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Abstract: A group G has the property P if G is finitely generated and is of a finite extension of a free group. In this paper
we prove that if the group G has the property P and H is a subgroup of G thenlf H is of finite index, then H has the property
P or H is finite and normal, then the quotient group G/H has the property P.

Furthermore, we prove that if G is a group acting on a tree X without inversions such that the stabilize Gy of each vertex v
of X has the property P, Gy= G, the stabilizer G of each edge e of X is finite, and the quotient graph G/X for the action of

G on X is finite, then G has the property P.

We have applications to tree product of the groups and HNN extension groups.
Keywords: Groups acting on trees, Finite extensions of free groups, Tree product of groups and HNN extension groups.

1 Introduction

For the structures of group acting on trees without
inversions we refer the readers to [1], [7], [8] and [12]. In

[2, Th.1.3], Gregorac, proved that if G =x* A, i€l

free product of the groups A, iel with amalgamated
subgroup H such that A;, iel are finite extensions of free
groups, and, H and I are finite, then G is an extension of
free group. In [3, Th.1], Karrass, Pietrowski and Solitar
proved that a G is a finite extension of a free group if and
only if G is an HNN group of the form

G =(gen(K) t,,....t, [rel (K),
tLt' =M, i:l,...,n>only if G is an HNN group

where K is a tree product of a finite number of finite groups
(the vertices of K), and each (associated) subgroup L;i and
M; are subgroups of a vertex of K.

In this paper we generalize such results to groups
acting on trees without inversions in a way that the
stabilizers of the vertices of the tree have the property P, the
stabilizers of the edges are finite, and the quotient graph for
the action of the group on the tree is finite. As applications
we show that the subgroups of finite index and the
quotients of groups having the property P have the property
P. We end the paper with examples of groups acting on

trees without inversions having the property P. We begin a
general background of groups acting on trees without
inversions introduced in [1], [7], [8] and [10] as follows. A

Graph X consists of two disjoint sets V(X)) (the set of
vertices of X) and E(X)

(the set of edges of X) with V(X) non-empty, together
with three functions 0o : E(X) > V(X),
3, E(X)>V(X), andzn:E(X) — E(X)
the conditions Jgn =0; and

is an
involution satisfying
om = Jg. For simplicity, if e € E(X), then we write
dp(e) = o(e), d1(e) = t(e), and m(e) = €. This implies
that 0(€) = t(e), t(€)=o0(e), and & =e. We say that a
group G acts on a graph X without inversions if there is a
group homomorphism ¢ : G — Aut(X). In this case, if

X € X (vertex or edge) and g € G, then we write g(X)
for (¢(g))(x). Thus, if g € G, and y € E(X), then
g(o(y)) = o(g(y)), g(t(y)) = t(a()), 9(y)=a(y).

If the group G acts on the graph X and X € X (x is a
vertex or edge), then

A. The stabilizer of x, denoted Gy is defined to be the set
Gy, ={g € G:g(x)=x}. Itisclearthat Gy <G, and
if x e E(X) and u e {o(x), t(x)}, then G; =G, and
Gy <Gy,
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B. The orbit of x denoted G(X) is defined to be the set
G(x) ={g(x): g € G}.It is clear that G acts on the
graph X without inversions if and only if G(€) = G(e) for
any e € E(X),

C. the set of the orbits G/ X of the action of G on X is
defined as G/ X = {G(x): x € X}. G/X forms a graph
called the quotient graph for the action of G on X, where
V(G/X)={G(v):veV(X)}, E(G/X) =
{G(e):ee E(X)}, and if eeE(X),
0(G(e)) = G(o(e)), t(G(e)) = G(t(e)),

G(e) = G(&).

then
and

Definition 1. Let G be a group acting on a tree X without
inversions, and let T and Y be two sub trees of X such that
T Y, and each edge of Y has at least one end in T.

Assume that T and Y are satisfying the following:
0] T contains exactly one vertex from each vertex
orbit.

(ii) Y contains exactly one edge Y (say) from edge

orbit. The pair (T; Y) is called a fundamental domain for

the action of G on X. For the existence of fundamental
domains, we refer the readers to [5]. We note that the set
of vertices V(T) of T is in one to one correspondence with
the set of vertices V(X/G) of X/G and the set of edges
E(Y) of Y is in one to one correspondence with the set of
edges E (X/G) of X/G.

For the rest of this section, G is a group acting on a tree X
without inversions, and (T; Y) is the fundamental domain
for the action of G on X. We have the following definitions.

