
Appl. Math. Inf. Sci.11, No. 2, 537-544 (2017) 537

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110225

Multi-Objective Criteria in Hybrid Flow Shop Scheduling
Using Improved Genetic Algorithm

M. L. Brabin Nivas1,∗ and T. Prabaharan2

1 Ponjesly College of Engineering, Nagercoil, Tamil Nadu, India
2 Mepco Schlenk Engineering College, Virudhunagar, Tamil Nadu, India

Received: 27 Nov. 2016, Revised: 25 Jan. 2017, Accepted: 27 Jan. 2017
Published online: 1 Mar. 2017

Abstract: Flow shop scheduling problem consists of scheduling n jobs on m machines. As an attempt for meeting this objective,
all jobs are allotted with the same sequence of operations, where the problem is analysed in terms of make-span, total tardiness and
flow time. In order to solve this scheduling problem, an approach based on Improved Genetic Algorithm (IGA) is developed.In this
regard, job data Four Drawer Furniture Component (4dfc) hasbeen collected from the company, from where the time sequence for each
operation has been calculated manually. By using genetic algorithm, various sequences have been generated and the make-span time
has also been calculated. Two factors namely, crossover andmutation are employed, thus to improve the genetic algorithm used, which
in turn reduces the make-span time. Various sequences have been developed by using C where both the manual and program results are
correlated. At the end of process, best sequence is found using IGA and the results are validated.
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1 Introduction

Scheduling is an activity by which any work can be done
in an orderly manner without restriction or disturbance
during the planned work process. Generally scheduling is
the basic idea of accomplishing a work. The work may be
a job or a project, and they are composed of constraints
known as operations, availability, delay etc., in a general
manufacturing system. Jobs or work are parts or
assemblies and activities like machining, assembly and
availability and delay are tardiness and machine
availability. A good schedule has a series of objectives:

1. To maximize shop through put over a certain time
period.

2. To minimize steady costs.
3. To improve quality for customer satisfaction.
In general, a flow shop schedule consists of a sequence

of n machines aligned in series, where each machine cell
is a group and each machine may or may not be identical
and each group consists of only one machine performing
a single operation at a time, whereas in a hybrid flow shop
system, every group has one or more machines performing
different operations in the group. Thus, by reducing make
span, lead time of production also can be minimized.

Scheduling being an essential tool in the engineering
process influences more on its outcome with the aim of
reducing the overall production time, cost and enhancing
the operational efficiency. It conveys the production
department, the details of the manufacturing date, the
device in which the experiment is going to be processed
and by whom the action is going to be performed. Results
of production scheduling confirm its efficiency over all
other conventional techniques. Real time workloads in
different production levels get optimised by graphical
interfaces that serve as its integral part, where the
software creates scheduling mechanism by the effective
usage of pattern recognition. For instance, if an airline
plans to reduce the gate count of aircraft, scheduling
software determines time tables, number of aircraft or the
passengers to be arrived by allowing the respective board
to fix with the plan.

In order to assign human and machine resources along
with other process and purchase materials, forward and
backward scheduling mechanisms are employed. In
forward scheduling, tasks are allocated from the data
resources by which the due date can be calculated, where
in case of backward scheduling, tasks are planned from
due date to assess the start date or any other alterations.
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There are several advantages on applying the production
scheduling. Some of them can be, process change-over,
scheduling levels and inventory reduction on real time
basis, apart from labour load levelling and enhancement
in productivity.

1.1 Metaheuristics

Results are proved in relation with high performance
behavior of local search and hybrid genetic algorithms
that is intended to solve any flow shop scheduling
problems. Commonly, genetic algorithm, tabu search and
simulated annealing are the meta-heuristics strategies
used for the sake of scheduling.

1.1.1 Genetic Algorithm (GA)

Genetic algorithm works on the basis of natural selection
and genetics and has been used extensively in the field of
scheduling and sequencing. Benefits of genetic algorithm
are infinite in the field of job shop scheduling problems.
Classical issues or deviations of them are also resolved by
using GA, besides its ability to solve hard combinatorial
complexities.

