
Appl. Math. Inf. Sci.7, No. 5, 1837-1844 (2013) 1837

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070522

Preconditioned Modified Explicit Decoupled Group for
the Solution of Steady State Navier-Stokes Equation

Norhashidah Hj. Mohd Ali1,∗ and Abdulkafi Mohammed Saeed2,∗

1 School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
2 Department of Mathematics , College of Science, Qassim University, Saudi Arabia

Received: 15 Jan. 2013, Revised: 18 May. 2013, Accepted: 19 May. 2013
Published online: 1 Sep. 2013

Abstract: Combining iterative schemes with suitable preconditioners may improve the rate of the convergence of the methods.
However, the real difficulty lies in the construction of the correct preconditioners applied to the formulated schemes. In this paper,
the Modified Explicit Decoupled Group Successive Over-Relaxation method is formulated to solve the two dimensional steady-state
Navier-Stokes equations. A new block splitting preconditioned matrix is applied to the formulated scheme as an effort to accelerate the
convergence rate. Numerical experiments are carried out to confirmthe effectiveness of the preconditioner in terms of accuracy and
execution timings. Comparison with its unpreconditioned counterpart will also be reported.
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1 Introduction

The finite difference method is the oldest discretisation
technique for the governing partial differential equations
(PDEs) and has long been a dominating means for solving
fluid flow problems. Having the advantages of simplicity,
robustness and versatility, numerical techniques based on
finite differences are still playing important role for
solving PDEs in the current researches. In many
applications, the stream-vorticity function form of the
Navier Stokes equations provides better insight into the
physical mechanisms driving the flow than the primitive
variable formulation in terms of velocities of the flow u, v
in x, y directions and the pressure p. The stream-vorticity
function formulation is also useful for numerical work
since it avoids some problems resulting from the
discretisation of the continuity equation. The governing
equations for flow fields which describe the two
dimensional steady-state Navier-Stokes equations with
continuity equation are described in [1]. Using the
stream-vorticity function approach, the Navier-Stokes
equation may be represented as a coupled system of
elliptic partial differential equations as shown below

∇2ψ =−ω (1)

∇2ω +Re(ψxωy−ψyωx) =−c (2)

wherex,y ∈ Ω = (0,L)× (0,L) with a set of conditions
for ψ andω prescribed at the boundary. Here,c andRe
(the Reynolds number) are non-negative constants and
∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 is the usual Laplacian operator. Note that
if Re 6= 0, then the coupled system represents the two
dimensional steady state Navier-Stokes equations which
describe the basic viscous, incompressible flow problems.
ψ and ω are known respectively as the stream and
vorticity functions. Suppose we impose the boundary

conditionsψ = 0 and ∂ 2ψ
∂η2 = 0, whereη is the normal to

the boundary∂Ω of Ω , then our problem amounts to
solving (1) and (2) successively withψ = 0 andω = 0
respectively along∂Ω . Over the last few decades, there
have been some interests in designing new methods for
solving these stream-vorticity formulations ([2], [3], [4],
[5], [6]). In particular, Ali and Abdullah [4] derived a
group explicit method derived from a skewed five-point
finite difference approximations where the proposed
method was shown to be more efficient in CPU timings
than the existing schemes based on the standard five-point
difference stencil. With the realization that
preconditioning technique is essential for the
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improvement in the performance of iterative methods,
research on preconditioners has moved to center stage in
recent years ([7], [8], [9], [10], [11], [12]). Recently, Ali
and Saeed [13] proposed a(I +K)-type preconditioning
matrix in block form and applied it to the original system
obtained from the four point Explicit Decoupled Group
(EDG) method for solving the coupled system of elliptic
partial differential Eqs. (1)-(2) with promising results.

In this paper, we shall formulate a new group explicit
scheme namely the Modified Explicit Decoupled Group
(MEDG) method, in solving this fundamental problem in
fluid dynamic (1)-(2). We also introduce the application
of a suitable preconditioner to this proposed scheme in an
effort to further accelerate the convergence rate of the
method. The outline of this paper is as follows: the
formulation of the MEDG iterative method for solving the
coupled system of elliptic equations will be given in
Section 2. A specific preconditioned block splitting
matrix applied to the proposed MEDG formula will be
described in Section 3, followed by its convergence
analysis in Section 4. The numerical results are presented
to verify the efficiency of the preconditioned MEDG
method in Section 5 and the concluding remarks is given
in Section 6.

