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Abstract: Combining iterative schemes with suitable preconditioners may improveatieof the convergence of the methods.
However, the real difficulty lies in the construction of the correct pre@@mmners applied to the formulated schemes. In this paper,
the Modified Explicit Decoupled Group Successive Over-Relaxation adethformulated to solve the two dimensional steady-state
Navier-Stokes equations. A new block splitting preconditioned matrix is apfgithe formulated scheme as an effort to accelerate the
convergence rate. Numerical experiments are carried out to cotfferaffectiveness of the preconditioner in terms of accuracy and
execution timings. Comparison with its unpreconditioned counterpart willlzsreported.
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1 Introduction
D%+ Re(Ysay — Yhw) = —¢ (2)

technique for the governing partial differential equasion fq ¥ and w prescribed at the boundary. Hereand Re

(PDEs) and has long been a dominating means for solvinqthe Reynolds number) are non-negative constants and
fluid flow problems. Having the advantages of simplicity, —»

92 92 . .
robustness and versatility, numerical techniques based o% =oe oy 13 the usual Laplacian operator. Note that
finite differences are still playing important role for if Rez 0, then the coupled system represents the two
solving PDEs in the current researches. In manydlmen5|onal stea}dy_state Nawer—Stoke; equations which
applications, the stream-vorticity function form of the describe the basic viscous, |ncc_)mpre55|ble flow problems.
Navier Stokes equations provides better insight into the¥’ and w are known respectively as the stream and
physical mechanisms driving the flow than the primitive VOrticity functions. Sl,2|ppose we impose the boundary
variable formulation in terms of velocities of the flow u, v conditionsyy = 0 and% = 0, wheren is the normal to
in x, y directions and the pressure p. The stream-vorticityihe poundarydQ of 5 then our problem amounts to
function formulation is also useful for numerical work soving (1) and (2) successively with = 0 andw = 0
since it avoids some problems resulting from the respectively alon@?Q. Over the last few decades, there
discretisation of the continuity equation. The governing haye heen some interests in designing new methods for
equations for flow fields which describe the o solying these stream-vorticity formulation<2)[ [3], [4],
dimensional steady-state Navier-Stokes equations withs) [6)). In particular, Ali and Abdullah 4] derived a
continuity equation are described irl] Using the  groyp explicit method derived from a skewed five-point
stream-vorticity function approach, the Navier-Stokesfinite difference approximations where the proposed
equation may be represented as a coupled system Ghethod was shown to be more efficient in CPU timings

elliptic partial differential equations as shown below than the existing schemes based on the standard five-point
difference  stencil. With the realization that
2P =—w (1) preconditioning technique is essential for the
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improvement in the performance of iterative methods, ,
research on preconditioners has moved to center stage in—[1- o7 —wiNa’ ) 1+ o) — el +4a
recent years ¢, [8], [9], [10], [11], [12). Recently, Ali 1 o(p? - 42 1ad - 1+ o(uf) - g2 a'? = rocl.
and Saeed13] proposed &l + K)-type preconditioning . . @
matrix in block form and applied it to the original system Hereo =Re/4 andi,j=1,2,,n-1 By rotating thei-plane
obtained from the four point Explicit Decoupled Group @xis and thg-plane axis clockwise by 45 Egs. (3) and
(EDG) method for solving the coupled system of elliptic (4) become (5) and (6) respective#]{
partial differential Eqs. (1)-(2) with promising results.

In this paper, we shall formulate a new group explicit
scheme namely the Modified Explicit Decoupled Group
(MEDG) method, in solving this fundamental problem in —L-ow5} - w57 1 Y — 1+ o7, - e Dl +4a)
fluid dynamic (1)-(2). We also introduce the application —1- (b, - ' Dig*h,, - 1+ oY, - e el = 2r2d.
of a suitable preconditioner to this proposed scheme in an (6)
effort to further accelerate the convergence rate of the\We now consider the points with grid spacidlg = 2L/n.
method. The outline of this paper is as follows: the The application of centered difference equation on these
formulation of the MEDG iterative method for solving the ]?f;lspaced p0|r;_ts will transform the Eqgs. (3) and (4) to the
coupled system of elliptic equations will be given in oflowing equations.
Section 2. A specific preconditioned block splitting kD) kD) g (D) kD) D) g2 (K)
matrix applied to the proposed MEDG formula will be ey i T e ey = AT @
described in Section 3, followed by its convergence
analysis in Section 4. The numerical results are presented

ki 1) (k+1) (k+1) (kD) (k+1) 2 (K
*‘l’i(,l_jg U AT - ‘l’i(+1.j+1 — Yo = 2w (5)

k+1)

(k+1) k+1) (k1) 7, (k1 kt1)

