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Abstract: The aim of this paper is to propose a modified version of Piddethod, the Boundary Value Problems Picard Method
(BVPP), which allows the solution of BVP problems, with feterations. What is more, as case study, BVPP is employedtto ge
approximate solutions to four differential equations; twmear and two nonlinear. Comparing figures between appraté and exact
solutions, it is shown that BVPP method can generate hangoaimate solutions with the desired degree of accuracy.
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1 Introduction [47], perturbation method 4[8,49], modified Taylor
method p0], generalized homotopy method51]],

Solving nonlinear differential equations is relevant differential transformation method52], among many
because phenomena on the frontiers of modern scienceé¥hers. Also, a few exact solutions to nonlinear
are often nonlinear in nature. On the engineering ancdifferential equations have been reported occasionally
science fields, physical phenomena are frequentl;[53]-
modeled using nonlinear differential equations. Sci¢ntis As it is well known, boundary value problems of
who work in such disciplines constantly face the ordinary differential equations have many applications in
problems of solving linear and nonlinear ordinary sciences. The case of BVP for nonlinear ODES includes,
differential equations, partial differential equatiorsd  Michaelis Menten equation5f], that describes the
systems of nonlinear ordinary differential equations.kinetics of enzyme-catalyzed reactions, Gelfand’s
Recently a wide variety of methods focused to find differential equation 3549 which  governing
approximate solutions to nonlinear differential equagion combustible gas dynamics (see below, this study proposes
as an alternative to classical methods, have been reportedn approximate solution for this equation), Troesch’s
Such as those based on: variational approach@s3, 4], equation §5,56,57,58,59,60], arising in the investigation
tanh method 5], exp-function B,7], Adomian’s of confinement of a plasma column by a radiation
decomposition method 8[9,10,11,12,13], parameter pressure, among many others. On the other hand, the
expansion 14], homotopy perturbation method.%, 16, theory of BVP for linear ODES, is a well established
13,17,18,19,20,21,22,23,24,25,26,27,4,28,29,30,31, branch of mathematics, with many applications. Between
32,33,34,35,36,37,38,39,40,41], homotopy analysis problems of interest, related to these equations, are found
method §2,43,44,45,46], homotopy asymptotic method The one-dimensional quantum problem, of a particle of
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mass m confined in a region of zero potential by an  The solution for 2) can be expressed as the limit of a
infinite potential at two points x=a and x=I61], Heat = sequence of functiong,(t), in the limit n — oo, in
transfer equationdl], Wave equation which describes for accordance with the recurrence formula

instance, transverse vibrations of a uniform stretched

string between two fixed points, letus say x =aand x = b t ot

[62, The Laplace equation, which governs the yu(t)=A+ Bt+/ / f(t',yn-a(t)),yn_1(t))) dt'dt,
temperature field corresponding to the steady state in a to /o

plate B2, and so on. Generally, many problems n=123.
expressed in terms of partial differential equations, give (3)
rise through method of separation of variables, to BVP for

linear ODES §1,62]. When the right hand side ofl), f(t,y(t),y(t)) is a

The Picard Iteration Method (PIM)6B,64,65] is a continuous function for all its arguments, and having
well established iterative method; although it has beercontinuous first partial derivatives with respecttandy
employed above all as a formal procedure for establishind™ & neighborhood of the initial conditions df)(then, it is
the existence and uniqueness theorems of differentiafvell known that regardless of the choice of the initial
equations, their usefulness in practice is relatively gmal function yo(t), the sequenceyn(t)}, generated by the
This is mainly due to the convergence of the method isiterative process given byg), converges to a solution of
slow, and also because the integration process involvedhe problem1) [62,66,67,68]. o
rapidly becomes very long and tedious. Nevertheless, the !N the same way, assuming tHdt, y(t), y (t)) satisfies
technique has several significant advantages. Unlike othdfe Lipschitz condition, it would be possible to establish,
known methods, Picard’s method applies to linear andMore strong bqt usually c.in‘flcul't to apply criterion. Forth_e
nonlinear problems, with identical ease. Also, based orPurposes of this study, it is sufficient to ensure that stgrti
well-established criteria and theorems, PIM allows to Of the iterative processs), we will get a solution for 2)
predict from the beginning, if the iterative process [66.67].
involved will converge to the solution of the problem,
even if such solution is unique, which many methods for .
nonlinear differential equations cannot guarantee. 3 Basic Idea of Boundary Value Problems