Definition 2. For any vertexv € V(X), there exist a

unique vertex denoted viof T and an element g (not
necessarily unique) of G such that g(v*):v. That is,
G(v") = G(v). Moreover, if v e V(T), then v* = v, and

for each edge Y € E(Y), let [y] be any element of G
satisfying the following:

@ifo(y) eV(T), then [y]((t(y))") =t(y), and
[y]=1incase y € E(T),
(B)ift(y) eV(T), then  [y](o(y)) = (o(y))*, and

[y] = [y]‘l. Furthermore, let+Y be the edge +y =V if
o(y) eV(T), and +y =[y](y) if t(y)eV(T). Itis
clear that o(+y) = (o(y))’, andG,y < G(o(y))*' f

y € E(T), then G,y = Gy.
Definition 3. If geG is an element of G and ecE(Y) is an

edge of Y, define [g, €] to the pair [g, €] = (gG%,e)-
Define  Xto be the set X ={g;e]:geG,

eeE(Y)}.

2 The Main Result

Theorem 1 of [3] can be stated as follows. A group G is a
finite extension of a free group if and only if G is an HNN
group of the form

G =(gen(K), t,,....t, [rel (K),
t;Lit;" =M, i=1...,n) Where K and I are finite. We
note that if G is an HNN extension group of presentation

G= <gen(K), t.rel(K) t Lt =M, ie I> of base
K and of associated pairs (L;, M;) of isomorphic
subgroups of K, i € I, where <gen(K)|reI(K)> stands
for any presentation of K, and t, Liti’l =M,, i €| stands

for the relations t,xt.™" = ¢ (X), X € A.Then G acts on

the tree X without inversions defined as follow:
V(X)={gK :g G}, and
E(X): {(gl\/li L ), (gLI , ti’l)}, where g e€G and
i € |. For the edges (gMi,ti) and (gL, t")iel,
o(gM,, t;)=o(gL,, ;") = gK,

define

t(gMi'ti):gtiK’

t(oL, ") =gt 'K, and (oM, 1) =(gt,L;, ),
and (gL, t;)=(gt"M,, t,). Let f € G. Then for the
vertex gG and the edges (gMi ) ti) and (ng , ti‘l) of X,
define  f(gK)= fgK, f(gM,,t,)=(fgM,,t,), and
f(gL,t")=(fgl,, t;*). The stabilizer of the vertex
v=gK is K,=gKg™, a conjugate of G, the
stabilizers of the edges (gBj, tj), and (gA, ti_l) are
gMig‘l, a conjugate of M, and gLig_l, a conjugate

of L, are finite forall i € I.

The orbits of @G, (9B, ;) and (gL, t™") are
{fK: f €G}and {(fM,t,): f €G}.
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If the group G acts on a tree X without inversions such
that Gy= G for any vertex veV(X) of X, then by [5, Th.4],
there exists a fundamental domain (T;Y) for the action of
G on X, and [7, Th. 5.1], G has the presentation G =

(gen(G,), y|rel(G,).G,, =G, y.[yI'G,[yly* =G

, Where , m and y stand for edges of E(Y) such that
meE(T), o(y)eV(T), t(y) g V(T).

LetK =[], (G G =Gy)
L, =[m]"G, [m] and M, =G,,. Itis clear that K is
a tree product of the groups GV with amalgamation

subgroups L., M . This implies that

(gen(K), y|rel(K), y.[y] *G,[yly *=G, ) is an
HNN extension group of base K, associated isomorphic
subgroups L. ,M ., and stable letters the edges yeE(X)

ox X such that o(y)eV(T), t(y)eV(T). This leads the
following lemma.

Lemma 2.1. A group G has the property P if and only if
there exists a tree X on which G acts on X without
inversions such that the stabilize G, of each vertex v of X is
finite, Gy= G, and the quotient graph G/X for the action of
G on X is finite.

Proposition 2.1. the group G has the property P and H is a
subgroup of G then

(i) If H is of finite index, then H has the property P.

(ii) If H is finite and normal, then the quotient group G/H
has the property P.

Proof. Since G has the property P, G is finitely generated,
andby Lemma 2.1, exists a tree X such that G acts on X
without inversions, the stabilize G, for each vertex v of X

is finite and the quotient graph G/X

for the action of G on X is finite

(i) Since G is finitely generated and H is of finite index in
G, by the Reidemeister-Schreier subgroup theorem
[6,Corollary 2.8, page 93], H is finitely generated. Then H
acts on X by restriction. It is clear that the vertex stabilize
Hy of the vertex v of X satisfies H, = HNGy. Since Gy is
finite, Hy is finite. Since H is of finite index in G, and G/X
isfinite, therefore by Lemma 7 of [7], the quotient graph
H/X for the action of H on X is finite. Thus, H has the
property P.

