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Abstract: The study aims to estimate the extent to which the reflection wave is affected by the initial stress, magnetic field, 
and fractional parameter within a semiconductor photothermal diffusion medium when taking into account the Classical 
(CT) theory and the dual-phase-lag (DPL) theory. Its problem is defined in examining the generalized framework 
concerning plasma, thermoelastic waves under the thermomechanical responding of reflecting the photothermal diffusion 
for the semiconductor constituent. It applies the Maxwell's equations while considering the absence of the medium of 
infinite conducting and displacement current. Moreover, it applies the boundary settings for the Maxwell's and mechanical 
stress, diffusion, chemical reaction, as well as temperature gradient on the interface next to the vacuum. It obtains 
analytically and displays graphically the ratios of the reflection coefficient as tasks of the angle of incidence, diffusion, 
initial stress, magnetic field, semiconducting, and photothermal. It compares the CT to the DPL theory. It also compares its 
findings to the results of the literature. The results of the paper include generalizing the photothermal semiconductor 
medium and deducing to a special case when neglecting the novel parameters. When neglecting the magnetic field, 
fractional parameter, and initial stress, the findings of the current study deduce to the findings of Lotfy et al. (2020) as a 
special case of study. 

  Keywords: Magnetic field, Photothermal, Initial stress, Diffusion, Thermoelasticity, Semiconductor, Reflection, CT, 
DPL, Conformable fractional derivative, differential equations. 

 

 

1 Introduction  

Several natural materials are significant in the industry 
because they are highly applicable in renewable energy. For 
instance, semiconductor materials that are significant 
economically in the field of solare cells are found 
abundantly in nature. Exposing a semiconductor medium to 
the focus of laser or sunlight beams excites the surface 
electrons at the free surface. Many kinds of fractional 
integral and differential operators exist. The first one is the 
Riemann-Liouville definition [1–5] that contains the 
fractional differential of a constant, which is not zero. 
Caputo puts definitions that provide the value of zero 
concerning fractional differential of a constant. However, 
these definition require that the function are differentiable 
and smooth. Jumarie introduced modified Riemann-
Liouville [16-23] - another concept of the fractional 
derivative and integral- which fit continuous and non-
differentiable functions having the fractional differential of 
a constant, which equals zero [16-24]. Lately, the authors 
of [25] provided a novel fractional derivative known as “the  
 

 
 

conformable fractional derivative” according to the 
familiarity boundary definition of the function's derivative. 
Abdeljawad [26] developed this new model. Yet, the 
fractional derivative and the conformal fractional derivative 
are not similar. Rather, the later represents a basic 
derivative increased using a further simple factor. 
Consequently, the novel definition is a natural extension of 
the classical derivative. Though, it differs from other 
model. It integrates the typical characteristics of fractional 
derivatives. It fits several extensions of the traditional 
calculus theory, including the derivative of a product and 
combining two issues, the Rolle’s and the mean value 
theory, conformable integration by parts, expansion of 
fractional power series, etc. [27-33]. Abd-alla [34] 
investigated the relaxation impacts on reflecting the 
generalized magneto-thermoelastic waves. The authors of ] 
35] examined the generalized wave impact on a micropolar 
thermodiffusion elastic half-space based on the initial stress 
and electromagnetic field. Abo-Dahab et al. [36] 
investigated the thermal stress of generalized magneto-
thermoelasticity on a non-homogeneous orthotropic 
continuum solid having a sphere-shaped cavity. Abo-Dahab 
et al. [37] discussed reflecting plane waves on a generalized 
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thermoelastic medium affected by initial stresses and 
temperature-dependent characteristics with the three-phase-
lag system. Lotfy et al. [38] explored the model of 
thermomechanical response of the Reflection Photothermal 
Diffusion Waves (RPTD) to semiconductor media. 
The present paper explored how reflection wave is affected 
by the magnetic field, fractional parameter, and initial stress 
within a semiconductor photothermal diffusion medium. In 
this model technique, we depend on the interaction between 
plasma waves, magnetic field, fractional parameter and 
initial stress, thermal waves, elastic waves, and diffusion of 
mass. The study's problem is defined in examining the 
generalized model for plasma, thermoelastic waves affected 
by the thermomechanical responding of reflecting the 
photothermal diffusion for the semiconductor constituent. It 
applies the Maxwell's equations while considering the 
absence of the medium of infinite conducting and 
displacement current. Moreover, it applies the boundary 
settings for the Maxwell's and mechanical stress, diffusion, 
chemical reaction, as well as temperature gradient on the 
interface next to the vacuum. It obtains analytically and 
displays graphically the ratios of the reflection coefficient 
as tasks of the incidence angle, diffusion, initial stress, 
magnetic field, semiconducting, and photothermal. It 
compares the CT to the DPL theory. It also compares its 
findings to the results of the literature. It derives 
analytically and displays in graphs the ratios of the 
reflection coefficient as roles of the semiconducting, 
diffusion, initial stress, magnetic field, as well as angle of 
incidence. 