1.1.2 Tabu Search

In solving typical JSSPs, tabu search algorithms are
broadly used in accordance with the disjunctive graph
concept. The critical path arcs are reversed or the longest
path precedence formulations are varied to acquire the
neighborhood moves. The difference between tabu search
methods and other local search methods lies in their
searching criteria, where the results of Tabu search
mechanisms have been proven to be better by making use
of lesser computational time.

1.1.3 Simulated Annealing

Typical JSSPs are well handled by simulated annealing.
While other applications intend to reduce make-span, this
particular strategy takes more computational time to yield
quality results.

2 GA Scheduling

2.1 Shop Scheduling by GA

Genetic algorithm is one of the attributes of schedule
optimization methods, where the good solutions formed
are forwarded to produce the better ones which in turn
lead to the formation of ideal solutions. It is the feature of

this algorithm that the characteristics of good solution
make optimal new solutions. This proves that genetic
algorithm can be really guaranteed to perform scheduling.

GA is comparatively better than other optimization
approaches in correspondence with its nature of
traversing large search spaces in a shorter interval of time.
Beyond this, its mutation process goes ahead from local
minima that results to be more familiar since there is rise
in search space size. When n jobs and m machine scheme
is taken into consideration, the upper bound for the
solutions tends to be(n!)m. The resultant reading would
be high, if both n and m are not seemed to be large
enough and so if n and m equal to 20 and 5 respectively,
the result would be 8.52∗1091. Hence in relation to this
enlarged search space, conventional scheduling methods
like mathematical programming get delayed in their
processing.

2.2 Flow Shop Scheduling using Genetic
Algorithm

The fitness of each solution among the population is
assessed using problem specific objective relation of the
genetic algorithm. Computing fitness is the integral part
taking place soon after the completion of crossover and
mutation. These operations result in optimal solution that
even a better solution will not be removed, so that it
remains as the near optimal solution, which might be used
based upon the requirements. In this application, the
appropriate characteristics of problems are analyzed and
the factors such as fitness and genetic functions and
setting of initial population are determined.

2.3 Scope of GA to Scheduling Problems

Generally genetic algorithm consists of a list of
procedures that yields solution for the occurred problems.
Unless appropriate results are obtained, genetic algorithm
would not end in generating successive populations with
possible solutions. In GA, all the alternative solutions are
not expected to get analyzed for achieving ideal results.
The advantages of GA scheduling can be listed as,

⋄ Certain typical algorithms are limited with their usage
as they rely on problem size, so that these might not
able to deal for larger number of operations.

⋄ Only reasonable solutions could be anticipated using
traditional scheduling methods.

⋄ Heuristic approaches most often come under the risk of
problems as they are problem dependent.

⋄ In certain case, global shop floor goals might get missed
due to the use of priority dispatching rules.

⋄ Genetic algorithm is better in concern with the
simulation process as it is assured in providing near
optimal solutions.
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⋄ Solutions are resulted for other objectives that make the
process still more flexible since evaluation factors of
the genetic search mechanism can be changed.

⋄ For the purpose of obtaining operational schemes,
genetic algorithm is extended with that of neural
networks as well.

2.4 Objective

The prime objective is to initiate a scheduling process in
order to attain multiple targets in minimizing make-span
and minimizing total tardiness and flow time.

2.5 Need for Study

On taking into account, n jobs and m machines under
scheduling, flow shop problem is defined with the allotted
processing time. Basically, it is assumed that m machines
processes n jobs of same order. Each machine takes care
of a single job just once. A single job gets processed by
one machine at a time and handling more than a single
job by a single machine is practically impossible most of
the time.

3 Literature Review

[1] introduced Hybrid Flow Shop Scheduling (HFSS)
problem. Gupta [1988] proved that simple two stage
HFSS issue with each stage of two identical machines
was NP hard. [2] developed a heuristic algorithm for
scheduling in a two-stage parallel-processor flowshop
complexity in order to reduce total flow-time.

