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Abstract: The study aims to estimate the extent to which the reflection wave is affected by the initial stress, magnetic field,
and fractional parameter within a semiconductor photothermal diffusion medium when taking into account the Classical
(CT) theory and the dual-phase-lag (DPL) theory. Its problem is defined in examining the generalized framework
concerning plasma, thermoelastic waves under the thermomechanical responding of reflecting the photothermal diffusion
for the semiconductor constituent. It applies the Maxwell's equations while considering the absence of the medium of
infinite conducting and displacement current. Moreover, it applies the boundary settings for the Maxwell's and mechanical
stress, diffusion, chemical reaction, as well as temperature gradient on the interface next to the vacuum. It obtains
analytically and displays graphically the ratios of the reflection coefficient as tasks of the angle of incidence, diffusion,
initial stress, magnetic field, semiconducting, and photothermal. It compares the CT to the DPL theory. It also compares its
findings to the results of the literature. The results of the paper include generalizing the photothermal semiconductor
medium and deducing to a special case when neglecting the novel parameters. When neglecting the magnetic field,
fractional parameter, and initial stress, the findings of the current study deduce to the findings of Lotfy et al. (2020) as a
special case of study.
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conformable fractional derivative” according to the
familiarity boundary definition of the function's derivative.
Abdeljawad [26] developed this new model. Yet, the
fractional derivative and the conformal fractional derivative

1 Introduction

Several natural materials are significant in the industry

because they are highly applicable in renewable energy. For
instance, semiconductor materials that are significant
economically in the field of solare cells are found
abundantly in nature. Exposing a semiconductor medium to
the focus of laser or sunlight beams excites the surface
electrons at the free surface. Many kinds of fractional
integral and differential operators exist. The first one is the
Riemann-Liouville definition [1-5] that contains the
fractional differential of a constant, which is not zero.
Caputo puts definitions that provide the value of zero
concerning fractional differential of a constant. However,
these definition require that the function are differentiable
and smooth. Jumarie introduced modified Riemann-
Liouville [16-23] - another concept of the fractional
derivative and integral- which fit continuous and non-
differentiable functions having the fractional differential of
a constant, which equals zero [16-24]. Lately, the authors
of [25] provided a novel fractional derivative known as “the

are not similar. Rather, the later represents a basic
derivative increased using a further simple factor.
Consequently, the novel definition is a natural extension of
the classical derivative. Though, it differs from other
model. It integrates the typical characteristics of fractional
derivatives. It fits several extensions of the traditional
calculus theory, including the derivative of a product and
combining two issues, the Rolle’s and the mean value
theory, conformable integration by parts, expansion of
fractional power series, etc. [27-33]. Abd-alla [34]
investigated the relaxation impacts on reflecting the
generalized magneto-thermoelastic waves. The authors of ]
35] examined the generalized wave impact on a micropolar
thermodiffusion elastic half-space based on the initial stress
and electromagnetic field. Abo-Dahab et al. [36]
investigated the thermal stress of generalized magneto-
thermoelasticity on a non-homogeneous orthotropic
continuum solid having a sphere-shaped cavity. Abo-Dahab
et al. [37] discussed reflecting plane waves on a generalized
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thermoelastic medium affected by initial stresses and
temperature-dependent characteristics with the three-phase-
lag system. Lotfy et al. [38] explored the model of
thermomechanical response of the Reflection Photothermal
Diffusion Waves (RPTD) to semiconductor media.