2 Fractional Problem Formulations 
 
The authors take into account a standardized isotropic 
generalized magneto-thermoelastic half-space with initial 
stress. Analyzing the transport process theoretically within 
a semiconductor involves taking into account elastic waves, 
thermal waves, and coupled plasma waves concurrently as 
the major variable quantities. The transport process shows 
in a semiconductor medium during the three types of 
waves.  

Using the Cartesian coordinates  in two 

dimensions ( ) denotes the position vector and the 
time variable t, the problem is studied. We must consider 
that the circular plate is very thin, linear homogeneous, and 
having isotropic features.  
We take the governing equations in generalized cases while 
having the parameter of thermal activation coupling that is 
describable via transporting coupled plasma, thermal, 
magnetic field, initial stress, and elastic properties of the 
medium.  
The fractional-order governing equations for coupled 
plasma, thermal and elastic transport are represented as:  

  (1) 

(2) 

The fractional equation of motion with carrier density 
considering Lorenz's body forces and initial stress takes the 
form:  

.
                    

(3) 
The diffusion of the mass equation is represented as: 

. (4) 
where 

.                                               (5) 

The various values of the electric and magnetic fields 
provided by Maxwell's equation neglecting the 
displacement current take the following form: 

   (6) 

where 

. 
 Utilizing Eq. (6) gives 

                                                                     
                                                      

(7) 
                                                        (8) 

.                                                                       (9) 
Once more, Maxwell’s stress equation is 

 
This decreases to 

.                                                   
(10) 

In equation (2), the second concept to the right denotes the 
impact of heat generated by the surface de-excitations and 
carrier volume in the sample, whereas the third one defines 
stress wave- generated heat. The third and fourth concepts 
in Eq. (3) in RHS define the source term and the impact of 
the thermal and plasma waves on the fractional elastic 
wave, correspondingly. 

Because the analysis is limited to -plane, the 
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fractional displacement is identified using 
. 

The constitutive relationships are represented as: 
, (11) 
,  (12) 

                  (13) 

The chemical potential of the material equation takes 
the form of generalizing the Fourier law  and standard 
thermal conductivity equation.  
Thus, the equations of chemical potential are 

                           (14)  
By Helmholtz's theory, the vector of fractional 

displacement  takes the form of the functions of the 
fractional displacement scalar potential  
and    identified using the relationships 
non-dimensionally: 

                                                                        (15) 
That declines to  

,                     (16) 
The equations of the fractional field and constitutive relationships at the plane surface of (equation (3)) in 

generalized linear elasticity influenced by gravity, without 
thermal sources and body forces take the form:  

    (17) 

 (18)                               
To make it simpler, we employ these non-dimensional 

variables 

  

Thus, utilizing the scalar function (9) and Eq. (10) in 
Eqs. (1), (2), (4), (11), and (12), results in (neglecting the 
dashed for convenience) 

                      (19) 

(20) 
               (21)  

                                      (22) 

     (23) 

                              (24)                              
where  

 ,  ,    , 

,  , 

, , 

,  ,      

,          ,          

                   

Equations (11)-(13)) in the non-dimensional form 
become:  

  (25) 

 (26) 

     (27) 

3 Solving the problem 
 

Concerning a fractional propagated harmonic wave where 

the normal exists in the xz-plane and creates an angle  
with the positive direction of the z-axis, the authors argue 
that the solutions of the system in equations (19)-(24) are 
represented as: 

    (28) 

where  the wave is numbered, and denotes the 
complex circular frequency. 

