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Abstract: The aim of this paper is to propose a modified version of PicardMethod, the Boundary Value Problems Picard Method
(BVPP), which allows the solution of BVP problems, with few iterations. What is more, as case study, BVPP is employed to get
approximate solutions to four differential equations; twolinear and two nonlinear. Comparing figures between approximate and exact
solutions, it is shown that BVPP method can generate handy approximate solutions with the desired degree of accuracy.
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1 Introduction

Solving nonlinear differential equations is relevant
because phenomena on the frontiers of modern sciences
are often nonlinear in nature. On the engineering and
science fields, physical phenomena are frequently
modeled using nonlinear differential equations. Scientists
who work in such disciplines constantly face the
problems of solving linear and nonlinear ordinary
differential equations, partial differential equations,and
systems of nonlinear ordinary differential equations.
Recently a wide variety of methods focused to find
approximate solutions to nonlinear differential equations,
as an alternative to classical methods, have been reported.
Such as those based on: variational approaches [1,2,3,4],
tanh method [5], exp-function [6,7], Adomian’s
decomposition method [8,9,10,11,12,13], parameter
expansion [14], homotopy perturbation method [15,16,
13,17,18,19,20,21,22,23,24,25,26,27,4,28,29,30,31,
32,33,34,35,36,37,38,39,40,41], homotopy analysis
method [42,43,44,45,46], homotopy asymptotic method

[47], perturbation method [48,49], modified Taylor
method [50], generalized homotopy method [51],
differential transformation method [52], among many
others. Also, a few exact solutions to nonlinear
differential equations have been reported occasionally
[53].

As it is well known, boundary value problems of
ordinary differential equations have many applications in
sciences. The case of BVP for nonlinear ODES includes,
Michaelis Menten equation [54], that describes the
kinetics of enzyme-catalyzed reactions, Gelfand’s
differential equation [35,49] which governing
combustible gas dynamics (see below, this study proposes
an approximate solution for this equation), Troesch’s
equation [55,56,57,58,59,60], arising in the investigation
of confinement of a plasma column by a radiation
pressure, among many others. On the other hand, the
theory of BVP for linear ODES, is a well established
branch of mathematics, with many applications. Between
problems of interest, related to these equations, are found:
The one-dimensional quantum problem, of a particle of
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mass m confined in a region of zero potential by an
infinite potential at two points x=a and x=b [61], Heat
transfer equation [61], Wave equation which describes for
instance, transverse vibrations of a uniform stretched
string between two fixed points, let us say x = a and x = b
[62], The Laplace equation, which governs the
temperature field corresponding to the steady state in a
plate [62], and so on. Generally, many problems
expressed in terms of partial differential equations, give
rise through method of separation of variables, to BVP for
linear ODES [61,62].

The Picard Iteration Method (PIM) [63,64,65] is a
well established iterative method; although it has been
employed above all as a formal procedure for establishing
the existence and uniqueness theorems of differential
equations, their usefulness in practice is relatively small.
This is mainly due to the convergence of the method is
slow, and also because the integration process involved,
rapidly becomes very long and tedious. Nevertheless, the
technique has several significant advantages. Unlike other
known methods, Picard’s method applies to linear and
nonlinear problems, with identical ease. Also, based on
well-established criteria and theorems, PIM allows to
predict from the beginning, if the iterative process
involved will converge to the solution of the problem,
even if such solution is unique, which many methods for
nonlinear differential equations cannot guarantee.

Our main goal in this study is take advantage of the
fortress of the method, and try to solve its drawbacks,
with the end to employ it, as a useful tool to obtain
approximate solutions of BVP problems for linear and
nonlinear ordinary second order differential equations.
This paper is organized as follows. In Section2, a brief
review of the basic idea for Picard iteration method is
provided. In Section3, we will present, the Boundary
Value Problems Picard Method (BVPP) as a modified
version of Picard method. Additionally, Section4
presents four cases study, including a comparison of
BVPP with other methods to show its precision and
versatility. Besides a discussion on the results is presented
in Section 5. Finally, a brief conclusion is given in
Section .6