2 Modified Explicit Decoupled Group
Formulation

Let us assume that a rectangular grid in the (x,y)-plane
with grid spacingh = L/n in both directionsxi = ih and
y j = jh, i, j = 0,1,...,n is used. Observe that ifω is known,
then (1) is a linear elliptic equation inψ, and ifψ is known,
then (2) is a linear elliptic equation inω. Supposeψ(0)

and ω(0) are the initial guesses, we can use theω(0) in
(1) to produceψ(1). Again we can use thisψ(1) in (2) to
produceω(1). Then we can use thisω(1) in (1) to produce
ψ(2), and so on. This indicates that at the grid point(xi ,y j)
the following alternating sequences of outer iterates can be
generated as inFig. 1.

Fig. 1: Generation of outer iterates

The finite difference approximations of Eqs. (1) and
(2) using the centred difference formula at the point(xi ,y j)
will result in the following:

−ψ (k+1)
i−1, j −ψ (k+1)

i, j−1 +4ψ (k+1)
i, j −ψ (k+1)

i, j+1 −ψ (k+1)
i+1, j = h2ω (k)

i j (3)

−[1−σ(ψ (k+1)
i, j−1 −ψ (k+1)

i, j+1 )]ω
(k+1)
i−1, j − [1+σ(ψ (k+1)

i−1, j −ψ (k+1)
i+1, j )]ω

(k+1)
i, j−1 +4ω (k+1)

i, j

−[1−σ(ψ (k+1)
i−1, j −ψ (k+1)

i+1, j )]ω
(k+1)
i, j+1 − [1+σ(ψ (k+1)

i, j−1 −ψ (k+1)
i, j+1 )]ω

(k+1)
i+1, j = h2c(k)i j .

(4)
Hereσ = Re/4 andi,j = 1,2,,n-1. By rotating thei-plane
axis and thej-plane axis clockwise by 450 , Eqs. (3) and
(4) become (5) and (6) respectively [4]:

−ψ (k+1)
i−1, j+1−ψ (k+1)

i−1, j−1+4ψ (k+1)
i, j −ψ (k+1)

i+1, j+1−ψ (k+1)
i+1, j−1 = 2h2ω (k)

i j (5)

−[1−σ(ψ (k+1)
i−1, j−1−ψ(k+1)

i+1, j+1)]ω
(k+1)
i−1, j+1− [1+σ(ψ(k+1)

i−1, j+1−ψ(k+1)
i+1, j−1)]ω

(k+1)
i−1, j−1+4ω(k+1)

i j

−[1−σ(ψ (k+1)
i−1, j+1−ψ(k+1)

i+1, j−1)]ω
(k+1)
i+1, j+1− [1+σ(ψ(k+1)

i−1, j−1−ψ(k+1)
i+1, j+1)]ω

(k+1)
i+1, j−1 = 2h2c(k)i j .

(6)
We now consider the points with grid spacing2h = 2L/n.
The application of centered difference equation on these
2h spaced points will transform the Eqs. (3) and (4) to the
following equations:

−ψ (k+1)
i−2, j −ψ (k+1)

i, j−2 +4ψ (k+1)
i, j −ψ (k+1)

i, j+2 −ψ (k+1)
i+2, j = 4h2ω (k)

i j (7)

−[1−σ(ψ (k+1)
i, j−2 −ψ (k+1)

i, j+2 )]ω
(k+1)
i−2, j − [1+σ(ψ (k+1)

i−2, j −ψ (k+1)
i+2, j )]ω

(k+1)
i, j−2 +4ω (k+1)

i, j

−[1−σ(ψ (k+1)
i−2, j −ψ (k+1)

i+2, j )]ω
(k+1)
i, j+2 − [1+σ(ψ (k+1)

i, j−2 −ψ (k+1)
i, j+2 )]ω

(k+1)
i+2, j = 4h2c(k)i j .