We substitute from equation (28) into equations (19)-(24) 
and reach a 5 homogeneous algebraic equation- system, as 
follows: 
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where,  
The system of equations (29)–(33) demonstrate significant 
solutions if and only if determining the factor matrix 
disappears. Thus, 

  
 (34) 

This denotes an algebraic equation , in which v 

represents the coupled wave's velocity: 

, (35) 

where 

                                                (36) 

                                                (37)   

                                      (38)  

                                   (39)     

                           (40) 
    
                      

(41) 

 (42) 

      (43) 
    
(44)     
Then, we can obtain the velocities of five waves from the 
equation (35). They are denoted to thermal, elastic, plasma, 
as well as diffusion waves and have the velocities 

 and rotational wave, respectively,  
denoted to rotational wave are expressed analytically as 

. 
 

4 Solving incident p-wave: 
Because equation (31) is fifth order in , four coupled 
waves have three diverse velocities and a rotational wave 

with the velocity = 1/ . Neglect the radiation into the 
vacuum, when a coupled wave falls on the boundary (z = 0) 
from the inside of the elastic semiconducting means, which 

creates an angle  with the z-axis'es negative direction, 

and five reflected waves that create angle  and (i = 
1,2, …, 5) in that direction (see Fig. 1).  

The potentials of the fractional displacement  and 
the quantities of the fractional field T, N, and C are 
expressed as 

where 
  

 

The amplitude ratios of the fractional reflected waves and 
the fractional incident wave,        
 
provide the conforming ratio of the reflection coefficients. 
Moreover, the angle (i=1,2,…,5) and  the conforming 

wave numbers (i=1,2,…,5) should be linked by the 
following relationships based on Snell's law:  

                                             (45)            
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Fig.1: Outline of the problem. 
 
 5 Boundary Conditions 
 

(i)Assume that the boundary z = 0 is next to vacuum. It is 
traction-free. Thus, the boundary setting takes the form:  

                      

(ii)Let the boundary z = 0 be insulated thermally, we get  
                                                       

                                                           
(iii)The carriers are able to arrive at the sample surface, 
with a finite probability of refusion. Therefore, the 
boundary setting of the density of the carrier takes the 
following form:   

                                                    

                                                                  (iv)The 
chemical potential P(x,z) at the boundary z = 0 is given by  

                               
then, 

  (47)  

,
  (48) 

,                   (49) 

,         (50) 

,             (51) 

in which  denote the coefficients of the amplitude 

ratios of the reflected longitudinal waves, whereas  

denotes the coefficient of the amplitude ratio of the 
reflected shear waves from the following algebraic 
equation: 

  (52) 

where 

 
 

 
 

  

 

 
 

6 Numerical Results  
 
Si is selected as the constituent concerning numerical 
simulation. Its parameters are selected, see Table 1: 
 
The thermal relaxation times are cited in the previous 
studies (Chandrasekharaiah 1986) for different types of 
materials to 10-14 sec. for metals. Concerning the 
semiconductor constituents, this parameter is behind metals 
and gases. We selected the relaxation times for silicon  

 
 

 

Table 1: Physical constants of Si (Song et al. 2014). 
 

