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Abstract: In this paper, some properties through a two-level atom interacting with a two-mode radiation field are presented. The model
describes multi-photon process and includes a nonlinear Kerr-like medium and Stark shift. Also, the coupling parameter is taken in time-
dependent. The results show that Stark shift, nonlinear Kerr-like medium and time-dependent coupling parameter play important roles
in the evolution of the field entropy. We test this observation with accessible parameters and some new aspects are obtained.
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1 Introduction

The Jaynes-Cummigs model (JCM) [1] is an exactly
solvable model of a single-mode quantized field
interacting with a single two level atom in a lossless
cavity in the dipole and rotating-wave approximation
(RWA). Many interesting physical features have been
studied with this model such as atomic inversion [2] and
entanglement [3,4,5]. Much attention has been focused
on the properties of the entanglement between the field
and the atom [6,7,8,9] and in particular on the entropy of
the system. Knight and co-workers [10,11,12] employing
the entropy theory regarding the interaction of the field
with the atom. They have shown that the entropy is a very
useful operational measure of the purity of the quantum
state, which automatically includes all moments of the
density operator. The effect of Stark shift on the evolution
of field entropy and entanglement in two-photon process
is presented in [13]. Quantum entropy and entanglement
in the Jaynes-Cummings model without the rotating-wave
approximation have been shown in [14]. Properties of
quantum entropy evolution in the Jaynes-Cummings
model with initial squeezed coherent states field have
been studied in [15].

Abdel-Aty et al. [16] have studied the entropy
evolution of the bimodal field interacting with an effective
two-level atom via the Raman transition in Kerr medium.

The results of this paper shown that the system are
potentially interesting for their ability to process
information in a novel way and might application in
models of quantum logic gates. Liaoet al. [17]
considered a system of two two-level atoms interacting
with a bimodal field in an ideal cavity and studied the
time evolution of the single-atom entropy squeezing,
atomic inversion and linear entropy of the system. In Ref.
[18] the quantum treatement for two two-level atoms
interacting with SU(1,1) quantum system has been
investigated. The dynamics for the collective model of
two atoms interacting with two-mode quantized radiation
fields in a Raman type process has been investigated [19].

However, in recent years, the effect of the atomic
motion and field mode structure on entanglement
attracted much attention [20,21,22,23,24,25]. Abdalla
et al. [26] considered the interaction of a two-level atom
with a single-mode multi-photon field in a medium
consisting of the Stark shift and the Kerr-medium effects,
with the coupling term assumed to be a function of time
but still linear with the intensity of light. The authors of
Ref. [27] nonlinearized the atom-field system considered
in Ref. [26]. More recently, the entanglement of two
coupled atoms in the presence of a time-dependent
external magnetic field has studied [28].

In this paper we extend these investigations to study
the dynamics of a two-level atom interacting with a
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two-mode coherent field. Furthermore the field and the
atom are assumed to be coupled with modulated coupling
parameter which depends explicitly on time. An exact
solution of a two-level atom in interaction with cavity
field has been obtained. We investigate the effect of
different parameters of the system on the field entropy
and atomic inversion. The material of this paper is
arranged as follows: In Sec. 2, we introduce the model
and its solution under certain approximation similar to
that of the rotating-wave approximation (RWA) at any
time t > 0, In Sec. 3, We investigate the field entropy and
the dynamical properties for different regemes. Numerical
results for the field entropy and atomic inversion are
discussed in Sec. 4. Finally, conclusions are presented in
Sec. 5.