(8)

Rotating thei-j axis clockwise 450, Eqs. (7) and (8) can
be transformed into (9) and (10) respectively:

−ψ (k+1)
i−2, j+2−ψ (k+1)

i−2, j−2+4ψ (k+1)
i, j −ψ (k+1)

i+2, j+2−ψ (k+1)
i+2, j−2 = 8h2ω (k)

i j (9)

−[1−σ(ψ (k+1)
i−2, j−2−ψ(k+1)

i+2, j+2)]ω
(k+1)
i−2, j+2− [1+σ(ψ(k+1)

i−2, j+2−ψ(k+1)
i+2, j−2)]ω

(k+1)
i−2, j−2+4ω(k+1)

i j

−[1−σ(ψ (k+1)
i−2, j+2−ψ(k+1)

i+2, j−2)]ω
(k+1)
i+2, j+2− [1+σ(ψ(k+1)

i−2, j−2−ψ(k+1)
i+2, j+2)]ω

(k+1)
i+2, j−2 = 8h2c(k)i j .

(10)

Clearly, it can be seen that the application of (9)-(10) will
result in a large and sparse system with the coefficient
matrix being a block matrix depending on the ordering of
points taken. Assume that the solution at any group of
four points on the solution domain is achieved using the
rotated equation (10). This will result in a (4x4) system of
equations which lead to a decoupled system of (2x2)
equations whose explicit forms are given by

[

ω̃i j

ω̃i+2, j+2

]

=
1

16− [(1−σ(ψi−2, j+2−ψi+2, j−2))(1+σ(ψi, j+4−ψi+4, j ))]

×

[

4 1−σ(ψi−2, j+2−ψi+2, j−2)
1+σ(ψi, j+2−ψi+4, j ) 4

][

rhsi j

rhsi+2, j+2

]
(11)

[

ω̃i+2, j
ω̃i, j+2

]

=
1

16− [(1−σ(ψi, j−2−ψi+4, j+2))(1+σ(ψi−2, j −ψi+2, j+4))]

×

[

4 1−σ(ψi, j−2−ψi+4, j+2)
1+σ(ψi−2, j −ψi+2, j+4) 4

][

rhsi+2, j
rhsi, j+2

]
(12)

The computational molecule of Eqs. (11) and (12) are
given inFig. 2 andFig.3 respectively. Note that for both
equations, iterative evaluation of points from each group
requires contribution of points only from the same group.
This means the iteration of points for the vorticity
solutions from Eq. (11) can be carried out by involving
points of type w only, while the iterations arise from Eq.
(12) can be implemented by involving points of type�
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Fig. 2: Computational molecule of Eq.(11)

Fig. 3: Computational molecule of Eq. (12)

only. Due to this independency, the iterations can be
carried out on either one of the two types of points with
grid spacing2h, which means we can expect that the
execution time to be reduced compared to the EDG
method introduced in Ali and Saeed [13] .

In theory, if we apply Eq. (11) or (12) to each of the
groups in natural ordering, then this will lead to the
formation of a system of equations in the form:

Aω̃ = b (13)

whose coefficient matrixA is defined as

A=















D2 V2
L6 D6 V6

. . .
. ..

.. .
. ..

.. . VN−8
LN−4 DN−4















(N−2)2
2 ×

(N−2)2
2

(14)

with D j =















R2, j Q2, j
U6, j R6, j Q6, j

. . .
. . .

. ..
. . .

. .. QN−8, j
UN−4, j RN−4, j















(N−2)×(N−2)

,

L j =















S2, j
E6 j S6 j

. ..
. . .
. . .

.. .
EN−4, j SN−4, j















(N−2)×(N−2)

,

Vj =















F2, j G2, j
F6, j G6, j

.. .
. . .
. . . GN−8, j

FN−4, j















(N−2)×(N−2)
where
Ri j =

[

4 −[1−σ(ψi−2, j+2−ψi+2, j−2)]
−[1+σ(ψi, j+4−ψi+4, j )] 4

]

,

Si j =

[

0 −[1+σ(ψi−2, j−2−ψi+2, j+2)]
0 0

]

,

Qi j =

[

0 0
−[1+σ(ψi, j −ψi+4, j+4)] 0

]

,

Ei j =

[

0 −[1+σ(ψi−2, j+2−ψi+2, j−2)]
0 0

]

,

Fi j =

[

0 0
−[1−σ(ψi, j −ψi+4, j+4)] 0

]

,

Ui j =

[

0 −[1−σ(ψi−2, j−2−ψi+2, j+2)]
0 0

]

, and

Gi j =

[

0 0
−[1−σ(ψi, j+4−ψi+4, j )] 0

]

, for i,j = 1(2)N - 4.