 

To explore the behavior of solutions, we carried out 
numerical calculation of several values of parameters. We 
have to predict the behaviors of the temperature 
coefficients of reflection . For this 
object, Figures 2-4 are displayed. 
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Figure 2 presents the variations of the coefficients of 
reflection  over an incidence angle 

 The reflection coefficients 

decrease with increasing the incidence angle while the 

reflection coefficients  increase with increasing over 

on 𝜃 ∈ [0,15] but decrease over .  
Figure 3 shows the variations of the coefficients of 
reflection  over an incidence angle 

concerning varieties of fractional parameter 

The coefficients of reflection  and decline with 

rising  and while the reflection coefficient  rises 

with higher α but declines over on   One can 

observe that the reflection coefficients  and are in 
oscillatory behavior. It is closes that an increment in  

results in a decrease in  for  an increase for 

 and a decreases for . The 

reflection coefficients increase fox and 

decrease for  with increasing in while 
they decrease with increasing an incidence angle.  
Figure 4 shows the variations of the coefficients of 

reflection  over an angle of incidence 

concerning the variations of a magnetic field  

 The coefficients of reflection  and decline 

with rising  and while the reflection coefficients  

and rise with increasing  over on θ ∈ [0,30] but 

decrease over on   In sum, an increment in 

 results in an increase in  for  and a 

decrease for  .  

 
Fig.2: Various values of the coefficients of reflection
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Fig. 3: Various values of the reflection coefficient 
magnitudes  concerning the incidence 
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Fig. 4: Various values of the reflection coefficients 
magnitudes  concerning the incidence 

angle θ: , ------  , ---- ـــــــــ   

 

5,...,2,1, =iiZ

0.95a = 0.97a = 1a =

5,...,2,1, =iZi

6
0 3 10H = ´

6
0 2 10H = ´ 6

0 1 10H = ´



636        H. S. Gafel: Fractional order study of the impact of … 

 
 
© 2022 NSP 
Natural Sciences Publishing Cor. 
 

7 Conclusions  
For studying waves' reflection within a semiconductor 
medium, we utilized the models of the fractional orderly 
study of the reflection of a photothermal wave within a 
semiconducting medium. We employed the harmonic 
wave technique to give the ratio of the reflection 
coefficient analytically and illustrate it in graphs.  
We discussed the impacts of the fractional parameter and 
the magnetic field. 
The following conclusions can be made:  

1. The incidence angle is the base of the ratio of reflection 
coefficient, and the nature of dependence differs concerning 
various reflected waves.  
2. The fractional parameter affects strongly the ratio of 
reflection coefficient.  
3. The impact of the magnetic field is evident under the 
thermoelastic theories. 
4. The findings motivate the investigation of vibration 
frequencies of an elastic medium, which represents a novel 
category of the materials of the application. They can 
benefit physicists, designers of new materials, authors of 
material science, and researchers of developing magneto-
elasticity, as well as designing and optimal uses of 
nameplates and microplates. The paper employed methods 
that apply to various issues in elasticity and 
thermodynamics.                                                                                                                                   

Acknowledgment: The researchers acknowledge the 
financial support of Taif University Researchers Supporting 
Project number (116-441-1), Taif University, Taif, Saudi 
Arabia. 

Conflicts of Interest: The authors declare that there is no 
conflict of interest regarding the publication of this article. 

References 

 [1] I. Podlubny, Fractional Differential Equations, 
Academic Press, New York, (1999).  

[2] A. A. Kilbas, H. M. Srivastava, Trujillo J. J., Theory 
and applications of fractional differential equations, 
Amsterdam: Elsevier B.V., (2006).  

[3] R. Hilfer, Applications of Fractional Calculus in 
Physics, World Sci., Singapore (2000). 

[4] K. S. Miller, B. Ross, An Introduction to the Fractional 
Calculus and Fractional Differential Equations, John 
Wiley and Sons, New York, NY, USA, (1993).  

[5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional 
Integrals and Derivatives: Theory and Applications, 
Gordon and Breach Science, Yverdon, Switzerland, 
(1993).  

[6] E. A. B. Abdel-Salam, E. A. Yousif, M. A. El-Aasser, 
Analytical solution of the space-time fractional 
nonlinear schrödinger equation, Reports on 
Mathematical Physics 77, 19-34 (2016).  

[7] E. A-B. Abdel-Salam, Z. I. A. Al-Muhiameed, Analytic 
solutions of the space-time fractional combined KdV-

mKdV equation, Math. Probl. Eng. vol. 2015, 1-6 
(2015).  