The present paper explored how reflection wave is affected
by the magnetic field, fractional parameter, and initial stress
within a semiconductor photothermal diffusion medium. In
this model technique, we depend on the interaction between
plasma waves, magnetic field, fractional parameter and
initial stress, thermal waves, elastic waves, and diffusion of
mass. The study's problem is defined in examining the
generalized model for plasma, thermoelastic waves affected
by the thermomechanical responding of reflecting the
photothermal diffusion for the semiconductor constituent. It
applies the Maxwell's equations while considering the
absence of the medium of infinite conducting and
displacement current. Moreover, it applies the boundary
settings for the Maxwell's and mechanical stress, diffusion,
chemical reaction, as well as temperature gradient on the
interface next to the vacuum. It obtains analytically and
displays graphically the ratios of the reflection coefficient
as tasks of the incidence angle, diffusion, initial stress,
magnetic field, semiconducting, and photothermal. It
compares the CT to the DPL theory. It also compares its
findings to the results of the literature. It derives
analytically and displays in graphs the ratios of the
reflection coefficient as roles of the semiconducting,
diffusion, initial stress, magnetic field, as well as angle of
incidence.

2 Fractional Problem Formulations

The authors take into account a standardized isotropic
generalized magneto-thermoelastic half-space with initial
stress. Analyzing the transport process theoretically within
a semiconductor involves taking into account elastic waves,
thermal waves, and coupled plasma waves concurrently as
the major variable quantities. The transport process shows
in a semiconductor medium during the three types of
waves.

(xaya Z) in two

Using the Cartesian coordinates

dimensions (x’ Z)( r ) denotes the position vector and the
time variable t, the problem is studied. We must consider
that the circular plate is very thin, linear homogeneous, and
having isotropic features.
We take the governing equations in generalized cases while
having the parameter of thermal activation coupling that is
describable via transporting coupled plasma, thermal,
magnetic field, initial stress, and elastic properties of the
medium.
The fractional-order governing equations for coupled
plasma, thermal and elastic transport are represented as:
N0

2 ) 1
DIN(7,t)=D,V N7 ,t)————=+«kT(7,t), V,=D*+D*+D, 1
. )

2

i E
k(U 2, DV T (1) + =5 N(ry1) = (DF +2,DY pC.T (1) + BT,DCu(r, 1) + TC),
T

The fractional equation of motion with carrier density
considering Lorenz's body forces and initial stress takes the
form:
pD“u, = uD"u, +(p+ ) D (D)
~(1+2,D)BDIT - f,D(C)~0,D N+ DI'F - pD‘a,
A3)

The diffusion of the mass equation is represented as:

D, e, +D.cD*T(r.1) +(DF +7D*)C(r,1) = D.bD“C(r,1) - (4)
where

F :(jxﬁj : 5)

The various values of the electric and magnetic fields
provided by Maxwell's equation neglecting the
displacement current take the following form:

ij ok
arl,h=J,  V,=D"i+D"j+Dk, cul h=V,xh=D¢ DI D,
b by by
ij ok
~uDfh=cul E, anl E=V,xE=|D! D’ D,
El EZ E3 (6)
div,h=0, div,h=V,-h,
div, E =0, div,E=V-E,
E:—,ug(Df’l;xﬁo), h=curl(ux Hy), F = u,(JxHo),
where
H=Ho+h(x,y,t), Ho=(0,H,,0)..
Utilizing Eq. (6) gives
_ 2 na
Fx_lueHODxe’ %
2
F.=pH;Dle, (8)
Fy =0. 9
Once more, Maxwell’s stress equation is
Ty = K, ':[—[ihj +Hjhi _Hkhké‘ij]
This decreases to
2 o o _
Ty =Ty =M H (D‘c u+DyV)’ 7, =0.
(10)

In equation (2), the second concept to the right denotes the
impact of heat generated by the surface de-excitations and
carrier volume in the sample, whereas the third one defines
stress wave- generated heat. The third and fourth concepts
in Eq. (3) in RHS define the source term and the impact of
the thermal and plasma waves on the fractional elastic
wave, correspondingly.

Because the analysis is limited to *Z -plane, the
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E =

fractional displacement is identified using
u=w0,w), u(x,zt), wxzt).
The constitutive relationships are represented as:
6. = QuA DU+ A Dw—(1+7,0°) B (T-T,)~ f.C)~GA+2uwd N-p> (11)
5, =Qut WD w+ A Dlu-(1+ 7,00 (T-T,) - f.C) - GA+2md N—ps (12)

(13)

The chemical potential of the material equation takes
the form of generalizing the Fourier law and standard
thermal conductivity equation.