ω̃ =















ω̃2
ω̃6

.

.

.
ω̃N−8
ω̃N−4















(N−2)2
2

, ω̃i =











ω̃2,i
ω̃6.i

.

.

.
ω̃N−4,i











(N−2)

for i=1(2)N-4,

ω̃i, j =

[

ωi, j

ωi+2, j+2

]

, for i,j=1(2)N-4.

b=















ṽ2
ṽ6

.

.

.
ṽN−8
ṽN−4















(N−2)2
2

, ṽi =











ṽ2,i
ṽ6,i

.

.

.
ṽN−4,i











(N−2)

for i=1(2)N-4.

ṽi, j =

[

vi, j

vi+2, j+2

]

for i,j=1(2)N-4.

In order to obtain the formula of the MEDG SOR method,
we first need to derive the formula of the MEDG Gauss
Seidel scheme as the following:

Let b1 = 1−σ(ψi−2, j+2−ψi+2, j−2), b2 = 1+σ(ψi, j+4−ψi+4, j ),
b3 = 1/(16− b1 ∗ b2), b4 = (1− σ(ψi−2, j−2 − ψi+2, j+2))ωi−2, j+2+ (1+

σ(ψi−2, j+2−ψi+2, j−2))ωi−2, j−2+(1+σ(ψi−2, j−2−ψi+2, j+2))ωi+2, j−2+8h2c.

b5 = (1−σ(ψi j −ψi+4, j+4))ωi, j+4 +(1−σ(ψi, j+4 −ψi+4, j ))ωi+4, j+4 +(1+

σ(ψi j −ψi+4, j+4))ωi+4, j +8h2c.

The(k+1)th iterates of the Gauss-Seidel iterative scheme
is defined by

ω̃(k+1)
i j = b3 ∗ (4 ∗ b4 + b1 ∗ b5) and

ω̃(k+1)
i+2, j+2 = b3∗ (b2∗b4+4∗b5).

The (k+ 1)th iterates of the SOR iterative scheme are
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given by

ω(k+1)
i j = ω(k)

i j + γ(ω̃(k+1)
i j − ω(k)

i j ) and

ω(k+1)
i+2, j+2 = ω(k)

i+2, j+2+ γ(ω̃(k+1)
i+2, j+2−ω(k)

i+2, j+2).
In summary, the four-point MEDG SOR scheme

corresponds to iterating the solutions at approximately
half of the points in the solution domain using either (11)
or (12) by implementing the relaxation procedure
ω(k+1) = ω(k) + γ(ω̃(k+1) −ω(k+1)) until convergence is

achieved, i.e., when
∣

∣

∣
ω(k+1)

i j −ω(k)
i j

∣

∣

∣
≤ ε; here γ is the

optimum acceleration parameter andε is the tolerance
used. If convergence is achieved, then the solutions are
evaluated at the rest of the nodal points (points of
opposite type) using the centred difference formula (8).
Otherwise, the iteration cycle is repeated.

3 The proposed preconditioned MEDG SOR
iterative method

In this section we will apply the preconditioner (P̄= I +K̄)
to the linear system resulting from the MEDG scheme with

K̄ =











J1
J1

.. .
J1











(N−2)2
2 ×

(N−2)2
2

,J1 =













0̃
0̃ 0̃

. . .
.. .

−UN−4, j 0̃













(N−2)×(N−2)

whereUN−4, j defined as in Section 2.
Therefore, the preconditioner,̄P = I + K̄ matrix will
become

I + K̄ =











J2
J2

. . .
J2











(N−2)2
2 ×

(N−2)2
2

,J2 =











I0
0̃ I0

. . .
. ..

−UN−4, j I0











(N−2)×(N−2)

.

HereI0 is a 2×2 identity matrix.