(if) Since G is finitely generated, it is clear that G/H is
finitely ~ generated.  Let X" be the  set
X" ={xe X :H <G_}. Then by Proposition 4.3 of

[8], X" is a subtree of X and G/H actson X " without

inversions, where if geG, and xeE( X H) then such that

gH(X) = g(x). It is clear that the stabilizer of xe X " under
the action of G/H on X " is(G/H), =G, /H , where

G, is the stabilizer of x under the action of G on X. Since

y ;tabilizer of each element xeX of X under the action of G

on X is finite, therefore stabilizer of each xe X H under the
acion of G/Hon X"is finite. If xeV(V) and

(G/H),=G,/H = GIH, then Gx = G. Contradiction.
Hence (G/H),=G,/H +# G/H for any vertex xeV(V).

It is clear that if xe X ™, where x is a vertex or an edge,
then the orbit (G/H)(x) of x under the action of G/H on X"
is given by (G/H)(x) = G(x) where G(x) is the orbit of x
under the action of G on X. This implies that the quotient
graph G/H /X" for the action of G/H on XM is =
{(GH)(X) = G(X):xeX}c=G/X. Since G/X is finite,
therefore G/H/X " is finite. Consequently, the quotient
group G/H has the property P. This completes the proof.

Before we prove the main result of this paper, we introduce
the following concept taken from [1, page 78]. Let H be a
subgroup of a group G and let H act on a set X. Define =

to be the relation on G x X defined as (f, u) = (g, v),

if there exists h € H such that f = gh and U= hfl(v).
It is easy to show that = is an equivalence relation on
G x X. The equivalence class containing (f;u) is

denoted by f ®y u. Thus,

f ®y u={(fh;hu):heH.
Define G®y X to be the set
G®y X ={g ®y x:g €G, x e X}.the main result
of this section is the following theorem.

Theorem 2.1. If G is a group acting on a tree X
without inversions such that the stabilize G, for each

vertex v of X has the property P,G, #G, the

stabilizer G, of each edge e of X is finite, and the

quotient graph G/X for the action of G on X is finite,
then the group G has the property P.

Proof. Let veV(X). SinceGy has the property P, Gy is
finitely generated. Since the quotient graph G/X for the
action of G on X is finite, by Lemma 4.4 of [11], G is
finitely generated. Furthermore, by Lemma 2.1, exists a tree
Xy such that Gy acts on Xy without inversions, the stabilizer
(Gy)y for each vertex u of Xy is finite (Gv)y # Gv , andthe

quotient graph G,/ X, for the action of G, on X, is finite.

Let (T; Y) be a fundamental domain for the action of G on
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X. Since the quotient graph G/ X for the action of G on X
is finite, T and Y are finite. By Lemma 4.4 of [6], G is
generated by the generators of G, v e V(T) and by the

elements [y], y € E(Y). By Theorem 3.4 of [7], there
exists a tree denoted as

X =X Y[ Y (G®g, xv)],
veV(T)

where X = {[g;e]: g €G, e e E(Y)},and

[0: €] = (4Gse. ). V(X) = Y (G ®g, V(X))
veV(T)

Y (G®g, E(Xv))]-

and E(X) = X Y(
veV(T)

The ends and the inverse of the edge ¢ ®Gv e are defined
(g ®g, ) = g &g, t(e),
g ®Gv e =

as follows:

o(g ®g, €) = g ®g, o(e) and

g ®g, € where t(e), o(e), and & are the ends and the
inverse of the edge e in X,,. G acts on X as follows: if
f,geG,yeE(Y),veV() eeE(X,), and
ueV(Xy), then flg; y]=[fg;y], f(g®g, €)=
fg ®g, e and f(g®g, u)=fg®g, u. If geG
e e E(Y)
g(l®Gv e) =JTG\,9 =1®g, €, then g €Gy and

and such that

e e E(X,), g(e) =€. Hence, G, acts on X, with
inversions. This is a contradiction because G, has the

property P. This implies that G acts on X without
inversions. Now for g € G and X € X, itis clear that

the stabilizer GQ®GVX of the vertex g ®g, Xx Is
-1 . -
Gyog, x = 9(Gy), 9, where (Gy), is the stabilizer

of x under the action of G, on X,. Since (GV)X is finite,
therefore, GQ®GVX is finite. So the stabilizer of each

vertex of X under the action of G on X is finite. Now
we show that the quotient graph G/)Z for the action of G
on X is finite. The fundamental domain (T;Y) for the
action of G on X induces a fundamental domain (T,;Y,)

for the action of G, on X, for every vertex v of T.

For each edge ecE(Y), let V be a vertex V,
eV (T such that G, <(Gyepe)y,
(Giogey+)v, s the vertex stabilizer of the vertex V,
Let T={

[Lel: ecEM} Y= {[Le]. [lelel: ecE(Y)},
T=TU(Ya® T,):ad Y=Y U( Y& Y,):
veV (T) ! veV (T) !
where [e] is the value of the edge e defined as in
Definition 1 and [[e], €] is defined as in Definition 3.