Thus, the equations of chemical potential are

P=-pBe +bC—c(T-T,)), (14)
By Helmholtz's theory, the vector of fractional
displacement ¥ takes the form of the functions of the

O == 2IDIw (u+ D)Dru.

fractional displacement scalar potential H(x “ ,Z “ L1 a)
and \P(x"’, z%,t%)

non-dimensionally:

u=grad 1l +curl y,

identified using the relationships

w = (0,y/,0) (15)
That declines to
u=D!I1-Dfy, w=D!I1+Dly, (16)

The equations of the fractional field and constitutive
relationships at the plane surface of (equation (3)) in
generalized linear elasticity influenced by gravity, without
thermal sources and body forces take the form:

pD,"“u=(p—§]V§u+(u+A+/«,H3+p) Dee=(1+1, D) B,DET ~ ,DC)+ (344 24, DEN,

(17)

pD,“”W=(/t*§]ViW+(/Hiﬂtﬂf+17)Dfe*(l+TgD,”)(ﬁlDfT*ﬂszC)+(3/1+2ﬂ)d,,DfN-

(18)

To make it simpler, we employ these non-dimensional
variables
P “ 2" :
Pzt L) P
H B, Gt #

7,7 . H ON
(Z T Tﬁ) ( f 9)>H: "= . 2
2u+A+pH;

o0

i

' oG’
T-T, 5
(Hr"//!): (H7lf/)2 , Tr: ﬂl( 0) 5 C/: ﬂ_c 5
(Ct) 2u+A+uH; 2u+A+pH;
Thus, utilizing the scalar function (9) and Eq. (10) in

Egs. (1), (2), (4), (11), and (12), results in (neglecting the

dashed for convenience)
2 o _ (19)
(Va a9 q2Dt N + &3 7 =0,

A+7,DVLT —(Df +7, DT +&V.Il+£,Ct—g, N=0, (20)

(V2 -D)1-(1+17,D/)T - N =0, 1)
(V. —B'D" )y =0, (22)
Vi+q,V.T+q(D* +7D“)C-q,V:C=0, (23)

P=-VIl+q,C—q,T, (24)
where
kt* k 7/2T0l*2
9“ZW“=7 > ©HQ = ——=> & =T
D, ptC, D, pC, kp
OZTE t dnk,q* CCZ
2 = s E3 = —— &, =
d pTC a,pC,D, ﬂ1ﬂ2
_pP
, 2u+A+uH!+p o Mo
CT = ) CL = >
P P
&3 k
2= —, =Qu+34)d, =,
_ prT _ cpCy
q; = 2 94 = )
B; B By
QuAMTCE
i Dp;

Equations (11)-(13)) in the non-dimensional form
become:

o, :2D:"“‘H+i ngszny/fi(Z” +’1)((1+THD,“)(T+ C)+N)-p, (25)
H “

G :2Dj“n+ivzn—2ufbjy/ CHED (14 DT +C)+N)-p, (26)
# 7

(27)

c, =0+ g)Dj“w +2D%DTT —(1— g)Df“y/,

3 Solving the problem

Concerning a fractional propagated harmonic wave where

the normal exists in the xz-plane and creates an angle 0
with the positive direction of the z-axis, the authors argue
that the solutions of the system in equations (19)-(24) are
represented as:

{N H l//,c T} {N H V/,C T} l§(x sin@+z% cos@)—icot” ’ (28)

where & the wave is numbered, and @ denotes the
complex circular frequency.
We substitute from equation (28) into equations (19)-(24)

and reach a 5 homogeneous algebraic equation- system, as
follows:

(*E +a,)N —&,T =0, (29)
(@ (1-iawr,)& -iaw(l-icwr )T +iao(l -iaor, (& E T~ £,C) +£,N=0,
(30)
(31)

a? (&% — o)+ (1 —iawr,)T+ N =0,

E T +a’q,E T +liawq,(1—iawt)—a’qE*] C =0, (32)
o’ (& =B’y =0, (33)
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where, o, = q, —iawq,.
The system of equations (29)—(33) demonstrate significant

solutions if and only if determining the factor matrix
disappears. Thus,

o’ +a, -& 0 00 (34)
g d(-iowr)E -iao(l-iaor,) io'0sE (1-iawt,) -ive,o(l-ioor,) 0 0
(1-iawr,) e o) 00 ’
0 0 0 0 d(E-f0)

This denotes an algebraic equation v =—, in which v

w
represents the coupled wave's velocity:

(vz —#](vx +AY + Ay +AY? +A4)=0 » (35)

where
A4 =ao—, (36)
dg
A4, =a0—=, (37)
a()
a
A =a’w’ 2%, (38)
d
a
Ad,=d0’ L, (39)
d
a, =—qs(1-iawr,), (40)

a, = q,(1-iawt,ico(l-icwt) -’ @ —a,) +ico(l- iawr, )(q; +4,&,),
(41)
a, = (I-izwz, \1-iaor,))[-a’ 0’ g,(1-iaw?) + o’ w’e, ]+ (1-iawr, iaaoq(1 - iaor)
-0’0’ ¢+ 0’ g (1-iaw?)]+ (1-iaor, @'’ +ia'©'q; +igaoq +id'o’s g,
+i0we &,q;]+iawgs(1-iawt) + s,
(42)
a, =(1-iaw?)(1-iawr)[-0a 0’ e g, (1-iaot,) + a'0'q; + 0,0’ 0’ q; + 0’ g 6,45)
+(I-iawr ) lig,aws,(1-iawt,)) - ioe ©'q; +ioe’ ©'¢,q, +iawss,]
+ia,d’@'q,(1-iaw?)(1-icot,)) + iavs,&q,(1-iawT) + * 0’ e q;,

(43)

=’ @’ (1 —iaw?t)[aaw(l —iawt,) —i8,8,q;],

44
a, = (1+iaw?t)|[aao(l+iawr,) +isiqs],
Then, we can obtain the velocities of five waves from the

equation (35). They are denoted to thermal, elastic, plasma,
as well as diffusion waves and have the velocities

Ui 1= 12,34 and rotational wave, respectively, Os
denoted to rotational wave are expressed analytically as

v, =1/p.

4 Solving incident p-wave:

2
Because equation (31) is fifth order in U , four coupled
waves have three diverse velocities and a rotational wave

with the velocity U= 1/ p . Neglect the radiation into the
vacuum, when a coupled wave falls on the boundary (z = 0)
from the inside of the elastic semiconducting means, which

0

creates an angle with the z-axis'es negative direction,

and five reflected waves that create angle 0 and 0" =

1,2, ..., 5) in that direction (see Fig. 1).

The potentials of the fractional displacement ILY and
the quantities of the fractional field T, N, and C are
expressed as

4
_ i& (x* sin 6, +2z% cos @) )—it” i& (x% sin6,+z% cos 6, )—ict”
I1= Ele + F;e i
i=1

5

[\ ei§5 (x* sin 5 +z* cos b )—icn”
|

4
_ i& (x* sin@,+z% cos ) )—icwt” i& (x% sin@,+z% cos 6, )—icwt”
T=nkEe" I 1 + ) nke )
i=1

4
_ i& (x% sin +2% cos 6, )—iax” Z i& (x¥sin@,+2z% cos 6, )—iwt”
N={_Ee +) (. Fe ,
i=1

C= glE] eiéﬂ(x-“ sin) +z cos ) )-icot” + i giEeié-(X“ sin,+2* cos ) )~iot” :
i=l

where

~ (azéz +a1)(a2§i2 —a’a®)

B (l—iawr, (@’ E + ) + &, ’

¢ =[-a*E (1-irja0) +id’ 0 (@& +a,)(1-iawr,) - 660"

_ —(a*E +a)

&377;

+id’wg,e &l (1- iaa)rq)(azéf +a )+ [[@’E (1 -ira0) e’ +a))
—iaw(1-iaor, W& +a))+ 6,8, |[q E —iawq(1-iaoT))
i=1,2,3,4.