2 Picard Iteration Method.

We begin reformulating the initial value problem

y′′ (t) = f (t,y(t),y′(t)); y(t0) = A, y′(t0) = B
(1)

as the following equivalent integral equation

y(t) = A+Bt+
∫ t

t0

∫ t

t0
f
(

t ′,y(t ′),y′(t ′)
)

dt′dt, (2)

The solution for (2) can be expressed as the limit of a
sequence of functionsyn (t), in the limit n → ∞, in
accordance with the recurrence formula

yn(t) = A+Bt+
∫ t

t0

∫ t

t0
f
(

t ′,yn−1(t
′),y′n−1(t

′)
)

dt′dt,

n= 1,2,3..
(3)

When the right hand side of (1), f (t,y(t),y′(t)) is a
continuous function for all its arguments, and having
continuous first partial derivatives with respect toy andy′

in a neighborhood of the initial conditions of (1) then, it is
well known that regardless of the choice of the initial
function y0(t), the sequence{yn(t)}, generated by the
iterative process given by (3), converges to a solution of
the problem (1) [62,66,67,68].

In the same way, assuming thatf (t,y(t),y′(t)) satisfies
the Lipschitz condition, it would be possible to establish,a
more strong but usually difficult to apply criterion. For the
purposes of this study, it is sufficient to ensure that starting
of the iterative process (3), we will get a solution for (2)
[66,67].

3 Basic Idea of Boundary Value Problems
Picard Method (BVPP).

Next, we will find highly accurate approximate solutions
for boundary value problems, following a method, which
incorporates the boundary values of the original problem,
to the classical version of Picard method with initial
conditions.

An important case of BVP problems, is one where the
values of the sought solution are given at two pointst0 and
t1, but not the derivatives (Dirichlet boundary conditions),
i.e.

y′′ (t) = f (t,y(t),y′(t)); y(t0) = A, y(t1) =C,
(4)

therefore the value for the derivative att0, will be denoted
by y′(t0) = β . We will approach our BVP problem,
assuming for the time being, that the value ofβ is known
(although it is initially unknown) and right hand side of
(4) is a continuous function. Besides, we will use the
freedom to choose the trial functiony0(t), in order to
include both boundary values and accelerate the
convergence of the method. Thus, we exploit the virtues
of PIM, remedying its defects.

It should be noted that, the unknown value ofy′(t0),
will be determined, as part of the proposed procedure.

The method begins proposing as trial function a
polynomial functionP(t) which contains one or more
parametersD,E,F, .. to be determined.

y0(t) = P(t,D,E,F, ..). (5)
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According to the above, BVPP method employ instead
of (2), the following integral equation

y(t) = A+β t+
∫ t

t0

∫ t

t0
f
(

t ′,y(t ′),y′(t ′)
)

dt′dt, (6)

where, the value ofβ is unknown for the time being .
The solution for (6) can be expressed as the limit of a

sequence of functionsyn(t), in the limit n → ∞, in
accordance with the recurrence formula

yn(t,β ,D,E,F, ..) = A+β t

+

∫ t

t0

∫ t

t0
f
(

t ′,yn−1(t
′
,D,E,F, ..),y′n−1(t

′
,D,E,F, ..)

)

dt′dt,

n= 1,2,3.. (7)

Since it has been assumed the continuity of
f (t ′,y(t ′),y′(t ′)) then, irrespective of (5), the successive
approximations{yn(t)} (7), converge to the solution of
the following problem, resembling (4) (see section 2).

y′′ (t) = f
(

t,y(t),y′(t)
)

; y(t0) = A, y′(t0) = β .
(8)

Next, in order to ensure that the n-th iteration of
BVPP (7), is also an approximate solution for (4), the
values of β ,D,E,F, .., are chosen to ensure that
approximate solutions satisfyy(t1) = C also, and
therefore (4). It will be seen that although (4) and (8) are
related in this way in order to motivate BVPP
convergence, in practice is not required to consider
explicitly the auxiliary problem (8). Finally we indicate
three ways to calculate optimally the values of the above
parameters, in order to accelerate the convergence and
obtain highly accurate approximate solutions.

Method 1.
Assuming that the nth approximation is sufficient, then

from (7) we can write symbolically

yn = H(t,β ,D,E,F, ..), (9)

where H(t,β ,D,E,F, ..), is a certain function obtained
from the iterative process above mentioned.