Now, obtainA by multiplying I + K̄ into A in Eq. (14)

Ā= (I + K̄)A=











J2
J2

. . .
J2

























D2 V2

L6 D6

. . .

. . .
. . . VN−8

LN−4 DN−4















=















M2,2 V2

M4,6 M2,6

. . .

. ..
. . . VN−8

M4, j M2, j















(N−2)2
2 ×

(N−2)2
2

,

Therefore, we can rewrite the system̄Aw̃= b̄ as:


















M2,2 V2
M4,6 M2,6 V6

M4,10 M2,10 V10

. ..
.. .

. . .
M4,N−8 M2,N−8 VN−8

M4, j M2, j





































ω̃2
ω̃6
ω̃10

.

.

.
ω̃N−8
ω̃N−4



















=



















J2ṽ2
J2ṽ6
J2ṽ10

.

.

.
J2ṽN−8
J2ṽN−4



















. (15)

From Eq. (15) we obtain:

M2, j ω̃ j +V2ω̃ j+4 = J2ṽ j f or j = 2. (16)

M4, j ω̃ j−4+M2, j ω̃ j +V6ω̃ j+4 = J2ṽ j f or j = 6(2)N−8. (17)

M4, j ω̃ j−4+M2, j ω̃ j = J2ṽ j f or j = N−4. (18)

From Eq. (16), we will obtain three preconditioned
MEDG schemes which can be transformed into
preconditioned ME DG SOR schemes as:

For i = 2, 6(2) N-8andN-4,j = 2

Xω (k+1)
i, j = γ(4F1+b1F2+F3ωi+4, j +F4ωi, j+4+F5ωi+4, j+4)+X(1− γ)ω (k)

i, j

Xω (k+1)
i+2, j+2 = γ(b2F1+4F2+4b6ωi+4, j +4b7ωi, j+4+4b2ωi+4, j+4)+X(1− γ)

ω (k)
i+2, j+2,

(19)

Xω (k+1)
i, j = γ(2h2ci, j +b1F2+F6ωi−2, j+2+F4ωi, j+4+b1b6ωi+4, j +F5ωi+4, j+4)

+X(1− γ)ω (k)
i, j

Xω (k+1)
i+2, j+2 = γ(2h2ci, j b2+4F2+F7ωi−2, j+2+4b7ωi, j+4+4b6ωi+4, j +4b8ωi+4, j+4)

+X(1− γ)ω (k)
i+2, j+2

(20)
and

Yω (k+1)
i, j = γ(F8+F6F9+4F10ωi−4, j +F11ωi−2, j+2+F12ωi, j+4)+Y(1− γ)ω(k)

i, j

Yω (k+1)
i+2, j+2 = γ(F13+{[1−σ(ψi−2, j−2−ψi+2, j+2)][1+σ(ψN−4, j+4−ψN, j )]}F14−{[1+

σ(ψN−4, j+4−ψN, j )]−F10}ωi−4, j −F15ωi−2, j+2+b7[4−F10]ωi, j+4)+Y(1− γ)ω(k)
i+2, j+2.

(21)

Similarly, From Eqs. (17) and (18), we will obtain six
preconditioned MEDG schemes which can be also
transformed into preconditioned MEDG SOR schemes.

In the next section, we will discuss the convergence
properties of the above preconditioned MEDG SOR
method.

4 Convergence Analysis of the Proposed
Method

Preconditioned version of iterative methods should
exhibit better convergence rates than its unpreconditioned
version. This fact motivates us to present the convergence
properties related to the improved convergence of the
proposed preconditioned MEDG iterative method in
solving the coupled equations (1)-(2). Several properties
are needed to prove our main conjecture of this work.
For the sake of our discussion, we define the spectral
radius of a matrix, denoted byρ(.), as the largest of the
moduli of the eigenvalues of the iteration matrix. It is well
known that a matrix is said to be diagonally dominant if
in every row of the matrix, the magnitude of the diagonal
entry in that row is larger than or equal to the sum of the
magnitudes of all the other (non-diagonal) entries in that
row.
More precisely, the matrixA is diagonally dominant if
|aii | > ∑

j 6=i

∣

∣ai j
∣

∣ for all i,whereai j denotes the entry in the

ith row and j th column.