The amplitude ratios of the fractional reflected waves and
the fractional incident wave,

i’ we,q, £ (@’ E +a )X —iawr,)],

provide the conforming ratio of the reflection coefficients.
Moreover, the angle &, (i=1,2,...,5) and the conforming

wave numbers &, ,(i=1,2,...,5) should be linked by the
following relationships based on Snell's law:
gisinf, =&, sinb, =& sinb; =&, sinb, =& sinbs
On the interface z = 0 of the medium, the relationship (45)
can take the form

sind, sin@, sindo,

_sin@d, sin &,

U, U, U3 Uy Us

(46)
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Fig.1: Outline of the problem.

5 Boundary Conditions

(i)Assume that the boundary z = 0 is next to vacuum. It is
traction-free. Thus, the boundary setting takes the form:

2z z: xz xz

o_+1, =-p, oO_+7T :—%(u” —u”),

(ii)Let the boundary z = 0 be insulated thermally, we get

or

oz
(iii)The carriers are able to arrive at the sample surface,
with a finite probability of refusion. Therefore, the
boundary setting of the density of the carrier takes the
following form:

0

dN

) (iv)The
chemical potential P(x,z) at the boundary z = 0 is given by

P(x M =0
then,

f:{[(uzu)ms2 6+ Asin’ 0+ H |8+, 24 +g,)—§]}g (47)

= [_{[(}v + 2/’)“’52 '9\ _;‘Sinz '9\ + #aHﬂazél _T/)()]] +§1)_§1}i|7

4 2. F, .2 B .2 . 48,

iZ=:1 ; sm26’l. E+r§5 COSZHSE—1=§1 sm26’1 ( )
4 F,

Zi— , 49

iz 7; €Os 6’1. 2 77y cOs 6’1 (49)

(50)

4 F,
iélgi (De cosHl. +S)E’1 :é’l(De cosé’1 -S)

iél(_ +a3§i _a477i)E— _a3§1+a4771

in which %7
FE

denote the coefficients of the amplitude

1

ratios of the reflected longitudinal waves, whereas B

El
denotes the coefficient of the amplitude ratio of the
reflected shear waves from the following algebraic
equation:

3 F.
Zaiij :bi’ Zj :7]’ ] :1’2’3545 ZSZE’ 91:00 (52)
j=l El El

where
0 ={[(+ 2008”6~ Asin’ 0.+ i H; |@E +,(2+ 20001, +6) =4, | 4 =0,
a,, =a’$?sin26,, a,; =a’&S sin26;,
a,; =1, cosHi ,
a,, =é’l. (D, cos¢9i +.S5),
as;, = (—1+a3é’l. —ayn; ), ass =0,
b, :[—{[(}HZ,u)coszb‘] —Asin® 6+ H; |o*E =7,(n, +gl)—§l}},
b, = a”&P sin 20,
b, =17,cos6,
b, = é’l(De cos¢91 —-S),

a,; =0,

a,s =0,

bs =1—az&, +aymn,.

6 Numerical Results

Si is selected as the constituent concerning numerical
simulation. Its parameters are selected, see Table 1:

The thermal relaxation times are cited in the previous
studies (Chandrasekharaiah 1986) for different types of
materials to 10-14 sec. for metals. Concerning the
semiconductor constituents, this parameter is behind metals
and gases. We selected the relaxation times for silicon
7, =1.85x10"s, v,=1.334x10"s

Table 1: Physical constants of Si (Song et al. 2014).