Initially, [ 3] took the initiative to solve HFSS
complexity of multiple stages by developing a heuristic to
minimize makespan for multi-level HFSS problems.

Several algorithms were suggested by [4] to reduce
tardiness or finishing time in case of multi stage HFSS
issues. They developed the algorithms based on various
constructive heuristics and dispatching rules. Lower
bound was also developed by them. [4] described many
heuristic methods for a two-stage HFSS complexities,
thus to reduce make-span. [5] proposed a hybrid heuristic
algorithm by employing branch and bound and genetic
algorithm to deal with the multi stage HFSS complexities.
[6] used simulated annealing algorithm to reduce flow
shop make-span with multiple processors. They generated
initial solutions by using some heuristics in the first stage
and the solutions were improved by simulated annealing
algorithm in the second stage. In case of batch
scheduling, a mixed integer process was employed in
flexible flow lines in order to lower the make-span, where
the used immediate buffers are restricted.

[7] presented a combined genetic and tabu search
algorithms to lessen the make-span of HFSS

complications. [8] used different heuristic algorithms to
minimize make-span for a 2-stage FSS problem that is of
multiprocessing functions.

[9] applied a heuristic and mixed integer program
occurring in a 2-stage hybrid flow shop in which the first
and last stage consists of a batch processor and a single
machine respectively. The goal is to limit the make-span
along with limited waiting time at the second stage.

[10] suggested a new heuristic in the view point of
minimizing make-span in a 3-stage no idle flow shops.
[11] addressed a branch and bound algorithm to limit jobs
total tardiness considering a 2-stage hybrid flow shop. In
HFSS problem, a single machine was employed at the
first level where in the next level, multiple identical
parallel machines were assessed.

[12] developed an efficient and effective
approximation technique on the basis of tabu search
algorithm with the aim of minimizing make-span for
HFSS issues. [13] presented scheduling heuristic to
minimize the total tardiness for a hybrid flow-shop. The
bottleneck stage was identified and the schedule was
constructed first. They used the random problems for
testing the algorithm.

[14] developed a branch and bound approach for a
2-stage HFSS problem to minimize make-span
considering a single and m machines at the first and
second stage accordingly. They also considered the
unavailability of machines for their research. [15]
proposed a heuristic to minimize make-span for
multistage flexible flow-shop problem using uniform
parallel machines in both the stages.

[16] developed a new heuristic to minimize
make-span for 2-stage assembly flow-shop scheduling
issues. Concurrent and assembly tasks were performed in
the first and the second levels. A self-adaptive differential
evolution approach was developed by [14] to reduce
lateness for a 2-stage assembly flow shop scheduling
complexity. A hybrid constructive genetic strategy was
addressed by [17] to deal with flexible flow shop
problems thereby lessening the weighted completion
time. In this regard, a couple of fitness function and a
local search trained population were employed with that
of the strategy used.

[9,10] illustrated branch and bound method to
minimize makespan for a 2-stage assembly scheduling
problem. In this work, a job-dependent component across
time constraints has been considered. Approaches are
focused to handle flexible flow line issues in [5]. They
considered independent parallel machines at each stage to
minimize total tardiness in their research stage assembly
flow shop scheduling problems.

[16] developed four heuristic algorithms in terms of
linear programming that minimizes total span for a
2-stage flow shop. It incorporated parallel unrelated
machines and renewable supply at each stage. [1]
suggested an ant colony optimization method for HFSS
issues to minimize the total earliness and tardiness as a
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whole. The results are compared with various constructive
heuristic algorithms for randomly generated instances.

Recently, [12] solved the HFSS problems to minimize
the total cost of resource allotment make-span using a
genetic algorithm hybridized with variable neighborhood
search mechanism. Both the machine and the resource
relied job computation time were analyzed. They
developed some random problems and compareD their
results with other conventional methods.