This method assume known the numerical solution of
(4), so that (9) is evaluated as many points within the
interval [t0, t1] as parameters to be determined, that is to
say

yn(t0) = H(t0,β ,D,E,F, ..),

yn(t1) = H(t1,β ,D,E,F, ..),

yn(t2) = H(t2,β ,D,E,F, ..),

yn(t3) = H(t3,β ,D,E,F, ..),

yn(t4) = H(t4,β ,D,E,F, ..),

(10)

.... and so on,

where t2, t3, t4 ∈ (t0, t1) and the values ofyn(t0),yn(t1),
yn(t2),yn(t3),yn(t4), .., are known.

(10) is a system of algebraic equations, whose
solution allows to determine the value of the parameters
β ,D,E,F, ..

It
′

is expected that it result in a good fit, considering
several inner points, even the first iteration of BVPP can
be highly accurate and sufficient (see cases study).

Method 2.
This proposal follows again the steps that led to (9), but

unlike the previous method, we will use a software like the
Nonlinear Fit built-in command from Maple 15, to identify
optimally the parametersβ ,D,E,F, ..

Method 3.
This method aims to determine the above parameters,

by using the least squares method.
To get that (9) corresponds to a good approximate

analytic solution of (4), we have to optimize the values of
β ,D,E,F, .. For it, after substituting (9) into (4), results
the following residual.

R(t,β ,D,E,F, ..) = y′′ (t,β ,D,E,F)

− f
(

t,y(t,β ,D,E,F),y′(t,β ,D,E,F)
)

,
(11)

Next, it is applied the least square method, minimizing
the square residual error [47]

I(β ,D,E,F, ..) =
∫ t1

t0
R2(t,β ,D,E,F, ..)dt, (12)

identifying the values ofβ ,D,E,F, .. from the conditions

∂ I
∂β

= 0,
∂ I
∂D

= 0,
∂ I
∂E

= 0,
∂ I
∂F

= 0, .. (13)

Note that unlike the previous methods, the procedure
outlined by equations (11)-(13) does not require in
advance the knowledge of the numerical solution.

Once BVPP method optimize the values of
β ,D,E,F, .. we will obtain good approximations
requiring only a few iterations. It is expected that by
choosing other values for these parameters, it would
generate an iterative process slower and cumbersome.

4 Cases Study.

In what follows, we will assume equations satisfying the
continuity requirements mentioned.

Example 1.
We will employ method 1, in order to find an

approximate Solution of Gelfand’s Equation.
As it is known, Gelfand’s equation [35,49] models the

chaotic dynamics in combustible gas thermal ignition.
Therefore it is important to search for accurate solutions
for this equation.
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The equation to solve is

d2y(x)
dx2 + εey(x) = 0,

0≤ x≤ 1, y(0) = 0, y(1) = 0, (14)

whereε is a positive parameter.
It is possible to find a handy approximate solution for

(14) by applying the BVPP method.
Thus, first we expand the exponential term of

Gelfand’s problem, resulting

y′′+ ε
(

1+ y+
1
2

y2+
1
6

y3+ ..

)

= 0,

0≤ x≤ 1, y(0) = 0, y(1) = 0, (15)

Equation (6) for this case is given by

y(x) = βx− ε
∫ x

0

∫ x

0

(

1+ y+
1
2

y2
)

dx′dx, (16)

after keeping the second power ofy variable.
We choose as trial functiony0(x)

y0(x) = Bx+Cx2+Dx3
. (17)

The corresponding recurrence formula is given by

yn(x,β ,B,C,D) = βx

− ε
∫ x

0

∫ x

0

(

1+ yn−1(x,β ,B,C,D)+

+
1
2

y2
n−1(x,β ,B,C,D)

)

dx′dx.

n= 1,2,3.. (18)

The first iteration of BVPP (n=1),

y1(x,β ,B,C,D) = βx

− ε
∫ x

0

∫ x

0

(

1+ y0(x,β ,B,C,D)+

+
1
2

y2
0(x,β ,B,C,D)

)

dx′dx. (19)

Assuming that first iteration is sufficient, after
substituting (17) into (19), we obtain

y1(x,β ,B,C,D) = βx− ε
2x2− εB

6 x3

+
[

− εC
12 +

B
24

]

x4+
[

D
20+

BC
20

]

x5

+
[

C2

60 +
BD
30

]

x6+ CD
42 x7+ D2

112x
8.