Our main goal in this study is take advantage of thePicard Method (BVPP).
fortress of the method, and try to solve its drawbacks,
with the end to employ it, as a useful tool to obtain Next, we will find highly accurate approximate solutions
approximate solutions of BVP problems for linear and for boundary value problems, following a method, which
nonlinear ordinary second order differential equations.incorporates the boundary values of the original problem,
This paper is organized as follows. In Sect®na brief to the classical version of Picard method with initial
review of the basic idea for Picard iteration method is conditions.
provided. In Sectior3, we will present, the Boundary An important case of BVP problems, is one where the
Value Problems Picard Method (BVPP) as a modifiedvalues of the sought solution are given at two poigtnd
version of Picard method. Additionally, Sectios t1, but not the derivatives (Dirichlet boundary conditions),
presents four cases study, including a comparison of-€.
BVPP with other methods to show its precision and
versatility. Besides a discussion on the results is present
in Section 5. Finally, a brief conclusion is given in Y O =TLYO.Y 1)  Y(lto)=A  yt)=C,

Section 6 o _ (4)
therefore the value for the derivativetgt will be denoted

by y(to) = B. We will approach our BVP problem,
assuming for the time being, that the valugBois known
(although it is initially unknown) and right hand side of
(4) is a continuous function. Besides, we will use the
freedom to choose the trial functioy(t), in order to
include both boundary values and accelerate the
convergence of the method. Thus, we exploit the virtues
of PIM, remedying its defects.

2 Picard Iteration Method.

We begin reformulating the initial value problem

y'(t)=ftyt).y(t); ylto)=A  Y(o)=B It should be noted that, the unknown valueybiy),
' _ _ _ 1) will be determined, as part of the proposed procedure.
as the following equivalent integral equation The method begins proposing as trial function a

polynomial functionP(t) which contains one or more
parameter®, E,F, .. to be determined.

-t ot
Y(t)=A+Bt+./to/tOf(t’7Y(t’)a>/(t/))dt’dta 2) yo(t) = P(t,D,E,F,..). ()
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According to the above, BVPP method employ insteadwherety,t3,ta € (to,t;) and the values ofn(to),Yn(t1),

of (2), the following integral equation

't t
y(t):A+Bt+./t/tf(t/,y(t’),y(t’))dt’dt, ©6)

where, the value o8 is unknown for the time being .

The solution for 6) can be expressed as the limit of a
sequence of functiong,(t), in the limit n — o, in
accordance with the recurrence formula

yn(tvﬁaDaEaFv"):A+Bt
1 t

+/ / f(t.yn_1(t'.D,E.F...).¥h 4(t'.D,E,F...)) dtdt,
to Jto

n=123. (7)

Yn(t2),¥n(t3),Yn(ta), .., are known.

(10) is a system of algebraic equations, whose
solution allows to determine the value of the parameters
B? D7 E7 F7 i

It"is expected that it result in a good fit, considering
several inner points, even the first iteration of BVPP can
be highly accurate and sulfficient (see cases study).

Method 2.

This proposal follows again the steps that led3) Iput
unlike the previous method, we will use a software like the
Nonlinear Fit built-in command from Maple 15, to identify
optimally the parametei, D, E,F, ..

Method 3.

This method aims to determine the above parameters,
by using the least squares method.

To get that 9) corresponds to a good approximate
analytic solution of 4), we have to optimize the values of
B,D,E,F,.. For it, after substituting9q) into (4), results

Since it has been assumed the continuity ofhe following residual.

f(t',y(t"),y (t')) then, irrespective off), the successive
approximations{yn(t)} (7), converge to the solution of
the following problem, resembling} (see section 2).