4 Methodology

4.1 Problem Description

A four drawer furniture component (4DFC) includes
nineteen parts. They are as follows,

➔Back Plate (BP)
➔Side Plate (Right side & Left side) (SP)
➔Top Plate (TP)
➔Drawer side (Left side & Right side) (DS - LH & RH)
➔Drawer Back (DB)
➔DBT
➔DFT T.HAN
➔Kick Plate (KP)
➔Top Plate off - BK
➔Top Plate Off - Side
➔Slide Side (Right side & Left side) (SS - LH & RH)
➔BB
➔KPIC
➔ATC
➔LCH
➔LLR
➔AT-LB
➔LP
➔BCP

The above said parts have to be manufactured in batches
for a set of 4DFC (100 Numbers).

4.2 Terms and Definitions

The basic terms in the GA are chromosomes, gene, allele,
population and fitness.

• Chromosome: Individuals entire genetic details are
comprised in a chromosome, which is the totality of
genes. A chromosome is divided into two, each
contributing to children during reproduction.

• Gene : It lies within a chromosome as a single
feature.

• Allele : Genes take upon a certain value, where
each gene might be varied in considering such values.

• Population : Several chromosomes are joined together
to form a population.

• Objective : It is the function considered for
minimization or maximization of a criterion.

• Fitness : Fitness assessment is inverse to objective
criterion and is based on the performance of the
parameter set. Smaller the fitness value, greater would
be the fitness.

Fig. 1 depicts the methodology flowchart.

Fig. 1: Flow chart for methodology

4.3 Improved Genetic Algorithm Steps

4.3.1 Generation Of Initial Population

First step is the generation of initial population randomly.
Each processing sequence is represented by chromosomes
that is corresponding to one job. The chromosomes length
equals number of jobs N. Chromosome elements are
formed random-wise, where a single chromosome is
responsible for the generation of one sequence. The
population size varies with respect to problem, where it is
assumed to be twice the number of jobs that are yet to be
evaluated.

i.e. Population size= 2∗number of jobs
Population size= 2∗N

4.4 Evaluation

Evaluation of population is carried out for fitness along
with the determination of chromosome selection
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probability. Assessing chromosome fitness is according to
the flow diagram stated below in Fig. 2,

Fig. 2: Flow chart in improved genetic algorithm steps

4.4.1 Evaluation of Objective Function

Objective function f(c) is evaluated by loading jobs in
relation to the chromosomes(c) sequence.

f (c) =make span o f the corresponding chromosomes

4.4.2 Fitness Value

Converting the objective function to a fitness value fit(c)
is the next step. The minimization factor is ranked high in

correspondence with that of the optimal components and
is chosen as parents several times. In this case exponential
parameter would make sense, i.e.

f (v) = d ∧ k

where k refers to a negative number. By the above relation,
fit(c) value can be obtained.

f it (c) = e∧− k∗ f (c)

where, k equals 0.05 (assumption). Around 50% of the
good chromosomes would get placed in the new set of
population and the fitness value is determined using,

f it (c) = e∧−0.05∗ f (c)

4.4.3 Probability

The fitness function is converted to the chromosome
selection probability p(c) and the totality of fitness value
is calculated by,

p(c) = f it (c)/Σ p(c)

Then the sum of probabilities of survival (cp(c)) of the
entire chromosomes can be obtained by the formula,

cp(c) = Σ p(c)

4.5 Selection of New Population

A random selection method develops the next population
of the same size which results in a random number r
between 0 and 1. By doing so, a chromosome (c) is
chosen that agrees with the following relation,

cp(c−1)≤ r ≤ cp(c)

The selection method gets continued up to its population
size. In this relation, the most-fit individuals are chosen
and so its reliability factor is high, where its predicted
frequency, i.e., the total number of selection time, equals
1. This process is the deciding factor to enable the fittest
chromosomes to get multiplied and the least fit to get
removed.