. . . .. ( (k+1) (k+1) (k+1) (
to verify the efficiency of the preconditioned MEDG 11~ 0% —wiilel) — [+ o)~ ws ey + 4w
method in Section 5 and the concluding remarks is given —[1-o(y*;] - ¢S )a{ - 1+ oy - wD)]wlS ] = anc.
in Section 6. ®)

Rotating the-j axis clockwise 48, Egs. (7) and (8) can
be transformed into (9) and (10) respectively:

2 Modified Explicit Decoupled Group P P 1T e B T P e P 1 A N )
Formulation
S (P A Py [ PR R (A I VA i [ PR )

Let us assume that a rectangular grid in the (x,y)-plane-[1-ow*;, - Y e, — 1+ o, — e )lw’sY , = sndk.
with grid spacingh = L/n in both directionsg = ih and ) o 10)
y; = jh,i,j=0,1,...,nis used. Observe thatd is known, Clearly, it can be seen that the application of (9)-(10) will
then (1) is a linear elliptic equation i, and if is known, ~ result in a large and sparse system with the coefficient
then (2) is a linear elliptic equation im. Supposey® matrix being a block matrix dependm_g on the ordering of

©) - Q i points taken. Assume that the solution at any group of
and w'\” are the initial guesses, we can use th¢e’ in

) . : four points on the solution domain is achieved using the
1 1
(1) to producey™. Again we can use thig/™ in (2) to rotated equation (10). This will result in a (4x4) system of

producew(®). Then we can use this'*) in (1) to produce equations which lead to a decoupled system of (2x2)

¢, and so on. This indicates that at the grid péiaty;)  equations whose explicit forms are given by
the following alternating sequences of outer iterates ean b

generated as iRig. 1.

k+1)

a2, 1
Wy2,j+2 16— [(1- o(Yi2jr2 — Yir2j—2)) 1+ 0 (Y jra — Yiraj))]

« 4 1-0(Yi2jr2— Piizj-2) rhs;j
14+ 0(Wjr2— Yiraj) 4 rhs 22

' {m, ] _ 1
Wj+2]  16—[(1-0(Wj2—Wiajr2))(1+0(Yi2j—Piizjia))] 12)
0:&0) ) Ujljz» J3) o) '§§ 4

« [ 1-o(gj2— llf.+4.|+2)} [fhsfzj }
1+ 0(Yizj—Yhis2jra) 4

rhs j .2

(1)

Fig. 1: Generation of outer iterates The computational molecule of Egs. (11) and (12) are
given inFig. 2 andFig.3 respectively. Note that for both
equations, iterative evaluation of points from each group

The finite difference approximations of Egs. (1) and requires contribution of points only from the same group.
(2) using the centred difference formula at the pgity;) This means the iteration of points for the vorticity

will result in the following: solutions from Eq. (11) can be carried out by involving
points of typeg only, while the iterations arise from Eq.
g — gl agtY gD gl = 2l @) (12) can be implemented by involving points of tyflie
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[F2j G2
Fe.j Ge,j
v .
Fig. 2: Computational molecule of Eq.(11) e
) N
L P-4 (N=2)x(N-2)
where
R — 4 —[1-o(Wi-2jr2—Pir2j-2)]
! —[1+0(ijra—Yisiaj) 4 ’
Sj = [ 14 o(Wi2j2—Wi2j2)]
b .
-] o)
- 1+U(W| i — Wirajra)] O
[0 1+Ul.U|212 Yii2j- 2)]]
0
-] o
(1- U'M —Wisajia)] 07
Uj; [8 1 J(LIJ. 2102 W+2J+2)]]’and
0 0 .
Gij = [7[1*?(Wi.i+4*’~ﬂi+4.j>] ] » for L=1@N-4.
W £
a 4
0= . L, = . for i=1(2)N-4,
mj (N-2)2 WN-aid (o)
Fig. 3: Computational molecule of Eq. (12) N @
Q= [M+2:;+2] . for ij=1(2)N-4.
V2 o,
Ve \76:|
only. Due to this independency, the iterations can be b= : Gi= for i=1(2)N-4.
carried out on either one of the two types of points with n-g s
grid spacing2h, which means we can expect that the Ul 22 B

execution time to be reduced compared to the EDG qii:[vw.j ] for i,j=1(2)N-4.
method introduced in Ali and Saeety . e