Lemma 4.1. The Successive OverRelaxation (SOR)
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method is convergent for the acceleration factor whenA is
symmetric and positive definite or diagonally dominant.
[14].

Theorem 4.1.Let A ∈ R
n×n be nonsingular. Then there

exist nonsingular matricesP such thatPA is diagonal
dominant. [15].

Corollary 4.1. The Jacobi method, the Gauss-Seidel
method and the SOR method are convergent for all
nonsingular linear systems in the sense of preconditioned
version. [15].

The matrix A in (13) can be decomposed into
A = D − E − F , where D = D j = diag(A11,A22, ...,Aii )
and

E = L j = Ei j =

{

−Ai j f or j < i

0 f or j > i
, F =Vj = Fi j =

{

−Ai j f or j > i

0 f or j 6 i

are block matrices consisting of the block diagonal, strict
block lower triangular, and strict block upper triangular
parts ofA. Here, the diagonal entriesAii are nonsingular.
The block Jacobi iteration matrix is
BJ(A) = D−1(E + F) = L + U , where L = D−1E,
U = D−1F while the block Gauss-Seidel iteration matrix
is BGS(A) = (I −L)−1U . The Block Successive
Over-Relaxation method (BSOR) iteration matrix is
therefore

Gℓγ = (I − γL)−1{(1− γ)I + γU}. (22)

The preconditioned system (15) can be written as:

(I + K̄)Aw̃= (I + K̄)b. (23)

Hence,
Āw̃= b̄ (24)

where:Ā= (I + K̄)A= I −L− K̄L− (U − K̄+ K̄U) and
b̄= (I + K̄)b.

Similarly, the matrixĀ in (24) can be decomposed into
Ā= I − L̄−Ū , whereL̄ = L+ K̄L andŪ =U − K̄+ K̄U.

The SOR iteration matrix will result in an Enhanced
Block Successive Over-Relaxation iteration matrix
(EBSOR) and is given by

G̃ℓγ = {I − γL̄}−1[(1− γ)I + γŪ ]. (25)

The result of Lemma 4.1, Theorem 4.1 and Corollary 4.1
enable us to prove the following theorem:

Theorem 4.2.Let A= I −L−U andĀ= I − L̄−Ū be the

matrices of the linear system (12) and (15) respectively. If
the matrix A of (12) is diagonally dominant and
0< γ < 2, then the block SOR iteration matricesGℓγ and
G̃ℓγ in (22) and (25) respectively satisfied,

ρ(Gℓγ )< 1 and ρ(G̃ℓγ )< ρ(Gℓγ ).
Proof.

By Lemma 4.1 and since the block SOR iteration matrix
Gℓγ in (22) is diagonally dominant, we can conclude that
ρ(Gℓγ ) < 1 which proved the first part of the theorem.
Also from Theorem 4.1 and Corollary 4.1, it is clear that
ρ(G̃ℓγ )< 1.

Now, because of the matrixA of (12) is a diagonally
dominant and the iteration matrixGℓγ given by:
Gℓγ = (I − γL)−1{(1− γ)I + γU}, from [9] there exists a
positive vector y such that Gℓγ y = yρ(Gℓγ ), or
equivalently:

{(1− γ)I + γU}y= yρ(Gℓγ )(I − γL). (26)

Therefore, we can get:

[γρ(Gℓγ )L+ γU ]y= [ρ(Gℓγ )−1+ γ)y. (27)

Hence,

G̃ℓγ y−yρ(Gℓγ ) = y{I − γL̄}−1[(1− γ)I + γŪ −ρ(Gℓγ ){I − γL̄}]

= y{I − γL̄}−1[(1− γ −ρ(Gℓγ ))I + γρ(Gℓγ )L̄+

γŪ ].
(28)

Obviously, from Eqs. (27) and (28), we can see that for
0< γ < 2, if ρ(Gℓγ )< 1 then ρ(G̃ℓγ )< ρ(Gℓγ ).
Thus, the proof is complete.

The spectral radius of the preconditioned matrix is
smaller than the unpreconditioned matrix which implies
that we should expect the rate of convergence of the
preconditioned version to be faster than its
unpreconditioned counterpart.

