
Appl. Math. Inf. Sci.8, No. 1, 407-413 (2014) 407

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080151

Fuzzy Neural Network-based Time Delay Prediction for
Networked Control Systems
Chang-Wook Han∗

Department of Electrical Engineering, Dong-Eui University, Busan,South Korea

Received: 11 Jul. 2013, Revised: 24 Nov. 2013, Accepted: 25 Nov.2013
Published online: 1 Jan. 2014

Abstract: In networked control systems, the varying transmission time delay of the transmitting signal is unavoidable. If the varying
transmission time delay exceeds the fixed sampling time, the system will be unstable. To solve this problem, in this paper, the logic-
based fuzzy neural networks are applied to the prediction of transmission time delay. The predicted time delay is used as a sampling
period of the networked control systems. To show the usability of the proposed method, the transmission time delay data are collected
from the real system, and these collected data are used to train and test thelogic-based fuzzy neural networks.
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1 Introduction

Recently, the control systems have been complex because
of many sensors and actuators. In point-to-point system
the number of needed wire increases very much
proportional to the number of sensor and actuator.
Because of this problem networked control systems
(NCS) are widely used in control areas [1,2,3].

NCS is designed as a feedback control system, i.e.,
the control loops are closed through a real time network.
In NCS, network induced delays occur inevitably and
they degrade the dynamic performance of the system.
Therefore, one of the main design issues of the NCS is the
transmission delay [2].

Lee et al. [4] designed single-input- single-output
system based on remote fuzzy logic controller for the
NCS using profibus-DP. Zheng et al. [5] used T-S fuzzy
model to model the NCS having various type of network
induced delay and data packet loss. To detect the
sensor/actuator faults parity equation approach and fuzzy
observer based approach were used.

In NCS, sampling time is fixed as constant. It is not
desirable for the time varying network induced delay. If
we can predict the delay, it can be used as a sampling
time. Although, many researchers have been considering
computational intelligence-based NCS, the time varying
sampling time prediction is rarely considered. Therefore,
this paper proposes the method to predict the sampling

time of the NCS using logic-based fuzzy neural networks.
The network induced delay data collected from the real
system will be used to train and test the model.

2 Networked Control Systems

NCS is a distributed control systems with network. NCS
is not control of networks, but control through networks.
Real time transmission of short and frequent packet is
different point of NCS from communication data
network. Fig. 1 shows the overview of the NCS. As
shown in Fig. 1, the wired/wireless communication
medium exists between controller and sensor (actuator).

Fig. 1: Overview of the NCS.
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The advantages of the NCS are no wire, low cost, low
weight, low power, easy maintenance, etc. But time
varying delay exists in NCS owing to the sharing of the
network medium. We call this delay as network-induced
delay. This network-induced delay varies widely depend
on the message transmission time and overhead time.
Transmission time through the medium heavily rely on
network protocol. Therefore, it is necessary to reduce the
network-induced delay without degradation of the NCS
performance, called network scheduling method.

In NCS, transmitting sampled data within sampling
time with guaranteed system stability is important. Short
sampling period is desirable in most of the control
systems, while sampling period of NCS can be extended
to the bound guaranteeing the system stability
notwithstanding the system degradation. This sampling
period is called maximum allowable delay bound
(MADB) [ 6]. Therefore, it is needed to find MADB
guaranteeing stability of NCS, and scheduling method to
restrict the network-induced delay within MADB.

3 Time Varying Sampling Period NCS [7]

In NCS, fixed sampling period model has the following
problems:

-Time delay in real system is time varying and has no
rule. It is very difficult to select adequate sampling
time in NCS modeling.

-Time delay part of the NCS degrades the control
performance very much.

-Compensation control technique is needed to
compensate the time delay, and moreover, a special
controller considering network-induced delay has to
be designed.

Fig. 2: Structure of the considered NCS.

To overcome these problems, in this paper, time
varying sampling period (different sampling period for
each sampling step) is considered. It will be reasonable to
set time delay as sampling period. For the development of
a new time varying sampling period model the following
assumptions have to be considered (refer to Fig.2):

-NCS basically consists of plant, actuator, controller,
sensor, and communication network.

-Actuator is directly connected to both of plant and
controller.

-Controller-to-actuator, actuator-to-plant, there are no
network, no time delay exist.