2 The model and its solution

The model considered here consisits of two-mode
interacting with an effective two-level atom via
multi-photon Raman transition. We consider the multiple
photon case and the quantized radiation field in the
rotating-wave approximation, taking into account both
Kerr and Stark effects in an ideal cavity (Q = ∞) filled
with a nonlinear Kerr-like medium. We also assume that
the cavity mode interacts with both the atom and Kerr-like
medium. Furthermore the field and the atom are assumed
to be coupled with modulated coupling parameter which
depends explicitly on time. The atomic levels|e〉 and|g〉
have identical parites. Each is dipole coupled with a
different mode of the field to the set of the intermediate
states|i〉. If we assume that there are no dipole transitions
between the sates|i〉 and that the interacting field modes
are far off resonance with these intermediate states, the
atom can be treated as an effective two-level atom by
means of the adibatic eliminations of the intermediate
state [29]. We assume that the atom can be prepared in the
excited state and the initial state of the field is given by

|Ψ(0)〉F =
∞

∑
n1,n2=0

qn1,n2 |n1,n2〉 , (1)

where qn1,n2 = qn1qn2 and qni = bnie
iθi describes the

amplitude of the state|ni〉 of the ith mode of the cavity

field andbni = exp{−
−
ni}

√

−
n

ni

i /ni!. The state function of
the total atom-field system att = 0 is take the form

|Ψ(0)〉= |Ψ (0)〉F ⊗|Ψ (0)〉A =
∞

∑
n1,n2=0

qn1,n2 |n1,n2;e〉 .

(2)
To obtain the wave function of the system at any timet > 0
we will solve Schrödinger equation

id |Ψ(t)〉
dt

= Hin |Ψ(t)〉 , (3)

where that the Hamiltonian is given by [30] (ℏ= c = 1),

Ĥ = Ω1â†
1â1+Ω2â†

2â2+
ω
2

σz + â†
1â1β1 |g〉〈g|

+â†
2â2β2 |e〉〈e|+ χ1a†2

1 â2
1+ χ2a†2

2 â2
2

+λ (t)(a†k2
2 a†k1

1 σ−+ âk2
2 âk1

1 σ+). (4)

WhereΩ1 andΩ2 are the field frequencies andω is
the transition frequency between the excited and ground
states of the atom, ˆa1 and â†

2 respectively, are the
annihilation and creation operators for theith mode of the
cavity field, β1 and β2 are parameters describing the
intensity-dependent Stark shifts of the two levels that are
due two the virtiual transitions to the intermediate relay
level, χi (i = 1,2) are related to the third order nonlinear
susceptibilities for the processes of self-phase-modulation
of the two modes,λ (t) is the effective coupling parameter
and considered to be time-dependent, andσz andσ± are
the atomic pseudo-spin operators. Now if we take the
coupling parameterλ (t) = λ cos(µt) whereλ andµ are
an arbitrary constatnts, then the Hamiltonian (4) can be
rewritten in the form

Ĥ = Ω1â†
1â1+Ω2â†

2â2+
ω
2

σz + â†
1â1β1 |g〉〈g|

+â†
2â2β2 |e〉〈e|+ χ1a†2

1 â2
1+ χ2a†2

2 â2
2

+λ cosµt(a†k2
2 a†k1

1 σ−+ âk2
2 âk1

1 σ+). (5)

The solution of Schrödinger equation in the interaction
picture, i.e., the wave function of the system at any time
t > 0 is given by

|Ψ(t)〉 =
∞

∑
n1,n2=0

[An1,n2(t) |n1,n2;e〉

+Bn1,n2(t) |n1+ k1,n2+ k2;g〉]. (6)

The coefficientsAn1,n2(t) andBn1,n2(t) are given by

An1,n2(t) = qn1,n2e−iλ tFn1,n2 ×
[

cosλ tνn1,n2 − iWn1,n2

sinλ tνn1,n2

2νn1,n2

]

, (7)

Bn1,n2(t) =−i qn1,n2Vn1,n2

sinλ tνn1,n2e−iλ tGn1,n2

2νn1,n2

, (8)

Fn1,n2 =
1
2r

[n2+ r2(n1+ k1)]

+
χ1

λ
[n1(n1−1)+ k1n1+

k1(k1−1)
2

]

+
χ2

λ
[n2(n2−1)+ k2n2+

k2(k2−1)
2

]+
µ
2λ

, (9)

Gn1,n2 =
1
2r

[n2+ r2(n1+ k1)]

+
χ1

λ
[n1(n1−1)+ k1n1+

k1(k1−1)
2

]

+
χ2

λ
[n2(n2−1)+ k2n2+

k2(k2−1)
2

]−
µ
2λ

,(10)
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Xn1,n2 = ∆ +β2n2−β1(n1+ k1)

−2χ1[k1n1+
k1(k1−1)

2
]

−2χ2[k2n2+
k2(k2−1)

2
], (11)

νn1,n2 =

√

W 2
n1,n2

+V2
n1,n2

2
,Vn1,n2 =

√

(n1+ k1)!(n2+ k2)!
n1!n2!