[8] E. A-B Abdel-Salam, G.F. Hassan, Solutions to class of 
linear and nonlinear fractional differential equations, 
Commun Theor Phys, 65, 127-135 (2016).  

[9] E. A. B. Abdel-Salam, E. A. Yousif, Solution of 
nonlinear space-time fractional differential equations 
using the fractional Riccati expansion method, Math. 
Probl. Eng. 2013, 846283 (2013).  

[10] M.I. Nouh, E.A-B. Abdel-Salam, Approximate 
Solution to the Fractional Lane–Emden Type 
Equations. Iran J Sci Technol Trans Sci 42, 2199–
2206 (2018)  

[11] S.E. Ahmed, M.A. Mansour, E.A-B. Abdel-Salam, 
E.F. Mohamed, Studying the fractional derivative for 
natural convection in slanted cavity containing porous 
media, SN Appl. Sci. 1, 1117 (2019).  

[12] E.A-B. Abdel-Salam, M.I. Nouh, Photometric and 
spectroscopic analysis of YY CrB, New Astronomy 
76, 101322 (2020).  

[13] Nouh, M.I., E.A-B. Abdel-Salam, Analytical solution 
to the fractional polytropic gas spheres, The European 
Physical Journal Plus, 133, 149 (2018).  

[14] E.A-B. Abdel-Salam, M.I. Nouh, Approximate 
Solution to the Fractional Second-Type Lane-Emden 
Equation, Astrophysics, 59, 398 (2016).  

[15] E. A. Yousif, E. A-B. Abdel-Salam, M. A. El-Aasser, 
On the solution of the space-time fractional cubic 
nonlinear Schrödinger equation, Results In Physics 8 
702-708 (2018).  

[16] F. Mainardi, Fractional Calculus and Waves in Linear 
Viscoelasticity: An Introduction to Mathematical 
Models, Imperial College Press, London (2010).  

[17] G. Jumarie, , On the fractional solution of the equation 
f(x + y) = f(x)f(y) and its application to fractional 
Laplace transform, Applied Mathematics and 
Computation 219, 1625 (2012).  

[18] G. Jumarie, An approach to differential geometry of 
fractional order via modified Riemann-Liouville 
derivative, Acta Mathematica Sinica, English Series 
28, 1741 (2012).  

[19] J. H. He, Elagan, S. K., Li, Z. B., Geometrical 
Explanation of the Fractional Complex Transform and 
Derivative Chain Rule for Fractional Calculus, 
Physics letters A 376, 257 (2012).  

[20] K. M. Kolwankar, and A.D. Gangal, Fractional 
differentiability of nowhere differentiable functions 
and dimensions, Chaos 6, 505 (1996).  

[21] K. M. Kolwankar, A. D. Gangal, Local Fractional 
Fokker-Planck Equation, Physical Review Letters 80, 
214 (1998).  

[22] A. Babakhani, V. Daftardar-Gejji, On calculus of local 
fractional derivatives, Journal of Mathematical 
Analysis and Applications 270, 66 (2002).  

[23] Chen, Y., Yan, Y. and Zhang, K., On the local 
fractional derivative, Journal of Mathematical 
Analysis and Applications, 362, 17 (2010).  



Inf. Sci. Lett. 11, No. 2, 629-638 (2022) / http://www.naturalspublishing.com/Journals.asp  637 

 
© 2022 NSP 
Natural Sciences Publishing Cor. 

 

[24] A. Babakhani, V. Daftardar-Gejji, On calculus of local 
fractional derivatives, Journal of Mathematical 
Analysis and Applications 270 (2002) 66.  

[25] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A 
new definition of fractional derivative, Journal of 
Computational and Applied Mathematics 264, 65 
(2014).  

[26] T. Abdeljawad, On conformable fractional calculus, 
Journal of Computational and Applied Mathematics 
279, 57-66 (2015).  

[27] F. Jarad, T. Abdeljawad, and J. Alzabut, F. Jarad, T. 
Abdeljawad, J. Alzabut, Generalized fractional 
derivatives generated by a class of local proportional 
derivatives, The European Physical Journal Special 
Topics, 226, 3457 (2017).  