-Sensor is directly connected to plant. Sensor can be
considered as a part of the plant.

-Network only exists between sensor and controller.
-Sensor, controller, and actuator are all event-driven.

The continuous plant model of the NCS considering
network-induced delay is express in the following form

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t) . (1)

and the discrete controller is given as follows

y(kh) =−Kx(kh), k = 0,1,2, ... (2)

Sampling the system with a fixed sampling periodh,
and considering the time delayτk , we can get

x(k+1) = Φx(k)+Γ1 (τk)u(k)+Γl (τk)u(k−1) ,

y(k) = Cx(k) ,

u(k) = −Kx(kh− τk) ,

where (3)

τk < h,

Φ = eAh
,

Γ1 (τk) =
∫ h−τk

0
eAsdsB,

Γ1 (τk) =
∫ h

h−τk

eAsdsB.

In fixed sampling period system, one upper limit of
the time delay has to be selected. The common method is
to select the maximum of the time delay and then turn it
forward into integer time of the sampling period. It means
that the time delay must be within one sampling periodh
or d sampling perioddh. It is apparent that this method is
conservative, and it does not accord with actual
conditions. The system with time varying sampling
periodhk can be described as follows:

x(k+1) = Ak (hk)xk +Bk (hk)uk,

yk = Cxk,

uk = −Kxk, (4)

where

Ak = eAhk ,

Bk =
∫ hk

0
eAsds.

As can be seen above, the sampling period is a
parameter ofAk, Bk and the time delay disappears from
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the controller. In this way, NCS becomes discrete time
varying system without time delay. The advantage of
replacing the fixed sampling period model with time
varying sampling period model is that the stability
analysis of time varying sampling period model becomes
much easier owing to the disappearance of the time delay
part. To analyze the stability we only need to find whether
all the eigenvalues ofAk − BkK are in the unit circle at
each sampling stepk or not.

Further defining

zk =

[

xk
uk−1

]

(5)

as the augmented state vector, then the augmented
close-loop system can be describe as

zk+1 = Φkzk =

[

Ak −BkK 0
−K 0

]

·

[

xk
uk−1

]

where (6)

Φk =

[

Ak −BkK 0
−K 0

]

To apply this modeling scheme, however, we have to
know the variable sampling period or the time delay at
each sampling step. Owing to the characteristic of the
NCS, we dont know the time delay before it occurs.
Therefore, in this paper, we apply the logic-based fuzzy
neural networks to predict the time delay at each
sampling step.

4 Logic-based Fuzzy Neural Networks [8,9]

This paper is a new application version of the cascade
architectures of fuzzy neural networks that is proposed by
the author to predict the transmission time delay of the
networked control systems. Therefore, the same version
of cascade architectures of fuzzy neural networks and its
optimization method in [8,9] are used in this paper. For
this reason, all of this section directly refer to [8,9]. For
more details about the cascade architectures of fuzzy
neural networks, please refer to [8,9].

4.1 Logic processor (LP)

As originally introduced by Pedrycz et al. [8], fuzzy
neurons emerge as result of a vivid synergy between
fuzzy set constructs and neural networks. In essence,
these neurons are functional units that retain logic aspects
of processing and learning capabilities characteristic for
artificial neurons and neural networks. Two generic types
of fuzzy neurons are considered:

AND neuron is a nonlinear logic processing element
with n-inputsx[0,1]n producing an output y governed by
the expression

y = AND(x;w) = Tn
i=1 (wisxi) (7)

where w denotes an n-dimensional vector of adjustable
connections (weights). The composition ofx and w is
realized by an t-s composition operator based on t- and
s-norms, that is, s denoting some s-norm and t standing
for a t-norm. As t- norms (s-norms) carry a transparent
logic interpretation, we can look at as a two-phase
aggregation process: first individual inputs (coordinates
of x) are combined or-wise with the corresponding
weights and these results produced at the level of the
individual aggregation are aggregated and-wise with the
aid of the t-norm.

By reverting the order of the t- and s-norms in the
aggregation of the inputs, we end up with a category of
OR neurons,

y = OR(x;w) = Sn
i=1 (witxi) (8)

We note that this neuron carries out some and-wise
aggregation of the inputs followed by the global or-wise
combination of these partial results.

Some obvious observations hold:

-For binary inputs and connections, the neurons
transform to standard AND and OR gates.