.

(12)

r =
√

β1/β2, Wn1,n2 = (Xn1,n2 − µ)/λ . (13)

In our model, we should say that the solution given by
Eqs. (7) and (8) is only valid for slowly oscillating term
(Xn1,n2 ≃ µ) and the Rabi frequency in the present case is
different from that of the JCM Rabi frequency. At any
time t > 0 the state vector of the system is given by

|Ψ(t)〉= |C〉 |e〉+ |D〉 |g〉 , (14)

where we written the bimodal field state as

|C〉 =
∞

∑
n1,n2=0

qn1,n2e−iλ tFn1,n2 ×

[

cosλ tνn1,n2 −
iWn1,n2

2νn1,n2

sinλ tνn1,n2

]

|n1,n2〉 , (15)

|D〉 = −i
∞

∑
n1,n2=0

qn1,n2Vn1,n2e−iλ tGn1,n2 ×

sinλ tνn1,n2

2νn1,n2

|n1+ k1,n2+ k2〉 , (16)

therefor, at any timet > 0 the density matrix for the system
is given by

ρ(t) = |Ψ(t)〉 〈Ψ(t)|=

(

|C〉〈C| |C〉 〈D|
|D〉 〈C| |D〉〈D|

)

, (17)

and the reduced density matrix of the filed of system can
be written as

ρ f (t) = Tra[ρ(t)] = |C〉 〈C|+ |D〉〈D| . (18)

Using the standard teqnique in Ref. [12], it can be shown
that the eigenvalues of the reduced density operator
ρ f (t) are given by

π±
f = 〈C|C〉±exp(∓δ ) |〈C|D〉|

= 〈D|D〉±exp(±δ ) |〈C|D〉| , (19)

where

δ = sinh−1
[

〈C|C〉− 〈D|D〉

2|〈C|D〉|

]

,

〈C|C〉 =
∞

∑
n1,n2=0

|qn1,n2|
2×

[

cos2 λ tνn1,n2 +
W 2

n1,n2

4ν2
n1,n2

sin2 λ tνn1,n2

]

, (20)

〈D|D〉=
∞

∑
n1,n2=0

|qn1,n2|
2V 2

n1,n2

sin2 λ tνn1,n2

4ν2
n1,n2

, (21)

〈C|D〉= R(t)+ iU(t) (22)

where

R(t) =
∞

∑
n1,n2=0

q∗n1+k1,n2+k2
qn1,n2

Vn1,n2

2νn1,n2

[
Wn1,n2

2νn1+k1,n2+k2

×

sinλ tνn1+k1,n2+k2 sinλ tνn1,n2 ×

cosλ t(Fn1+k1,n2+k2 −Gn1,n2)

+sinλ tνn1,n2 cosλ tνn1+k1,n2+k2 ×

sinλ t(Fn1+k1,n2+k2 −Gn1,n2)], (23)

U(t) =
∞

∑
n1,n2=0

q∗n1+k1,n2+k2
qn1,n2

Vn1,n2

2νn1,n2

[
Wn1,n2

2νn1+k1,n2+k2

×

sinλ tνn1+k1,n2+k2 sinλ tνn1,n2 ×

sinλ t(Fn1+k1,n2+k2 −Gn1,n2)

−sinλ tνn1,n2 cosλ tνn1+k1,n2+k2 ×

cosλ t(Fn1+k1,n2+k2 −Gn1,n2)]. (24)

3 Quantum Entropy

Following the work by P-K in Ref. [12], we can express
the reduced quantum entropyS f (t) of the two-mode
coherent field in term of eigenvaluesπ±

f of the reduced
density matrixρ f (t), given by expression (19), that is

S f (t) =−
[

π+
f ln(π+

f )+π−
f ln(π−

f )
]

. (25)

If the minimum value ofS f (t) is taken to zero, the
two-mode coherent field and the two-level atom are
disentangled, if the maximum value ofS f (t) is taken to be
one, the two-mode coherent field and the two-level atom
are in maximal quantum entangled state, if the value of
S f (t) is between zero and one, the two-mode coherent
field and the two-level atom are in usual quantum
entangled states.