[28] T. Abdeljawad, F. Jarad, J. Alzabut, Fractional 
proportional differences with memory, The European 
Physical Journal Special Topics, 226, 3333 (2017).  

[29] T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional 
logistic models in the frame of fractional operators 
generated by conformable derivatives, Chaos, Solitons 
and Fractals 119, 94-101 (2019).  

[30] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a 
new class of fractional operators, Advances in 
Difference Equations 2017, 247 (2017).  

[31] T. Abdeljawad, On conformable fractional calculus, 
Journal of Computational and Applied Mathematics  
279, 57-66 (2015).  

[32] T. Abdeljawad, J. Alzabut, F. Jarad, A generalized 
Lyapunov-type inequality in the frame of conformable 
derivatives, Advances in Difference Equations 2017, 
321 (2017).                         

[33] M. Al-Rifae, T. Abdeljawad, Hyperchaotic Fractional-
Order Systems and Their Applications, Complexity 
Volume 2017, Article ID 3720471, 7 pages. 

[34] A. N. Abd-alla, Relaxation effects on reflection of 
generalized magneto-thermoelastic waves, Mechanics 
Research Communications 27(5), 591-600 (2000).  

[35] S. M. Abo-Dahab, A. M. Abd-Alla, Abdullah Alsharif, 
Hammad Alotaibi, On generalized waves reflection in a 
micropolar thermodiffusion elastic half-space under 
initial stress and electromagnetic field, Mechanics 
Based Design of Structures and Machines. Inpress, In 
press 1-18 (2020a).  

[36] S. M. Abo-Dahab, Nahed S. Hussein, A. M. Abd-Alla, 
H. A. Alshehri, Thermal stresses for a generalized 
magneto-thermoelasticity on non-homogeneous 
orthotropic continuum solid with a spherical cavity, 
Mechanics Based Design of Structures and Machines. 
In press (2020b).  

[37] S. M. Abo-Dahab, Mohamed I. A. Othman, A. M. 
Abd-Alla, Reflection of plane waves on generalized 
thermoelastic medium under effect of initial stress and 
temperature dependent properties with three-phase-lag 
model. Mechanics Based Design of Structures and 
Machines, 1-14 (2020c).  

[38] Kh. Lotfy, S. M. Abo-Dahab, R. Tantawy, N. Anwar, 
Thermomechanical response model on a reflection 

photothermal diffusion waves (RPTD) for 
semiconductor medium, Silicon, 12 (1), 199-209 (2020).   

 

Nomenclature	
C          Measurement of the thermoelastic diffusion 
impact 

 

      Specific heat per heat mass  

        Cubical dilatation  

      The semiconductor's energy gap  
eij          Strain components tensor 

 

        Lorenz's body force tensor 
 

  Heat conduction of the sample  
 

                   Coefficient of the carrier diffusion  
N( ,t)             The density of the carrier  

 

        Equilibrium carrier concentration at 
temperature  

 

p                      Initial stress 
P(x,z)              The chemical potential  

 

                     Absolute temperature  
                   Under the natural state,  the temperature     

                         of the medium is  

T( ,t)              Distribution of temperature  
 u( ,t)             Vector of displacement  

 

                    Coefficient of linear diffusion expansion  
 

                   Coefficient of linear thermal expansion  

 and        Material constants given by

  and  

                 The difference of deformation potential of 
conduction and valence 

             Thermoelastic coupling parameter (according 

to the volume thermal expansion )  
            Thermoenergy coupling parameter (according 

to the semiconductor's energy gap) 
        Parameter of thermo-electric coupling (deboned 

on the electronic deformation coefficient).  

      The parameter of thermochemical coupling (The 
parameter of thermoelastic diffusion)     

 

  The volume thermal expansion  

       Counterparts of Lame’s parameters  

           Stress tensor components 
 

             Maxwell's stress tensor components  
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             The photogenerated carrier lifetime  
            Time of thermal relaxation  

 ( < ) The phase-lags of temperature 
gradient and heat flux, respectively. 
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