16
(35,40) | (6,6) 0.3581 | 0.0150 | 0.000225 | 0.3561 0.0130 | 0.000169 | 1.33
(10,10) | (2,2) 0.5045 | -0.0150 | 0.000225 | 0.5072 -0.0123 | 0.000151 | 1.49
(10,15) | {2,4) 0.5187 | -0.0008 | 0.000001 | 0.5202 0.0007 | 0.000000 |1.31
4 | (20,20) | (44) 0.5195 | 0.4997 | -0.0198 | 0.000392 | 0.5054 -0.0141 | 0.000199 | 1.97
(25,30) | (4,6) 0.5341 | 0.0146 | 0.000213 | 0.5074 -0.0121 | 0.000146 | 1.46
(35,40) | (6,6) 0.5105 |-0.0030 | 0.000081 | 0.5112 -0.0083 | 0.000069 | 1.18
(10,10) | (2,2) 0.7012 | -0.0113 | 0.000128 | 0.7222 0.0097 | 0.000094 |1.36
(10,15) | (2,4) 0.7215 | 0.0090 | 0.000081 | 0.7045 -0.0080 | 0.000064 | 1.27
3 (20,20) | (4.4) 0.7125 | p.7096 | -0.0029 | 0.000008 | 0.7151 0.0026 | 0.000007 | 1.24
(25,30) | (4,6) 0.7618 | 0.0493 | 0.002430 | 0.7546 0.0421 | 0.001772 | 1.37
(35,40) | (8,6) 0.6895 |-0.0230 | 0.000529 | 0.7302 0.0177 | 0.000313 | 1.69
n=ry=15
(10,10) | (2,2) 0.35%4 | 0.0163 | 0.000266 | 0.3572 0.0141 | 0.000199 |1.34
(10,15) | (2,4) 0.4012 | 0.0581 | 0.003376 | 0.3904 0.0473 |0.002237 |1.51
3 | ({20,20) | (4,4) 0.3431 | 0.3502 | 0.0071 | 0.000050 | 0.3492 0.0061 | 0.000037 |1.35
(25,30) | (4,6) 0.4062 | 0.0631 | 0.003982 | 0.3902 0.0471 |0.002218 |1.79
(35,40) | (6,6) 0.3604 | 0.0173 | 0.000299 | 0.3291 -0.0140 | 0.000196 | 1.53
(10,10) | (2,2) 0.5165 | -0.0030 | 0.000009 | 0.5173 -0.0022 | 0.000005 | 1.86
(10,15) | (2,4) 0.5292 | 0.0097 | 0.000034 | 0.5125 -0.0070 | 0.000043 | 1.92
4 | (20,20) | (4,4) 0.5195 | 0.5143 |-0.0052 | 0.000027 | 0.5238 0.0043 | 0.000018 | 1.46
(25,30) | (4,6) 0.5684 | 0.0489 | 0.002391 | 0.5661 0.0466 | 0.002172 |1.10
(35,40) | (6,6) 0.5181 |-0.0014 | 0.000002 | 0.5184 -0.0011 | 0.000001 | 1.62
(10,10} | (2,2) 0.7972 | 0.0847 | 0.007174 | 0.6437 -0.0688 | 0.004733 | 1.52
(10,15) | (2,4) 0.7921 | 0.0796 | 0.006336 | 0.7705 0.0580 | 0.003364 | 1.88
5 | (20,20) | (4,4) 0.7125 | 0.7101 |-0.0024 | 0.000006 | 0.7144 0.0019 | 0.000004 | 1.60
(25,30) | (4,6) 0.7591 | 0.0466 | 0.002172 | 0.7512 0.0387 | 0.001498 | 1.45
(35,40) | (6,6) 0.6542 | -0.0583 | 0.003399 | 0.6701 -0.0424 | 0.001798 | 1.89
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Furthermore, Figures 4 and 5 visually underscore the enhanced fitting prowess of the Generalized Length Biased
Maxwell distribution relative to the Maxwell distribution. We extracted the samples of size n=50 based on the two
sampling schemes namely SRS and RSS. We computed MSE[RY/)] and MSE [RYL]. Based on these values we finally
calculated RE= 1.98 which evidences the supremacy of RSS over SRS.

5 Remarks and Conclusion

In this investigation, we unveiled a generalized manifestation of the Length-biased Maxwell distribution. Our inquiry
delved into the fundamental characteristics of this distribution, probing various methodologies for pinpointing
parameters and assessing reliability functions. Furthermore, we elucidated that the previously introduced length-biased
Maxwell distribution by Saghir et al. (2017) emerges as a specific instance of the GLBM distribution. Employing
numerical techniques, we meticulously scrutinized the veracity of our findings through simulated data. Additionally, we
applied the GLBM distribution to an authentic dataset, discerning that it offers a superior fit to real-world observations
when juxtaposed with both Maxwell and Length-biased Maxwell distributions.

Furthermore, we tackle the intricate challenge of estimating the reliability system R = P[Y < X], where the stress Y and
strength X follow independent GLBM distribution, anchored within the realm of Reliability Stress-Strength (RSS)
analysis. Our study unveils the derivation of the maximum likelihood estimator for R, considering both Simple Random
Sampling (SRS) and ranked set sampling (RSS) scenarios.

We embark on a comprehensive Monte Carlo simulation study to juxtapose the efficacy of point and interval estimators
for R under both SRS and RSS conditions. Employing the notion of relative efficiency, we discern that the maximum
likelihood estimator of R based on RSS outperforms its SRS counterpart. Moreover, we subject our estimator to
empirical validation using real-world data, affirming its practical utility. Looking ahead, our future research endeavors
will endeavor to extend our methodology to the estimation of stress-strength models in multicomponent scenarios,
building upon the foundation established within the RSS framework.
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