The atomic population inversion of the atom is
important quantity in the atomic dynamics. It is measure
the difference in the populations of the two levels of the
atom and plays a fundemental role in the laser theory
[31]. After determining An1,n2(t) and Bn1,n2(t) for the
initial field state in Eq. (1), we can investigate the quantity

W (t) =
∞

∑
n=0

|qn1,n2|
2
{

|An1,n2(t)|
2−|Bn1,n2(t)|

2
}

. (26)

By inserting Eqs. (7) and (8) in equation (26), we obtain

W (t) =
∞

∑
n=0

|qn1,n2|
2{cos2 λ tνn1,n2 +

[W 2
n1,n2

−V 2
n1,n2

]
sin2 λ tνn1,n2

4ν2
n1,n2

}. (27)
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4 Discussion of results

In this section we examine the temporal evolution of the
field quantum entropy and atomic inversion related to the
present model as a function of the scaled timeλ t. We
have invoked numerically sound truncation criteria. To
ensure an excellent accuracy the behavior of both of the
field entropy and atomic inversion functions have been
determined with great precision. For all our plots the
initial condition has been chosen, with coherence
parameterα j real. Its square is equal to the mean photon
number. we have takenk1 = k2 = 1, χ1 = χ2 = χ and
−
n =

−
n1 =

−
n2 = 5.

As we see in Fig. 1(a), when all parameter equal zero,
the field entropy evolves collapse and revival with
decreases of the amplitude of oscillation in the time
evolution process. Also, in this case the number of
flactuations is less than the case that in one-mode. As
soon as we increase the value of the parameterµ/λ , the
amplitude of oscillation decreases more and more in the
time evolution process (see Fig. 1(e) compared to Fig.
1(a)). The behavior of the atomic inversion has shown in
Fig. 1((b), (d), (f)). It is clear that with increasing the
value of parameterµ/λ , the mean value of oscillations
shifts upward. To visualize the influence of the Kerr-like
medium and the time-dependent coupling parameter in
the field entropy and atomic inversion, we have plotted
Figs. 2-4. In Fig. 2(a), we setχ/λ = 0.01, and all the
other parameters are the same as in Fig. 1(a). It is clearly
the the number of oscillations is decrease and the field
entropy reached its maximum value faster than the case
that in Fig. 1(a). With the increase of the value of the
parameterµ/λ , the amplitude of oscillation is decrease
and the field entropy reaches its maximum value in the
time evolution process (see Fig. 2((c), (e))). This means
that, when the nonlinear interaction of the Kerr-like
medium with the field mode is very weak the degree of
entanglement between the field and the atom is
unreduced. The behavior of the atomic inversion in Fig.
2((b), (d), (f)) as the same that in Fig. 1((b), (d), (f))).
Since the increase of the nonlinear interaction of the
Kerr-like medium with the field mode (χ/λ = 0.1), the
value of the maximum field entropy still approximately at
0.7 (see Fig. 3(a)). We note that the amplitude of the field
entropy decreases asχ/λ increases. Also, with the
increase of value of the parameterµ/λ , the value of
maximum field entropy decreases (see Fig. 3(e)). In this
case, the degree of entanglement between the field and the
atom reduces. The mean value of the atomic inversion in
Fig. 3(b) become positive compared to Fig. 2(b). When
µ/λ = 2, the mean value of the atomic inversion shifted
upward greater than the case that in Fig. 2(f). When
χ/λ = 0.5, and all the other parameters equall zero, the
value of the maximum field entropy decreased more than
the previous case with decreases of the amplitude of
oscillation in the time evolution process (see Fig. 4(a)).