4.5.1 Cross Over

In crossover, offspring is produced when parents get
combined. By considering the ideal attributes, the
offspring chromosomes would be better than the parent
chromosomes. Crossover arises in the course of evolution
with respect to the user specific cross over probability.
Unlike basic GA, here the assumption value(r) for
crossover 0.5 has been categorized into two types
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• r < 0.5 (use I method of crossover(single point
crossover))

• r > 0.5 (use II method of crossover(two point
crossover))

4.5.1.1 Single point crossover

Example:

P1 = 3 2 4 5 1

P2 = 4 5 1 2 3

New Sequence

O1 = 3 2 1 5 4

O2 = 1 5 4 2 3

4.5.1.2 Two point crossover

Example:

P1 = 3 2 4 5 1

P2 = 4 5 1 2 3

New Sequence

O1 = 3 5 1 2 4

O2 = 1 2 4 5 3

4.5.2 Mutation

Mutation must not be the factor inducing for the
production of new genetic structure, rather arising of
newer ones must be reduced and again, the lost good
genes due to improper selection of parents are
regenerated. Hence mutation has a great role where the
gene pool should be secured from any undesirable
changes. Here the assumption value (r) for mutation is
chosen as 0.33 and it is divided into three categories as

⋄ If generate random no value< 0.33(use I method of
mutation(flip bit mutation))

⋄ If generate random no value 0.33< r > 0.66 (use II
method of mutation(uniform mutation))

⋄ If generate random no value> 0.66(use III method of
mutation(non-uniform mutation))

4.6 Genetic Algorithm Illustration

4.7 Improved Genetic Algorithm Illustration

4.7.1 Crossover

• R < 0.5 (using I method of crossover(single point
crossover))

• R > 0.5 (using II method of crossover(two point
crossover))

Table 1: Generation of initial population with corresponding
make-span

C Priority Sequence F(c)
1 1 2 3 4 5 168
2 2 3 4 5 1 135

Table 2: Evaluations of parameters for the generated initial
population

C F(c) Fit(c) P(c) Cp(c)
1 168 0.000224 0.16115 0.16115
2 135 0.00117 0.84172 1

Table 3: New population selection
C’ R C New chromosomes

Priority Sequence F(c)
1 0.15 1 1 2 3 4 5 168
2 0.85 2 2 3 4 5 1 135

Table 4: Crossover
C” R S/N chromosomes

S Parents Crossover
1” 0.25 S 1 2 3 4 5 1 3 4 2 5
2” 0.38 S 2 3 4 5 1 4 2 3 5 1

4.7.2 Mutation

1. If Generate random no< 0.33 (using I method (flip bit
mutation))
2. 0.33> r < 0.66 (using II method (uniform mutation))
3. R> 0.66 (using III method(nonuniform mutation))

5 Results and Discussions

Tables 1 to 12 represent the calculated results for using
single machine and multi machine. Time is calculated
manually for various sequences of operations. It is found
that for single machine, sequence drilling, power
pressing, welding, bending, punching are controlled in
order to produce less make-span time and for
multi-machine, sequence bending, welding, power
pressing, drilling, punching are the factors to be
considered to produce less make-span time.

By using genetic algorithm, the best sequence are 1 4 2
3 5 and 2 5 3 4 1 and the ideal corresponding times are 147,
146 sec and the make-span is reduced by using improved
genetic algorithm from 147 to 126 and 166 to 125 sec.

5.1 Program Results
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Table 5: Obtaining new population after mutation
C”’ R Sequence

Before mutation After mutation
1”’ 0.02 1 3 4 2 5 1 2 4 3 5
2”’ 0.04 4 2 3 5 1 4 5 3 2 1

Table 6: Crossover
C” R I method or chromosomes

II method Parents Crossover
1” 0.25 I method 1 2 3 4 5 1 2 4 3 5
2” 0.38 I method 2 3 4 5 1 2 4 3 5 1
3” 0.60 II method 1 3 4 2 5 1 4 3 5 2
4” 0.72 II method 4 2 3 5 1 3 5 4 2 1