5 Numerical Experimentation and Results

To illustrate the results obtained in Section 4 and confirm
the superiority of the proposed preconditioned scheme,
numerical experiments have been carried out to solve the
following Navier-Stokes equations [2],

∇2ψ =−ω
∇2ω +Re(ψxωy−ψyωx) =−1

(29)

with the boundary conditions

ψ(x,0) = ψ(x,1) = ω(x,0) = ω(x,1) = 0, 06 x6 1,

ψ(0,y) = ψ(1,y) = ω(0,y) = ω(1,y) = 0, 06 y6 1.
(30)

and the exact solution is

ψ∗(x,y) = x2(x−1)2y2(y−1)2,

ω∗(x,y) =−∇ψ∗(x,y).
(31)
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The grid spacing used was h = 0.1 and the problem was
solved for various values of Reynolds numberRe > 1.
For each case, the experimental optimum relaxation
parameterγ was chosen to within 0.01 which gives the
most rapid convergence. Throughout the experiment, a
tolerance ofδ = ε = 10−11 was used as the termination
criteria for both the outer and inner iterations. The
computer processing unit was Intel(R) Core(TM) 2Duo
with memory of 3Gb and the software used to implement
and generate the results was Developer C++ Version
4.9.9.2. Tables 1 and 2 list the iteration counts and
timings for both the original and preconditioned MEDG
SOR methods for selectedReranging from 1 to 1000 and
from 5000 to 7682 respectively. The results from
preconditioned MEDG SOR scheme portray similar
behavior as the original MEDG SOR. However, it can be
seen that the preconditioned MEDG requires only about
50-550/0 of the time required by the original method. We
can also observe that the proposed preconditioned MEDG
SOR scheme has shown considerable improvement in the
number of iterations and execution time compared to that
of the preconditioned scheme displayed in Ali and Saeed
[13].
It is observed that our model problem is same as the
problem in [6] whenRe 6= 0 and∈1= 0 in Eq. (2). Tables
3 and 5 display the values of the computed values of the
streamfunctionψ and the values of the exact solutionψ∗.
Tables 4 and 6 display the values of the computed values
of the vorticityω and the values of the exact solutionω∗.
Comparisons between Tables 3 and 5 show good
agreement in the results. Similarly, Tables 4 and 6 also
show the computed values are very close to the exact
solutions.
In order to check the efficiency and accuracy of our
proposed preconditioned iterative method, we extended
our experiments to larger mesh points with Re=1.0 and
the error estimations are displayed in Table 7. This table
shows the discreteL2 norm‖ψ∗−ψ‖L2

whereψ denotes
the computational solution on an n×n grid (h=1/n) and
ψ∗ is the exact solution. It is observed that the results
behave in similar manner as in [6].

6 Conclusion

In this paper, we derive a new preconditioned Modified
Explicit Decoupled Group Successive Over-Relaxation
(MEDG SOR) for solving a coupled system of elliptic
equations which represents the stream-vorticity
formulation of the steady-state Navier-Stokes equation.
The preconditioned schemes have shown improvements
in the number of iterations and the execution times
experimentally. The significance of this study is that the
proposed preconditioner is able to substantially reduce
the operation counts of the original method which
confirms the more favourable spectral properties of the
preconditioned scheme as proven in Theorem 4.2 in
solving the two dimensional steady-state Navier-Stokes

Table 1: Iteration numbers and timings for the MEDG and
Preconditioned MEDG outer-inner iterative methods for selected
Re ranging from 1 to 1000

Unpreconditioned MEDG SOR Method Preconditioned MEDG SOR Method
Re Time value No.of No.of No.of Re Time value No.of No.of No.of

(secs) of γ outer inner inner (secs) of γ outer inner inner
iter.(m) iter. of ψ iter. of ω iter.(m) iter. of ψ iter. of ω

1 0.56 1.23 1 1 18 1 0.28 1.39 1 1 9
2 16 10 2 8 7
3 5 1 3 3 1
4 1 1 4 1 1

10 0.59 1.23 1 1 18 10 0.30 1.39 1 1 9
2 16 13 2 10 8
3 7 2 3 6 2
4 1 1 4 1 1

100 0.88 1.23 1 1 18 100 0.45 1.39 1 1 9
2 18 16 2 11 14
3 10 5 3 9 6
4 3 2 4 3 1
5 1 1 5 1 1