(20)

In accordance with first method, we generate four
algebraic equations, by substituting the boundary value of
x= 1, also the values:x= 0.1,x= 0.5, andx= 0.7, which
belong to[0,1], in order to calculateβ ,B,C,D. Note that
in this case, the conditiony1(0,β ,B,C,D) = 0, is
automatically satisfied.

In order to test the effectiveness of the method, we will
consider the values ofε = 3 andε = 3.5, despite of the
solutions corresponding to values of the parameterε ≥ 1,
are considered the most difficult to model [47,69,70].

The solution for the described system of algebraic
equations forε = 3, results in

β = 2.321014274, B= 2.725506295,

C=−0.9993962770, D = 2.181675403.

By substituting these values into (20) is obtained the
following approximate solution for (14).

y1(x) = 2.321014274x−1.5x2−1.362753148x3

+0.3634118315x4−0.027109272x5

+0.2148522168x6−0.05191329226x7

+0.04249738896x8
. (21)

In the same way, the parameters forε = 3.5, are given
by

β = 3.707678793, B= 4.533738715,

C= 2.030713696, D = 2.093200793,

and the corresponding approximate solution for (14).

y1(x) = 3.707678793x−1.75x2−2.644680917x3

−0.4033857148x4+0.5649963048x5

+0.385064151x6+0.1012069409x7

+0.03912044250x8
. (22)

Example 2.
This example shows the use of method 2. As a case

study we propose the following nonlinear differential
equation [61].

d2y(x)
dx2 − εy2(x) = 0,

0≤ x≤ 1, y(0) = 0, y(1) = 1, (23)

whereε, is a positive parameter.
Equation (6) for this case is given by

y(x) = βx+ ε
∫ x

0

∫ x

0
y2dx′dx, (24)

c© 2016 NSP
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next, we select as trial functiony0(x)

y0(x) = Bx+Cx2
. (25)

The recurrence formula for this case is given by

yn(x,β ,B,C) = βx

+ ε
∫ x

0

∫ x

0

(

y2
n−1(x,β ,B,C)

)

dx′dx.

n= 1,2,3.. (26)

The first iteration of BVPP results in

y1(x,β ,B,C) = βx+ε
∫ x

0

∫ x

0

(

y2
0(x,β ,B,C)

)

dx′dx. (27)

By substituting (25) into (27), we obtain

y1(x,β ,B,C) = βx+ ε
[

B2x2

2
+

BCx3

3
+

C2x4

12

]

, (28)

from the conditiony1(1) = 1, we obtain the value

β = 1− ε
[

B2

2
+

BC
3

+
C2

12

]

, (29)

therefore

y1(x,B,C) = x+
εB2

2

[

x2− x
]

+
εBC

3

[

x3− x
]

+
εC2

12

[

x4− x
]

. (30)

In order to show the effectiveness of the method, we
consider as case study, a large value of the parameter
ε = 30. As it is well known, the solutions corresponding
to values of the parameterε ≥ 1, are considered the most
difficult to model, for equations depending on a parameter
as (23) (for instance, classical perturbation method
(CPM), provides in general, better results for small
perturbation parametersε << 1, see below) [47,69,70].

Thus, (30) adopts the form

y1(x,B,C) = x+15B2[x2− x
]

+10BC
[

x3− x
]

+
5C2

2

[

x4− x
]

. (31)

To get that (31) corresponds to an accurate analytical
approximate solution of (23), we identify optimally the
constantsC and B by using the Nonlinear Fit built-in
command from Maple 15, which results in

B = −0.30848851834098, andC = 1.00432567368877
(from (29) β = 0.1490767537).