Table 7: Generation of new population after mutation
C”’ R Sequence

Before mutation After mutation
1”’ 0.25 1 2 3 4 5 1 4 2 3 5
2”’ 0.40 2 4 3 5 1 2 5 3 4 1
3”’ 0.52 1 4 3 5 2 1 5 3 4 2
4”’ 0.70 3 5 4 2 1 3 4 5 2 1

Table 8: Single machine calculation
Sequence of operations Time (Sec)

1-19 763
19-1 824

Random sequence 666

6 Conclusion

In this flow shop scheduling with n job on m machine, all
jobs have the same sequence of operation and scheduling
can be enhanced by using the improved genetic algorithm.
Also the make span can be calculated through this and it
can be reduced drastically compared to the previous
genetic algorithm. It is shown from the illustrations that
the efficiency of genetic algorithm in solving a flow shop
scheduling can be improved significantly by tailoring the
genetic algorithm operations to suit the structure of the
problem. The computation results based on crossover and
flow shop scheduling bench mark problems show that
genetic algorithm gives a better solution when compared
with the earlier reported results.

//HEADER FILES
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//GLOBAL DECLARATION
int count=0,count1=0,count2=0,count3=0,count4=0,
count5=0,totalavg sec=0;

Table 9: Multi-machine calculation results
Sequence of operations Time (Sec)

1-19 168
19-1 156

Random sequence 135

Table 10: Basic genetic algorithm
After Mutation (Sequence) Total Make-span(Sec)

1 2 4 3 5 147
4 5 3 2 1 156

Table 11: Improved genetic algorithm
After Mutation (Sequence) Total Make-span(Sec)

1 4 2 3 5 126
2 5 3 4 1 125

Table 12: Program results

Simulated annealing algorithm Improved genetic algorithm
Sequence Sequence

13 20 18 6 16 2 8 9 14 19 10 7 127 15 14 19 16 6 20 1 9 8 13 18 3
3 17 1 15 11 5 4 11 5 2 17 10 12 4

7183 Secs 7016 Secs

int punching[100];
int bending[100];
int welding[100];
intpowerpressing[100];
int drilling[100];
int a[10],job,n;
//STRUCTURE INITIALIZATION
struct FDFC
{
char model[15],componentname[15];
char operation[15],machine[5];
intquantity,avgtime,batchsize;
};
//CALCULATE FUNCTION
int calculate(char operation1[15])
{
int j=0;
if(strcmp(operation1,”PUNCHING”)==0)
{
for(j=count-1;j>=0;j–)
if(punching[j]!=0) break;
if(count1==0) punching[count1++]=totalavg sec;
else
punching[count1++]=punching[count1-1]+totalavg sec;
}
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else if((strcmp(operation1,”BENDING”))==0)
{
for(j=count-1;j>=0;j–)
if(bending[j]!=0) break;
if(count2==0)
bending[count2++]=punching[count1-1]+totalavg sec;
else
{
if(punching[count1-1]>ending[j])
bending[count2++]=punching[count1-1]+totalavg sec;
else
bending[count2++]=bending[j]+totalavg sec;
total avg sec=bending[count2-1];
}
}
else if(strcmp(operation1,”WELDING”)==0)
{
for(j=count-1;j>=0;j–)
if(welding[j]!=0) break;
if(count3==0) welding[count3++]=totalavg sec;
else
{
if(bending[count2-1]>welding[j])
welding[count3++]=bending[count2-1]+totalavg sec;
else
welding[count3++]=welding[j]+totalavg sec;
total avg sec=welding[count3-1];
}
}
else if(strcmp(operation1,”PRESSING”)==0)
{
for(j=count-1;j>=0;j–)
if(power pressing[j]!=0) break;
if(count4==0) powerpressing[count4++]=totalavg sec;
else
{
if(welding[count3-1]>powerpressing[j])
powerpressing[count4++]=welding[count3-
1]+total avg sec;
else
powerpressing[count4++]=powerpressing[j]+totalavg
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