Then by Theorem 3.2 of [9], (:I:,V) forms a

where

under the action of G(O(e))* on X(O(e))*.

fundamental domain for the action of G on X . Since
for each edge ecE(X) of X the stabilizer Ge is finite
and (T;Y) and (T,;Y,), veV(T) are finite, then the
fundamental domain ('I-:,V) is finite. This shows that

the quotient graph G/)Z for the action of G on )Z is

finite. Then Lemma 2.1 implies that the group G has
the property P. This completes the proof.

3 Application
Now we apply Theorem 2.1 to tree product of groups and
HNN groups introduced in [4]. Tree product of groups and

HNN groups are examples of groups acting on trees
without inversions.

If A= H;I (Ai; Ujj =Uji) is a tree product of the
A iel
Uijj, 1, j € I, then A acts on the tree X without inversions
defined as follow: V(X)={(gA,i):ge Aiel} and
E(X)=1{(qUjj, ij): g € A'i, je 1} If y is the edge
y = (9Ujj, i), then o(y) = (gA, i), t(y) = (9A}, J),
and Y = (gUji, ji). The group A acts on X as follows:

groups with  amalgamation  subgroups

let feA Then f((gA, i) =(fgA, i) and
f((9Ujj, 1})) = (fgU;, ij). 1f v is the vertex
v=(gA,i)eV(X) and 'y is the edge

y =(qUjj, ij) € E(X), then the stabilizer of v is
A = g/-\‘-g_1 =~ A, aconjugate of A and the stabilizer of
yis Ay = gUijg_1 = Ujj, a conjugate of Uij- The orbit
of v is the set A(v) = {(agA, i):ae A i e |} and the
orbit of y is A(y)={(agUj, ij):ael i, jel}

Now, we turn to the definition of an HNN group. Let G be
a group and let | be an index set. Let {A :i e |} and
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{B; :i € I} be two families of subgroups of G. For each
iel, let ; : A — B; is isomorphism. The group G"
of the presentation

G* = (gen(G), t; | rel(G), At L = B;, i e 1) is called
an HNN group of base G and of associated pairs (4, Bj)

of isomorphic subgroups of G, iel, where
(gen(G)|rel(G)) stands for any presentationof G, and

HAL L =B, iel
tiati L = ¢;(a;), 3 € A.The HNN group G* acts on
the tree X without inversions defined as follow:
V(X)=1{gG:g eG"},and

E(X)={(gBi t). (94, t; )}, where g eG" and
i € 1. For the edges (gB;, t;) and (gA, t ), iel,
define o(gB;, tj) = o(gA, t2) = gG,

t(gB;, t) = 94G, t(gA, ) = g G, and
(0B, ) = (gt A, t 1), and (A, ) = (9678, ).
Let f € G*. Then for the vertex gG and the edges
(9B, ) and (gA,tY) of X, define
f(gG) = fgG, f(gB;. ti) = (fgB;, t), and
f(gA, t1) = (fgA, t1). The stabilizer of the vertex

stands for the relations

v=0Gis G, = gGg_l, a conjugate of G, the stabilizers
of the edges (gB;, t;), and (gA, ti}) are gBg™, a
conjugate of Bj, and gA-g_l, a conjugate of A; are finite
forall i € I. The orbits of gG, (gB;, tj) and (gA, 1)
are {fG: f € G"}

and{(fB;, tj): f € G*}. We have the following
propositions as  applications of Theorem  2.1.

Proposition 3.1. Let A= HTEI (Ai; Ujj =Ujji) be a
tree product of the groups A, i € | with amalgamation

subgroups Ujj, I, j € | such that the group A; has the

property P for all iel, | is finite, and Uij is finite for all

i,jel. Then A has the property P.
Corollary 3.1. Let A=*_A,1€l be the free

product of the groups A, 1€l with amalgamation

subgroup C such that the group Ai has the property P for all
iel, | is finite, and C is finite. Then the group A has the
property P.

Proposition 3.2. Let G* be the HNN group
G* =(gen(G), tj|rel(G), At;t =Bj,iel) of base G
and of associated pairs (A, B;) of isomorphic subgroups
of G such that the group G has the property P, A and B;

are finite for all iel, and 1 is finite. Then the group G* has
the property P.

4 Conclusions

In this paper, we proved that if G is a group acting on a tree
X without inversions such that the stabilize Gy of each
vertex v of X has the property P, Gy= G, the stabilizer G of
each edge e of X is finite, and the quotient graph G/X for
the action of G on X is finite, then G has the property P. On
the other hand, we have applications to tree product of the
groups and HNN extension groups.
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