Substituting these values into (31), we get

y1(x) = 0.149076753781481x+1.42747748922320x2

−3.09822939008034x3+2.52167514707567x4
. (32)

In order to show the accuracy of BVPP, we will
compare our approximation (32) with the following third
order approximate solution for (23) deduced, employing
CPM

y(x) = 6.6845238095238x+13.065476190476x4

−23.214285714286x7+4.462857142857x10 (33)

(see discussion and Figure3).
Example 3.
This example shows the use of method 3. As a case

study we propose the following linear differential equation
[62].

d2y(x)
dx2 − x2y(x) = 0,

0≤ x≤ 1, y(0) = 0, y(1) = 1, (34)

Equation (6) for this case is given by

y(x) = βx+
∫ x

0

∫ x

0
x2ydx′dx, (35)

next, we select as trial functiony0(x)

y0(x) = B+Cx. (36)

The recurrence formula for this case is given by

yn(x,β ,B,C) = βx+
∫ x

0

∫ x

0

(

x2yn−1(x,β ,B,C)
)

dx′dx.

n= 1,2,3.. (37)

The first iteration of BVPP results in

y1(x,β ,B,C) = βx+
∫ x

0

∫ x

0

(

x2y0(x,β ,B,C)
)

dx′dx.

(38)
By substituting (36) into (38), we obtain

y1(x,β ,B,C) = βx+
Bx4

12
+

Cx5

20
. (39)

Next, in order to obtain a better approximate solution,
it is obtained the second iteration.
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Evaluating (37), for n = 2, it is obtained

y2(x,β ,B,C) = βx+
∫ x

0

∫ x

0

(

x2y1(x,β ,B,C)
)

dx′dx,

(40)
Substituting (39) into (40), we get

y2(x,B,β ) = x9+β
[

x− x9]

+
β
20

[

x5− x9
]

+
B

672

[

x8− x9]
, (41)

where, we employed the value

C= 1440

(

1−
21
20

β −
B

672

)

, (42)

obtained from conditiony2(1) = 1.
From the steps outlined by equations (11) - (13), we get

the following algebraic system for the unknown quantities
β andB.

259694131
1453636800

β +
3642882473

75558877954560
B=

24716233
145363680

,

122321146
163875

β +
259694131
1453636800

B=
7761232
10925

.

(43)

Thus, the values ofβ and B, which minimize the
square residual error, are given byβ = 0.9517485996 and
B=−0.01705817486.

Finally, substituting these values into (41), we get

y2(x) = 0.0006893544x9−0.00002538418878x8

+0.04758742998x5+0.9517485996x. (44)

Example 4.
This case study, shows the comparison among method

2, method 3, and variation of parameters for linear
differential equations [61,62].

We will find an approximate solution for the
differential equation.

d2y(x)
dx2 + y(x) = x10

,

0≤ x≤ 1, y(0) = 0, y(1) = 0, (45)

This equation has an exact solution as follows, using
the method of variation of parameters (VP) for linear
differential equations.

y(x) = Asinx+
∫ x

0
s10sin(x− s)ds, (46)

whereA=− 1
sin1

∫ 1
0 s10sin(x− s)ds.

A disadvantage of VP is the big effort that must be
done to solve the integrals in (46) (each requires 10
integrations by parts, in this case). Instead, we will see
that BVPP provides a solution very accurate and handy
for applications.

Equation (6) for this case is given by

y(x) = βx+
∫ x

0

∫ x

0
(x10− y)dx′dx, (47)

next, we select as trial functiony0(x)

y0(x) = B+Cx. (48)

The recurrence formula for this case is given by

yn(x,β ,B,C) = βx

+

∫ x

0

∫ x

0

(

x10− yn−1(x,β ,B,C)
)

dx′dx.

n= 1,2,3.. (49)

The first iteration of BVPP results in

y1(x,β ,B,C) = βx+
∫ x

0

∫ x

0

(

x10− y0(x,β ,B,C)
)

dx′dx.

(50)
Substituting (48) into (50), we get

y1(x,B,C) =
1

132

[

x12− x
]

+
B
2

[

x− x2]+
C
6

[

x− x3]
.

(51)
where, we used the conditiony1(1) = 0, to obtain

β =−
1

132
+

B
2
+

C
6
. (52)

Next, we will get two approximate solutions for (45)
by using aforementioned method 2 and method 3.