Fig. 1: Evolution of field entropyS f (t) (left curves) and
atomic inversionW (t) (right curves) of a two level a
tom interacting with a two-mode coherent field for the
parametersn = 5,∆/λ = 0, r = 0, χ/λ = 0.

Fig. 2: The same as in Fig. 1 but forχ/λ = 0.01.

With the increase of the value of the parameter
µ/λ , the value of the maximum field entropy decreases
more and more. This means that the degree of
entanglement between the field and the atom decreases
more and more (see Fig. 4((c), (e))). The effect of
Kerr-like medium on the atomic occupation number
results in inhibiting energy in the atomic system. The
moreχ/λ increases, the higher the mean values forW (t)
(see Fig. 4((b),(d),(f))). The effect of Stark shift parameter
on the evolution of the field entropy and atomic inversion
in the absence of Kerr-like medium has shown in Figs.

5-7. In our computations, we have taken
−
n1 =

−
n2 = 5. In

Fig. 5(a), we show the case in which the two levels have
unequal Stark shifts (r < 1). We see that the Stark shifts
leads to decreasing of the values of the maximum field
entropy but, with increasing the value of paramter
µ/λ , the value of the maximum field entropy increases
again (see Fig. 5((c), (e))) and the mean value of the
atomic inversion decreases (see Fig. 5((d), (f))). It is
remarkable that whenr = 1 (i.e, β1 = β2), which
corresponds to the case in which the two levels of the
atom are equally strongly coupled with the intermediate
relay level. We see that the evolution of the field entropy
is almost similar to the case in Fig. 1. In Fig. 6(a), whenr
= 2, the maximum field entropy increased compared to
the case in whichr < 1. With the increase of the value of
the parameterµ/λ , the value of the maximum field
entropy decreases (see Fig. 6((c), (e))), and the mean
value of the atomic inversion increases (see Fig. 6((d),
(f))), While whenr ≫ 1, the values of the maximum field
entropy decrease which indicates that the quantum
entanglement between the field and the atom turns worse
and worse (see Fig. 7((a), (c), (e))). This may be
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Fig. 3: The same as in Fig. 1 but forχ/λ = 0.1.

Fig. 4: The same as in Fig. 1 but forχ/λ = 0.5.

Fig. 5: The same as in Fig. 1 but for∆/λ = 5, r = 0.5.

Fig. 6: The same as in Fig. 1 but for∆/λ = 10, r = 2.

interpreted the detuning due to the Stark shift results in
disentanglement of the system. The influence of Stark
shift in the presence of Kerr-like medium has plotted in
Fig. 8. It is to be noted that Stark interaction behaves like
the limiting case of the Kerr-interaction. This may be
understood in the following way: the Kerr interaction
produces two separate effects, a Kerr effect, which splits
the field in phase space, producing a Schrödinger cat [32,
33], and a Stark interaction with the field in a cat state.
The atom field interaction when the field is initially in a
cat state has been shown to be less pure than for the field
in a coherent state. It has been shown [34] taking into
acount Stark shifts in the atom field interaction allows
agreement with experimental results of micromasers [35],
such as a shifted transition lineshapes and those
asymmetrically distorted.

Fig. 7: The same as in Fig. 1 but for∆/λ = 15, r = 4.

Fig. 8: The same as in Fig. 6 but forχ/λ = 0.5.

5 Conclusion

In summary, we have investigated the time evolution of
the field quantum entropy for the bimodal field interacting
with an effective two-level atom via Raman transition.
Also, The system has been chosen to include the effect of
both Kerr-like medium as well as Stark shift. The
coupling parameter between the atom and the bimodal
field is modulated to be time-dependent. The exact
expression of atom-field wave function is obtained, which
provides the ability to detect the details of the field
quantum entropy adjacent to the time-dependent or
independent atom-field interactions. Under certain
approximation similar to that of the rotating-wave
approximation withXn ≃ µ The field quantum entropy
calculation of a two-level atomic system has been
introduced and its time evolution has been discussed in a
coparison with the atomic inversion behavior. The results
show that the strong effect of Stark shift and Kerr-like
medium on the field quantum entropy in the
time-dependent system comparison with the
time-independent system.
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