)// (t) =f (tay(t)ay(t)) ; y(tO) =A y(tO) = B

(8)

Next, in order to ensure that the n-th iteration of

BVPP (7), is also an approximate solution fo#)( the
values of B,D,E,F,.., are chosen to ensure that
approximate solutions satisfyy(t;) = C also, and
therefore §). It will be seen that although¥ and @) are
related in this way in order to motivate BVPP

R(t,8,D,E,F,..)=Y"(t,3,D,E,F)
—f(t,y(t,B,D,E,F),y(t,8,D,E,F)),

Next, it is applied the least square method, minimizing
the square residual errot]]

(11)

I(B,D,E,F,..):t.thz(t,B,D,E,F,..)dt, (12)

identifying the values o8, D, E, F, .. from the conditions

convergence, in practice is not required to consider

explicitly the auxiliary problem§). Finally we indicate

three ways to calculate optimally the values of the above
parameters, in order to accelerate the convergence and

obtain highly accurate approximate solutions.
Method 1.

al
Jp
Note that unlike the previous methods, the procedure
outlined by equations 1()-(13) does not require in

o _
oD

o _
JE

ol

:07 a_F:

0, 0,. (13)

Assuming that the nth approximation is sufficient, then advance the knowledge of the numerical solution.

from (7) we can write symbolically

yn=H(t,B,D,E,F,..), 9

whereH(t,3,D,E,F,..), is a certain function obtained
from the iterative process above mentioned.

Once BVPP method optimize the values of
B,D,E,F,.. we wil obtain good approximations
requiring only a few iterations. It is expected that by
choosing other values for these parameters, it would
generate an iterative process slower and cumbersome.

This method assume known the numerical solution of

(4), so that 9) is evaluated as many points within the

interval [to,t;] as parameters to be determined, that is to4 Cases Study.

say
yn(to) = H(thBaDaEvFa ")a
yn(tl) = H(tlaBaDaEvFa ")a
yn(tZ) = H(tZaBaDaEvFa ")a (10)
yn(ts) = H(t3,3,D,E,F,..),
yn(ta) = H(ts,3,D,E,F,..),
... and so on,

In what follows, we will assume equations satisfying the
continuity requirements mentioned.

Example 1.

We will employ method 1, in order to find an
approximate Solution of Gelfand’s Equation.

As it is known, Gelfand’s equatior8f, 49 models the
chaotic dynamics in combustible gas thermal ignition.
Therefore it is important to search for accurate solutions
for this equation.
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The equation to solve is

d2y(x)
dx2

+ee/™ =0,
0<x<1,  y(0)=0,

wheree is a positive parameter.

y(1)=0, (14)

In accordance with first method, we generate four
algebraic equations, by substituting the boundary value of
x =1, also the valuex= 0.1 x= 0.5, andx = 0.7, which
belong to[0, 1], in order to calculatg,B,C,D. Note that
in this case, the conditiory;(0,3,B,C,D) = 0, is
automatically satisfied.

In order to test the effectiveness of the method, we will
consider the values of = 3 ande = 3.5, despite of the

It is possible to find a handy approximate solution for solutions corresponding to values of the parameterl,

(14) by applying the BVPP method.

Thus, first we expand the exponential term of

Gelfand’s problem, resulting

1, 1
Y +¢€ (1+y+§y2+ 6y3+") =0,
0<x<1, y0)=0  y1)=0

Equation 6) for this case is given by

(15)

y(X) = Bx— e/ox/ox <1+y+%y2> d¥dx  (16)

after keeping the second powenofariable.
We choose as trial functioy(x)

Yo(X) = Bx+4Cx¢ 4 DxC. (17)
The corresponding recurrence formula is given by

yn(X,B,B,C,D):BX
X X
_p /O /0 (1+yn_1<x,B,B,c,D)+

+ 31X B.B.C.D) Jdxax

n=123. (18)

The first iteration of BVPP (n=1),

y1(x,8,B,C,D) = Bx

X X
—e/o /0 <1+yo<x,B,B,c,D>+

+ %yg(x,ﬁ, B,C, D)) dXdx  (19)

Assuming that first iteration is sufficient, after

substituting 17) into (19), we obtain
yl(X7B7 B,C, D) = BX_ %XZ - 8_68)(3

(20)

c?2 , BD| 6, CD7 , D?

are considered the most difficult to modér[69, 70].
The solution for the described system of algebraic
equations fog = 3, results in

B =2.321014274
C=-0.9993962770

B =2.725506295
D =2.181675403

By substituting these values int&Q) is obtained the
following approximate solution forld).

y1(X) = 2.321014274— 1.5x* — 1.362753148&°
+0.363411831%" — 0.027109278°
+0.2148522168 — 0.0519132922¢

+0.0424973889¢. (21)

In the same way, the parameters ot 3.5, are given
by

B =3.707678793
C=2.030713696

B =4.533738715
D =2.093200793

and the corresponding approximate solution fiah) (

y1(X) = 3.707678798 — 1.75x* — 2.64468091%°
—0.4033857148" + 0.5649963048°
+0.38506415%°+ 0.10120694082’

+0.03912044258%.  (22)

Example 2.