Parameter Value Parameter Value Parameter ~ Value
iooaeaONgt ko powglx! T WK
Eooseale ¢ ekt b 0
PooamPRe ¢ g D osar
o 1t Do st A ggpdlyd
o 40t S el B L

To explore the behavior of solutions, we carried out
numerical calculation of several values of parameters. We
have to predict the behaviors of the temperature

,i=12,..,5. For this
object, Figures 2-4 are displayed.

coefficients of reflection |Zi
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Figure 2
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Z,

The coefficients of reflection
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=]

2

,i =1,2,...,5 regarding the incidence angle 0:

21, Z,

Z3,

Zy, Zs

[Z1]

S0 So

1.5=<10°

2x<10°

1=<10>

© 2022 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett. 11, No. 2, 629-638 (2022) / http://www.naturalspublishing.com/Journals.asp

£~ —Dress

1 1

30 S0 so
@

Fig. 3: Various values of the reflection coefficient

magnitudes | z;

angle 0:a = 095, == _0o07 » """

30

,i =1,2,....,5 concerning the incidence

300

300 T T

30 T T

20 % —

[Z<]

2x10* T T

5%10°

Fig. 4: Various values of the reflection coefficients
magnitudes | Z,|,i=12,..5 concerning the incidence

angle 0: H,=3x10% -~ Hn:2X106'""_Hn:1X106

© 2022 NSP
Natural Sciences Publishing Cor.



636 oo

H. S. Gafel: Fractional order study of the impact of ...

7 Conclusions
For studying waves' reflection within a semiconductor
medium, we utilized the models of the fractional orderly
study of the reflection of a photothermal wave within a
semiconducting medium. We employed the harmonic
wave technique to give the ratio of the reflection
coefficient analytically and illustrate it in graphs.
We discussed the impacts of the fractional parameter and
the magnetic field.
The following conclusions can be made:
1. The incidence angle is the base of the ratio of reflection
coefficient, and the nature of dependence differs concerning
various reflected waves.
2. The fractional parameter affects strongly the ratio of
reflection coefficient.
3. The impact of the magnetic field is evident under the
thermoelastic theories.
4. The findings motivate the investigation of vibration
frequencies of an elastic medium, which represents a novel
category of the materials of the application. They can
benefit physicists, designers of new materials, authors of
material science, and researchers of developing magneto-
elasticity, as well as designing and optimal uses of
nameplates and microplates. The paper employed methods
that apply to wvarious issues in elasticity and
thermodynamics.
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Nomenclature
C Measurement of the thermoelastic diffusion
impact

C . Specific heat per heat mass

¢ Cubical dilatation
E , ,

&  The semiconductor's energy gap
€ij Strain components tensor

Lorenz's body force tensor

K= ONq Z Heat conduction of the sample
oT t

L, Coefficient of the carrier diffusion

N(F b) The density of the carrier

N 0 Equilibrium carrier concentration at
temperature 7'

p Initial stress

P(x,z) The chemical potential

T Absolute temperature

T, Under the natural state, the temperature
of the medium is 0 <1

0

(7 .b) Distribution of temperature

u(7 1) Vector of displacement

a, Coefficient of linear diffusion expansion

a; Coefficient of linear thermal expansion

Material constants given by

P, and ﬂz
B=0,(3A+2u) and B, =a.(3A+2u)

5n The difference of deformation potential of
conduction and valence

& Thermoelastic coupling parameter (according
to the volume thermal expansion /3, )

&, Thermoenergy coupling parameter (according
to the semiconductor's energy gap)
&y Parameter of thermo-electric coupling (deboned
on the electronic deformation coefficient).
&, The parameter of thermochemical coupling (The
parameter of thermoelastic diffusion)
Y =0 (3A+24) The volume thermal expansion

A, M Counterparts of Lame’s parameters
O

J Stress tensor components
T Maxwell's stress tensor components

1

© 2022 NSP
Natural Sciences Publishing Cor.



638 E=r oo\
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r

The photogenerated carrier lifetime
7, Time of thermal relaxation

Ty, T, (0<r 9<7,) The phase-lags of temperature

gradient and heat flux, respectively.
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