Method 2
To get that (51) corresponds to a precise approximate

analytic solution for (45), we identify optimally the
constantsBandC by using the Nonlinear Fit built-in
command from Maple 15, which results in
B = −0.00085048287500623, and
C = −0.0062854559150948 (from (52)
β =−0.009048575).

Substituting these values into (51), we get

y1(x) = 0.03125x12

−0.00904857499910982x+0.000425241437503110x2

+0.00104757598584913x3 (53)
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Method 3
In this case, we will identify the constantsB andC

following the steps outlined by equations (11) - (13), so
that

110
189

C+
101
120

B=−
221

60480
,

101
120

C+
101
60

B=−
127

21840
.

(54)

By solving the above algebraic system, we find that
the values ofB and C, minimizing the square residual
error, are given byB = −0.0011384093831064 and
C=−0.0046321138852940.

Substituting these values into (51), we get

y1(x) = 0.03125x12

−0.0089169812481931x+0.00056920469155320x2

+0.00077201898088233x3
, (55)

from (52) results the valueβ =−0.008916981249.

5 Discussion

This paper proposed a modified version of Picard
Method, the Boundary Value Problems Picard Method
(BVPP), in order to find approximate solutions for BVP
problems. One of the main results, which follows from
the accuracy of the approximate results obtained by
BVPP, is that the slow convergence of PIM, is
consequence of a inadequate choice of the trial function
(even, many authors suggest starting Picard iterative
process, by using as trial function, the initial condition of
the differential equation to solve). The procedure
followed by BVPP relies on the auxiliary initial value
problem (8), where the value ofy′(t0) = β , is unknown.
Assuming that the right hand sidef (t,y(t),y′(t)) and its
partial derivatives; satisfy certain continuity conditions
(as it was explained) then irrespective of trial function,
the successive approximations{yn(t)} (7) converge to the
solution of (8).

In order to get that{yn(t)} also become in a solution
for (4), we employed in our examples, as trial functions,
some polynomial functions of different degrees
containing some parameters, which were determined so
that, the approximate solution, satisfies both boundary
conditions of (4) and also contributed to improve the
process of getting adequate trial functions. With this
purpose, we proposed three methods to calculate
optimally the mentioned parameters. As a matter of fact,
we obtained highly accurate analytical approximate
solutions.

The first method assumes as known the numerical
solution for (4), so that the approximate solution given by
the BVPP method, is evaluated at many points within the
interval of interest as parameters to be determined. The
above procedure gives rise to a system of algebraic
equations, whose solution let determines the value of the
parameters.

The second method proposed a software like the
Nonlinear Fit built-in command from Maple 15, to
identify optimally the constants.

The third method determines the adjusting parameters,
by using the least squares method.

Next, we applied BVPP method to find approximate
solutions to four differential equations, from which two
were nonlinear and the others linear.

To exemplify Method 1 we obtained an approximate
solution for Gelfand’s equation. In accordance with this
method, we generated four algebraic equations, by
substituting the boundary value of the intervalx= 1, also
the values:x = 0.1,x= 0.5, andx = 0.7, which belong to
[0,1], with the purpose to calculateβ ,B,C,D. In order to
test the effectiveness of the method, we considered the
values ofε = 3 and ε = 3.5. For both cases study, we
obtained highly accurate approximate solutions (21) and
(22) for (14) as depicted in Figure1 and Figure2. A
relevant fact is that, it was employed just the first iteration
of BVPP (n=1) and were considered large values of
Gelfand’s parameters, whose solutions are difficult to
model.

In principle it is possible to improve the precision of
approximate solutions, by introducing more adjusting
parameters in trial function (17), although would be
necessary solving larger algebraic system of equations.

Method 2, was discussed, considering the solution of
the second order nonlinear differential equation (23),
depending on a parameter. In order to show the
effectiveness of the method, we considered as case study,
the first iteration of BVPP (n=1) for a large value of the
parameterε = 30 (32), and its comparison with (33),
which is an approximation for (23) corresponding to third
order approximation of classical perturbation method
CPM.

Figure3 shows that BVPP is efficient in comparison to
CPM, although we considered only the first iteration, even
for large values of the parameter, where other methods fail.