This example shows the use of method 2. As a case
study we propose the following nonlinear differential
equation §1].

d?y(x)
dX2 - (X) - 07
0<x<1,  y0)=0 y1)=1 (23
whereg, is a positive parameter.
Equation 6) for this case is given by
X X
y(X) = Bx-+ s/o /O y2dxXdx, (24)
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next, we select as trial function(x) B = —0.30848851834098, an@ = 1.00432567368877
(from (29) B = 0.1490767537).
Yo(X) = Bx+ CX. (25) Substituting these values int81), we get

The recurrence formula for this case is given by

y1(X) = 0.149076753781484+ 1.42747748922326
Yn(%,B,B,C) = BX —3.0982293900803¢& + 2.5216751470756¢. (32)

X X
+5/0 /o (Ya-1(x.B,B,C)) dXdx In order to show the accuracy of BVPP, we will
n=123. (26) compare our approximatior3®) with the following third
o order approximate solution fo28) deduced, employing

The first iteration of BVPP results in CPM

yi(% B,B,C) = Bx+¢ / / 2(x,B,B,C)) dxdx (27) y(x) = 6.6845238095238+ 13.0654761904 7%

—23214285714286 + 4.46285714285¢° (33)
By substituting 25) into (27), we obtain
(see discussion and Figusge

2.2 3 2,8 Example 3.
y1(x,B,B,C) = Bx+€ [B Xy BC + c ] . (29) This example shows the use of method 3. As a case
2 3 12 study we propose the following linear differential equatio
62.
from the conditiory;1 (1) = 1, we obtain the value [62
B2 BC C? )
3—1—8[?4—?4‘1—2], (29) dd3;(2x)_ 2y(x) =0,
therefore 0<x<1,  y0)=0  y1)=1 (34
Equation 6) for this case is given b
eB? , eBC . 5 q 2 g Y
yl(x,B,C):x+7[x _X]+T[X —X] X X
— Bx+ / / xydXdx (35)
0 Jo
2 . .
n % [X4 “{. (30) next, we select as trial functiop(x)
Yo(X) = B+Cx (36)

In order to show the effectiveness of the method, we
consider as case study, a large value of the parameter The recurrence formula for this case is given by
€ = 30. As it is well known, the solutions corresponding
to values of the parameter> 1, are considered the most
difficult to model, for equations depending on a parameter XX
as @3 (for instance, classical perturbation method Yn(%B:B.C)= BX*‘/O /0 (*¥n-1(x,B,B,C)) dxdx
(CPM), provides in general, better results for small n=123. (37)
perturbation parametees< < 1, see below)47,69,70]. e

Thus, B0) adopts the form The first iteration of BVPP results in

Y1(x.B.C) = x-+ 1587 [x* — x| + 10BC [x° ~ X] y1(x,B,B,C) = Bx+ /0 " /0 " (@yo(x B.B,C)) dXdx

(38)
2 e . . .
n 5(37 -x. (31) By substituting 86) into (38), we obtain
. BX* Cx
To get that 81) corresponds to an accurate analytical y1(x,8,B,C) = Bx + — + 20" (39)
approximate solution of23), we identify optimally the
constantsC and B by using the Nonlinear Fit built-in Next, in order to obtain a better approximate solution,

command from Maple 15, which results in itis obtained the second iteration.
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Evaluating 87), for n = 2, it is obtained

Y2(x,B,B,C) = Bx+ /O /O (x2y1(x, B,B.C)) dxdx
(40)
Substituting 89) into (40), we get

y2(x,B,B) =x°+ B [x—X’]

+2EO[X5—X9}+6£72

where, we employed the value

-], (41)

B

672) ’
obtained from conditiog,(1) = 1.
From the steps outlined by equatioag)- (13), we get
the following algebraic system for the unknown quantities
B andB.