-The higher the values of the connections in the OR
neuron, the more essential the corresponding inputs.
This observation helps eliminate irrelevant inputs; the
inputs associated with the connections whose values
are below a certain threshold are eliminated. An
opposite relationship holds for the AND neuron; here
the connections close to zero identify the relevant
inputs.

-The change in the values of the connections of the
neuron is essential to the development of the learning
capabilities of a network formed by such neurons; this
parametric flexibility is an important feature to be
exploited in the design of the networks.

Fig. 3: Architecture of the LP.

The LP, described in Fig.3, is a basic two-level
construct formed by a collection of ”h” AND neurons
whose results of computing are then processed by a single
OR neuron located in the output layer. Because of the
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location of the AND neurons, we will be referring to them
as a hidden layer of the LP.

Each LP is uniquely characterized by a number of
parameters: a number of inputs (n), number of nodes in
the hidden layer (h) and an array of connections of the
AND neurons as well as the OR neuron in the output
layer. Bearing in mind the topology of the LP, the
connections of the AND neurons can be systematically
represented in a matrix form V while the connections of
the OR neuron are collected in a single vector form (w).
We write the following detailed expressions

z j = AND(x,V j) , j = 1,2, ...,h y = OR(z,w) (9)

wherez is a vector of outputs of the AND neurons
(

z = [z1z2...zh]
T
)

while V j denotes the j-th column of the

connection matrixV.

4.2 Cascade architectures of fuzzy neural
networks

As LPs are our basic functional modules, there are several
viable options to build an overall architecture. Here we
discuss them and analyze its functional properties.

LPs are basic functional modules of the network that
are combined into a cascaded structure. The essence of
this architecture is to stack the LPs one on another. This
results in a certain sequence of input variables. To assure
that the resulting network is homogeneous, we use LPs
with only two inputs, as shown in Fig.4. In this sense,
with n input variables, we end up with (n-1) LPs being
used in the network. Each LP is fully described by a set of
the connections (V and w). To emphasize the
cascade-type of architecture of the network, we index
each LP by referring to its connections asV [ii] andw [ii]
with ”ii” being an index of the LP in the cascade
sequence.

Fig. 4: A cascade network realized as a nested collection of LPs.

From the functional point of view, we regard the
network as a realization of a decomposition of some

function (either Boolean or fuzzy). It becomes obvious by
noting that the output can be schematically represented as
y = f (xi,g(x∼i )) with xi being the input to the LP under
discussion andg(x∼i ) describing the remaining part of the
network (x∼i indicates that the i-th input variable is
nonexistent here). Subsequently, the same decomposition
model applies to g(x∼i ) which can be further
decomposed. Fig. 5 underlines the effect of
decomposition. It becomes obvious that an order of input
variables affects the performance of the network.

Fig. 5: Cascade network as a model of function decomposition.

To gain a better view at the mapping realized by the
network, it is advantageous to discuss the functional
aspects of a single logic processor. We start with the
simplest possible topology. We assume that the number of
AND neurons (hidden layer) is equal to 2 and consider a
binary character of the connections, see Fig.6.

Fig. 6: An LP along with its possible logic descriptions.

Based on the values of the connection matrices (w and
V) we arrive at the following logic expressions (let us
remind that the rows ofV contain the values of the
connections originating from a certain input node to the
two AND neurons in the hidden layer; the columns are
labeled by the corresponding AND nodes)

w =
[

1 0
]

,V =

[

0 0
1 1

]

,

h1 = x,h2= x,y = h1 OR 0= x

w =
[

1 0
]

,V =,

[

0 1
0 1

]

,

h1 = x AND z,h2= 1,y = h1OR0= x AND z

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 407-413 (2014) /www.naturalspublishing.com/Journals.asp 411

In a nutshell, the proposed network realizes a
successive realization of the logic model by incorporating
more variables by augmenting its structure by a basic
(generic) unit once at a time.