Method 3, was exemplified by solving the linear
differential equation (34). In order to obtain a better
approximate solution, it was considered the second
iteration of BVPP method (n=2). In this case the
parameters of the trial function (36) were determined by
using the least squares method. Figure4 shows that, as
occurred with the above examples, the approximate
solution (44) is highly accurate and handy.

Finally, we employed BVPP, to find an approximate
solution for (45), although this linear equation has exact
solution, by using variation of parameters (VP). A
disadvantage of VP is the big effort that must be done to
solve the integrals in (46) (each requires 10 integrations
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by parts, in this case). Instead, BVPP provided solutions
very accurate and useful, adequate for practical
applications. The adjusting parameters in (51) were
calculated, following the algorithms from the method 2
and method 3, from where the approximations (53) and
(55) arise respectively.

Figure5 shows that (53), (55) and exact solution are
in good agreement. Although in this case method (2) was
more precise than method (3), this latter and therefore the
process of getting (55), did not require in advance the
knowledge of the numerical solution. In this sense,
Method 3 has more analytical basis than the other
methods.

Finally, this work introduced a modification of
Piccard method, valid for boundary value problems. As
long as we know, there is not in the literature, antecedents
of a method like BVPP, which applies Piccard method to
BVP, by proposing a suitable trial function that optimizes
the approximation, in order to accelerate the convergence
for the process of obtaining analytical approximate
solutions for linear and nonlinear ODES. We noted that in
general, the classical procedure of PIM involves the use
of the initial conditions (of the differential equation to be
solved) as the starting trial function; however, such
criteria often leads to poor convergence, excessive
iterations and large/cumbersome approximations.
Therefore, inappropriate for practical applications.

Fig. 1: Comparison of approximate solution (21) (solid line) for
(14) (dots) consideringε = 3

6 Conclusions

This work introduced the Boundary Value Problems
Picard Method (BVPP), as a useful tool with high
potential, in order to find approximate solutions for BVP.
Based on mathematical assumptions, which ensure that
Picard iterative method, described in Section 2, converges
to the solution of a problem as (8), independently of the
chosen trial function and initial conditions. BVPP builds a
valid solution to the auxiliary problem (8), and then

Fig. 2: Comparison of approximate solution (22) (solid line) for
(14) (dots) consideringε = 3.5

Fig. 3: Comparison of approximations BVPP (32) (solid line)
and PM (33) (dots) for (23) (diagonal cross).

Fig. 4: Comparison of approximate solution (44) (solid line) for
(34) (dots).

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1355-1367 (2016) /www.naturalspublishing.com/Journals.asp 1363

Fig. 5: Comparison of BVPP approximations (53) (solid line)
and (55) (dots) for (45) (diagonal cross).

adjusts it to become, also in a solution for the problem to
be solved (4).

The procedure assumed, that it is possible to obtain a
good approximate solution for (4), based on a polynomial
trial function, provided with certain adjusting parameters,
which were employed to link problems (4) and (8)
mentioned before, and optimize the approximate
solutions proposed by BVPP. May be expected to
improve the precision of approximate solutions, by
introducing more adjusting parameters in trial functions.
Furthermore, from the procedure studied, it is deduced
that the method provides an adequate criterion to start the
iterative process, with good results, and few iterations.
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2006. From 2006 to 2007 he
was visiting researcher in the
Department of Electrical and
Computer Engineering in the

National University of the South in Bahı́a Blanca,
Argentina. Since February 2009 he has been researcher at
the University of Veracruz, México. His research interests
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de México. Currently He

is a Doctoral student at Centro de Investigaciones
Atmosféricas y Ecológicas de la Universidad Autónoma
de Veracruz and his area of research is environmental
management. He has co-authored several research articles
in reputed international JCR-ISI THOMSON journals
of mathematical and engineering sciences. He has
been actively participating in projects sponsored by
international organizations such as PRONACOSE,
CONAGUA and International Atomic Energy Agency.

Alejandro Diaz-Sanchez
received the B.E. from
the Madero Technical
Institute and the M.Sc.
from the National Institute
for Astrophysics, Optics and
Electronics, both in México,
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