21
C= 1440(1— Z)B — (42)

259694131 n 3642882473 24716233
1453636808 7555887795456%_ 145363680

25969413 7761232

1453636800 10925
(43)

12232114?3 n
163875

Thus, the values of3 and B, which minimize the
square residual error, are given By= 0.9517485996 and
B=-0.01705817486

Finally, substituting these values int1), we get

y2(X) = 0.0006893544° — 0.0000253841887%8

4 0.0475874299€ + 0.9517485998. (44)

Example 4.

whereA = — L. [Fs0sin(x—s)ds

A disadvantage of VP is the big effort that must be
done to solve the integrals imM®) (each requires 10
integrations by parts, in this case). Instead, we will see
that BVPP provides a solution very accurate and handy
for applications.

Equation 6) for this case is given by

X X
yo) = px+ [ [[od0—yjaxax  @7)
next, we select as trial functiog(x)
Yo(X) =B+Cx (48)

The recurrence formula for this case is given by

yn(X,B,B,C) = BX
+/O /0 (x°—y,_1(x,8,B,C)) dXdx

n=123. (49)

The first iteration of BVPP results in

y1(x,8,B,C) = ijt/()x/oX (x'°—yo(x,B,B,C)) dXdx

(50)

Substituting 48) into (50), we get
1 B C
Y1(B,C) = = [x!2—x] + 5 [x—x%] + 5 [x—x7].
(51)
where, we used the conditigrn(1) = 0, to obtain

1 B C

B——EZ‘FE-FE. (52)

Next, we will get two approximate solutions fo4%)

by using aforementioned method 2 and method 3.
Method 2
To get that $1) corresponds to a precise approximate

This case study, shows the comparison among methoﬁnalytic solution for 45), we identify optimally the

2, method 3, and variation of parameters for linear
differential equationsd1,62].

We will find an approximate solution for the
differential equation.

d?y(x)

dx2

10

+Y(X) =X,

0<x<1, 0, (45)

constantBandC by using the Nonlinear Fit built-in

command from Maple 15, which results in
B = —0.00085048287500623, and
C = —0.0062854559150948 (from 59

B = —0.009048575).
Substituting these values intb), we get

y1(x) = 0.03125!2

This equation has an exact solution as follows, using —0.00904857499910982+-0.000425241437503110

the method of variation of parameters (VP) for linear
differential equations.

y(x) = Asinx+ /0 SOsinx—gds  (46)

+0.00104757598584913 (53)
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Method 3 The first method assumes as known the numerical

In this case, we will identify the constanBandC solution for @), so that the approximate solution given by
following the steps outlined by equationklj - (13), so  the BVPP method, is evaluated at many points within the
that interval of interest as parameters to be determined. The
above procedure gives rise to a system of algebraic
equations, whose solution let determines the value of the

110, 101, 221 parameters.

189 120 60480 The second method proposed a software like the
(54) Nonlinear Fit built-in command from Maple 15, to

101_ 101 127 identify optimally the constants.

mC+ EB = 21840 The third method determines the adjusting parameters,

by using the least squares method.

By solving the above algebraic system, we find that ~ Next, we applied BVPP method to find approximate
the values ofB and C, minimizing the square residual solutions to four differential equations, from which two
error, are given byB = —0.0011384093831064 and Were nonlinear and the others linear.
C=—-0.0046321138852940. To exemplify Method 1 we obtained an approximate

Substituting these values intb1), we get solution for Gelfand’s equation. In accordance with this

method, we generated four algebraic equations, by
substituting the boundary value of the intewval 1, also
- 12 the valuesx = 0.1 x = 0.5, andx = 0.7, which belong to
y1(x) =0.0312% [0,1], with the purpose to calcula®,B,C,D. In order to
—0.008916981248193+ 0.00056920469155339 test the effectiveness of the method, we considered the
values ofe = 3 ande = 3.5. For both cases study, we
+0.00077201898088233  (55) obtained highly accurate approximate solutio$) (and
from (52) results the valu@ — —0.008916981249. (22) for (14) as depicted in Figurd and Figure2. A
relevant fact is that, it was employed just the first itenatio
of BVPP (n=1) and were considered large values of

. . Gelfand’s parameters, whose solutions are difficult to
5 D|SCU$O” model.