4.3 Development of the cascade architectures
networks

The evolutionary optimization [10] is an attractive avenue
to exploit in the development of the cascade network. In
this learning scenario, we arrange all elements to be
optimized (that is a sequence and a subset of input
variables, and the connections of the logic processors)
into a single chromosome and carry out their genetic
optimization. The considered form of the chromosome for
this optimization is described in Fig.7. The input
sequence of the variables (and thus is involved in the
structural optimization of the network) and the
connections (parametric optimization) are the phenotype
of the chromosome. The sequence gene of input variables
to be used in the model (we allow for a high level of
flexibility by choosing only a subset of the input
variables) consists of ”n” real numbers in the unit
interval. These entries are assigned integer numbers that
correspond to their ranking in the chromosome. The first
”p” entries of the chromosome (assuming that we are
interested in ”p” variables) are then used in the structure
of the network. For instance, if the chromosome consists
of the following entries: 0.5 0.94 0.1 0.82 0.7 (n = 5) and
we are interested in p=3 variables, the ranking leads to the
sequence of integers 2 4 5 1 3 and we choosex2, x4, and
x5.

Fig. 7: Structure of a chromosome for the optimization of
cascade architectures of fuzzy neural networks.

The resulting connections of GA are binary. Instead of
going ahead with the continuous connections, the intent
of GA is to focus on the structure and rough (binary)
values of the connections. This is legitimate in light of the
general character of genetic optimization: we can explore
the search space however there is no guarantee that the
detailed solution could be found. The promising Boolean
solution can be next refined by allowing for the values of
the connections confined to the unit interval. Such
refinement is accomplished by the RSL that is quite
complementary to the GA; while RSL could be easily

trapped in a local minimum, it leads to a detailed solution.
The complete learning mode is composed then as a
sequence of GA followed by the RSL, let us express as
GA-RSL (two-step optimization). Owing to space
limitations, RSL is not mentioned in this paper. For more
details about RSL, please refer to [11,12].

5 Experimental Results

Generally, the current time delay is affected by the past
time delay. Therefore, time delay can be regarded as a
Markov chain, and we can assume that there is a
correlation between the current time delay and the past
time delay. Based on this theoretical foundation we apply
the cascade fuzzy neural networks to predict the current
time delay of the NCS. To collect the time delay data we
used Bluetooth-based NCS as shown in Fig.8. The wired
transmission time has been compared to the wireless
(Bluetooth) transmission time to collect the time delay
data for the same signal transmission.

Fig. 8: Considered target NCS.

For the prediction of the time delay 800 data have
been collected as a time series using the system in Fig.8.
We set fixed sliding data window as 20, and then 780
feature vectors were acquired. Among them 50% (390)
were used for the train and test the cascade architectures
of networks, respectively. Each feature is discretized
using 3-uniformly distributed Gaussian membership
function with an overlap of 0.5. We again exercised the
learning scenarios that GA optimizes the input sequence
and binary connections for different number of input and
then find the best result of them, respectively [8]. For the
best result the RSL refines the connections of the neurons
positioned in the unit interval. All logic processors have
two AND neurons in their hidden layers. In the
experiments, we limit the number of input variables and
consider only 7 number of input. The selection of these
variables is also genetically optimized and in this way we
can reduce the size of the model as well as reveal a
hierarchy of the input fuzzy sets [8].

The used parameters, acquired from the trial and error
method, for the optimization are described as follows:
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GA parameters
-Population size: 100
-Maximum generation: 200
-Crossover rate: 0.8
-Mutation rate: 0.03
RSL parameters

-Learning rate: 0.05
-λ : 5
-Maximum iteration number: 2000

Once the cascade architectures of fuzzy neural
networks have been optimized using the training data, the
testing data (independent from the training data) were
considered to verify the trained networks.

The optimization results shown as Root Mean Square
Error(RMSE) are described in Table 1.

Table 1: RMSE after the optimization of GA and RSL.
After GA After RSL

Training 0.412 0.283
Testing 0.431 0.297

Fig. 9: The prediction results for the testing data.

Fig. 9 shows the testing data prediction results
comparing the real delay and the predicted delay. The
closer point to the diagonal has the small prediction error.

6 Conclusion

This paper applied the cascade architectures of fuzzy
neural networks optimized by GA-RSL to predict the

time delay of the NCS. As mentioned above, time varying
sampling period has an advantage over the fixed sampling
period with respect to the cancelation of the time delay
part in the system equation. As is shown in the
experiment results, the considered method has a potential
ability to predict the time delay of the NCS.

For further research the variety of dada acquired from
the different experimental circumstances (different
wireless communication paths) are needed. Moreover,
this trained predictor need to be included in the NCS to
decide the time varying sampling time and control the
real systems.
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