1000 2.48 1.34 1 1 24 1000 1.26 1.47 1 1 13
2 21 22 2 11 10
3 15 17 3 8 7
4 9 10 4 6 5
5 4 4 5 2 1
6 1 1 6 1 1

Table 2: Iteration numbers and timings for the MEDG and
Preconditioned MEDG outer-inner iterative methods for elected
Re ranging from 5000 to 7682

Unpreconditioned MEDG SOR Method Preconditioned MEDG SOR Method
Re Time value No.of No.of No.of Re Time value No.of No.of No.of

(secs) of γ outer inner inner (secs) of γ outer inner inner
iter.(m) iter. of ψ iter. of ω iter.(m) iter. of ψ iter. of ω

5000 7.31 0.67 1 1 33 5000 3.86 0.90 1 1 17
2 31 33 2 14 15
3 23 31 3 11 12
4 22 23 4 7 9
5 13 16 5 3 4
6 5 10 6 1 2
7 2 4 7 1 1
8 1 2
9 1 1

7127 14.45 0.58 1 1 42 7682 7.94 0.73 1 1 21
2 40 41 2 19 20
3 30 36 3 17 19
4 29 30 4 15 16
5 20 23 5 12 14
6 9 17 6 7 9
7 5 9 7 3 5
8 3 6 8 1 2
9 1 3 9 1 1
10 1 2
11 1 1 >7682 Diverge

>7127 Diverge

Table 3: Computed values ofψ at (x,y) where [x=0.2, 0.7,
0.9 and y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000) for preconditioned
MEDG method

x \ y 0.2 0.3 0.5 0.7 0.9
0.2 0.15855E-02 0.21304E-02 0.25861E-02 0.21363E-02 0.84822E-03
0.7 0.21403E-02 0.28861E-02 0.35054E-02 0.28853E-02 0.11508E-02
0.9 0.25544E-02 0.31334E-02 0.38264E-02 0.32436E-02 0.45543E-02

Table 4: Computed values ofω at (x,y) where [x=0.2, 0.7,
0.9 and y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000) for preconditioned
MEDG method

x \ y 0.2 0.3 0.5 0.7 0.9
0.2 0.352061E-01 0.434996E-01 0.506427E-01 0.443278E-01 0.210487E-01
0.7 0.434886E-01 0.556857E-01 0.645341E-01 0.556858E-01 0.267081E-01
0.9 0.642755E-01 0.676967E-01 0.776526E-01 0.637758E-01 0.347131E-01

equation for certain relaxation parameters lying in an
optimum range. Hence, we conclude that the proposed
preconditioner is suitable to be implemented on the newly
developed MEDG SOR method resulting in a viable
alternative solver for the stream-vorticity formulation of
the steady-state Navier-Stokes equation.
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Table 5: Exact values ofψ∗ at (x,y) where [x=0.2, 0.7, 0.9 and
y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000)

x \ y 0.2 0.3 0.5 0.7 0.9
0.2 0.15849E-02 0.21283E-02 0.25857E-02 0.21345E-02 0.84772E-03
0.7 0.21411E-02 0.28856E-02 0.35122E-02 0.28848E-02 0.11505E-02
0.9 0.25573E-02 0.31346E-02 0.38343E-02 0.32444E-02 0.45621E-02

Table 6: Exact values ofω∗ at (x,y) where [x=0.2, 0.7, 0.9 and
y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000)

x \ y 0.2 0.3 0.5 0.7 0.9
0.2 0.349051E-01 0.434764E-01 0.506387E-01 0.443266E-01 0.210386E-01
0.7 0.429877E-01 0.556848E-01 0.644636E-01 0.556849E-01 0.267025E-01
0.9 0.642688E-01 0.676886E-01 0.776495E-01 0.636957E-01 0.346842E-01

Table 7: Error estimates of different mesh size h
h ‖ψ∗−ψ‖L2

1
14 0.855749E-05
1
22 7.588931E-06
1
30 3.911702E-06
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