In principle it is possible to improve the precision of
This paper proposed a modified version of Picardapproximate solutions, by introducing more adjusting
Method, the Boundary Value Problems Picard Methodparameters in trial function1{), although would be
(BVPP), in order to find approximate solutions for BVP necessary solving larger algebraic system of equations.
problems. One of the main results, which follows from Method 2, was discussed, considering the solution of
the accuracy of the approximate results obtained bythe second order nonlinear differential equatid8)(
BVPP, is that the slow convergence of PIM, is depending on a parameter. In order to show the
consequence of a inadequate choice of the trial functioreffectiveness of the method, we considered as case study,
(even, many authors suggest starting Picard iterativehe first iteration of BVPP (n=1) for a large value of the
process, by using as trial function, the initial conditidn o parametere = 30 (32), and its comparison with3Q),
the differential equation to solve). The procedure which is an approximation for2@) corresponding to third
followed by BVPP relies on the auxiliary initial value order approximation of classical perturbation method
problem @), where the value of (to) = 3, is unknown.  CPM.
Assuming that the right hand siddt,y(t),y'(t)) and its Figure3 shows that BVPP is efficient in comparison to
partial derivatives; satisfy certain continuity condit®d CPM, although we considered only the first iteration, even
(as it was explained) then irrespective of trial function, for large values of the parameter, where other methods fail.
the successive approximatiofy,(t)} (7) converge to the Method 3, was exemplified by solving the linear
solution of @). differential equation 34). In order to obtain a better

In order to get tha{yn(t)} also become in a solution approximate solution, it was considered the second
for (4), we employed in our examples, as trial functions, iteration of BVPP method (n=2). In this case the
some polynomial functions of different degrees parameters of the trial functior3§) were determined by
containing some parameters, which were determined sasing the least squares method. Figdrehows that, as
that, the approximate solution, satisfies both boundaryoccurred with the above examples, the approximate
conditions of 4) and also contributed to improve the solution @4) is highly accurate and handy.
process of getting adequate trial functions. With this  Finally, we employed BVPP, to find an approximate
purpose, we proposed three methods to -calculatesolution for @5), although this linear equation has exact
optimally the mentioned parameters. As a matter of fact,solution, by using variation of parameters (VP). A
we obtained highly accurate analytical approximatedisadvantage of VP is the big effort that must be done to
solutions. solve the integrals in4@) (each requires 10 integrations
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by parts, in this case). Instead, BVPP provided solutions

very accurate and useful, adequate for practical 71
applications. The adjusting parameters i81)( were
calculated, following the algorithms from the method 2 0.8
and method 3, from where the approximatiof8)(and
(55) arise respectively. .64
Figure5 shows that%3), (55) and exact solution are y)
in good agreement. Although in this case meth®)dias 0.4
more precise than metho8)( this latter and therefore the
process of getting55), did not require in advance the 0.2
knowledge of the numerical solution. In this sense,
Method 3 has more analytical basis than the other 0 ' ' ' '
methods. 0 0.2 0.4 0.6 0.8 1

X

Finally, this work introduced a modification of
Piccard method, valid fpr boyndary value problems. ASFig. 2: Comparison of approximate solutio2] (solid line) for
long as we know, there is not in the literature, antecedent§14) (dots) considering — 3.5
of a method like BVPP, which applies Piccard method to
BVP, by proposing a suitable trial function that optimizes
the approximation, in order to accelerate the convergence

for the process of obtaining analytical approximate 1.50 .
solutions for linear and nonlinear ODES. We noted that in o
general, the classical procedure of PIM involves the use 1254
of the initial conditions (of the differential equation te b
solved) as the starting trial function; however, such .
criteria often leads to poor convergence, excessive ’*
iterations and large/cumbersome approximations.
Therefore, inappropriate for practical applications. Y09 0,75
0.50-
.
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0.5
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Y& 451 x
0.9 Fig. 3: Comparison of approximations BVPB2) (solid line)
0.1 and PM @3) (dots) for @3) (diagonal cross).
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x

1000
Fig. 1: Comparison of approximate solutioRl (solid line) for
(14) (dots) considering = 3
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6 Conclusions 100

This work introduced the Boundary Value Problems
Picard Method (BVPP), as a useful tool with high
potential, in order to find approximate solutions for BVP.
Based on mathematical assumptions, which ensure that 0 y * y o 7
Picard iterative method, described in Section 2, converges x

to the solution of a problem a8)( independently of the . ) . o
chosen trial function and initial conditions. BVPP builds a Fig- 4 Comparison of approximate solutioA4) (solid line) for
valid solution to the auxiliary problem8), and then (34 (dots).
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