In order to obtain the formula of the MEDG SOR method,
In theory, if we apply Eq. (11) or (12) to each of the we first need to derive the formula of the MEDG Gauss
groups in natural ordering, then this will lead to the Seidel scheme as the following:

formation of a system of equations in the form: Let b1: 1= (W ojia— iz 2) ba=1+0(Uhjra—thra)),
5 =1/(16—by*bp), bys=(1-0(i2j2—Pizjr2))0- 2j42t (1+
A =Db (13) o(Wi- 21+2—W+2| 2))W-2j2+ 14+ 0(P2j-2— Pi2jr2)) W42 2+8h%c.
bs = (1— o (Pj — Yiraja) W jra+ (1= 0(Qhjra— Yisaj))@Diajra+ (1+
whose coefficient matriA is defined as (W) — Wiiajia))@iaj+8h2C.
EZ E)/z v The (k+ 1)!" iterates of the Gauss-Seidel iterative scheme
6 -6 V6 is defined by
A= 14) &Y = b3« (4 % by + by * bs) and
k+1)
WN-8 0%<+;J+2— b * (bp % bg + 4% bs).
Ln-4 Dn-ad (v-22, (22 The (k + 1)!" iterates of the SOR iterative scheme are
© 2013 NSP
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given by
Ma.j @4 + Mz, @ + Vol 14 = IV f j=6(2N-8. (17
(q(JkJrl) _ (}.%(Jk> + y((}%<k+l) . (q(]k)) and 4,jWj—a+ My jWj +VeWj 14 = V] or ] (2) (17)
(k+1 k (k+1 k . . . )
("%+J2r ])+2 wl(-->2 j+2 +Y(&) |+J2r J)+2 ("%(-»->2,j+2)' My 0j-a + Mz &) = JVj for j=N-4 (18)

In summary, the four-point MEDG SOR scheme

corresponds to iterating the solutions at approximaterF

half of the points in the solution domain using either (11) \4

(12) by implementing the relaxation procedure
(k“) K 4+ y(@*D — k1)) until convergence is
achieved, ie., whe|+o.1j'“rl —oq(jk)‘ < ¢ herey is the
optimum acceleration parameter aadis the tolerance

rom Eg. (16), we will obtain three preconditioned

used. If convergence is achieved, then the solutions are X3}, = y(baFi +4F; +4Dsc . +4D76 14+ 40203 14,4) + X (1- V)

evaluated at the rest of the nodal points (points of

opposite type) using the centred difference formula (8).
Otherwise, the iteration cycle is repeated.

3 The proposed preconditioned MEDG SOR
iterative method

In this section we will apply the preconditiond? £ | +K)

to the linear system resulting from the MEDG scheme with

% 0
N 08

~
I

=

J 7(N’22)2x7(""22)2 “Un-aj O] (v oeno2)

whereUn_4 j defined as in Section 2.

Therefore, the precondmoneP = | + K matrix wil
become

Bl 22 (n-22 “Unaj lod (np)inop)

Herelp is a 2x 2 identity matrix.

Now, obtainA by multiplying | + K into A in Eq. (14)

5 D2 V2
_ _ J :
A= (1+K)A= Lo De
' VA
J2 Ln-4 Dn-4
M2 V2
Mses Mag
- Wn-s
Mgj Mg I (N-22  (N-2)2

Therefore, we can rewrite the systéW = b as:

Mz Ve [ VA
Mas M2s Vo @5 JoVs
Mai0 M210 Vio @10 V10
. = (15)
Man-g Mzn-s Vs | | GN-s JoVn-g
Mg Mg N-4 JoUn-a
From Eg. (15) we obtain:
Mz_J(:)J +V2(:)J,4 = J2\7] for j=2 (16)

EDG schemes which can be transformed into
precondmoned ME DG SOR schemes as:
Fori=2, 6(2) N-8andN-4,j =
XK"Y = YRy + 1R + Fat g j + Fatjra+ Foiajoa) + X(1— Y
)
W22
(19)
X(A%IJ(“ yY(2hPC j +b1Fo + Foi_2 42 + Fac 14+ 01betiaj + F5e 1, 14)
+X(1- V)("\.j
XO%(ELZ = y(2h?c, jby + 4R + Frou zj+z+4b7m j+4+4bew 4 ) +4bg i j1a)
HX(1- )l 21+2
(20)
and
Y™ = y(Fe + FoFo + 4F10 4 +Fi1c 22+ Fiot j14) + Y(1- Y

Y‘*%+2.j+2 =y(Fis+{[1-0(Yi-2j-2—Wizj+2)|[1+ 0(Un-ajra— Unj)]FFia—{[1+

O(Un-aj+a—WUnj)| —Fro}a-aj — Fis@-2 12 +b7[4—Fiola j1a) +Y(1— V)“%(Pz.ﬁz
(21)

Similarly, From Eqgs. (17) and (18), we will obtain six
preconditioned MEDG schemes which can be also
transformed into preconditioned MEDG SOR schemes.

In the next section, we will discuss the convergence
properties of the above preconditioned MEDG SOR
method.

4 Convergence Analysis of the Proposed
Method

Precaonditioned version of iterative. methods should
exhibit better convergence rates than its unpreconditione

version. This fact motivates us to present the convergence
properties related to the improved convergence of the
proposed preconditioned MEDG iterative method in
solving the coupled equations (1)-(2). Several properties
are needed to prove our main conjecture of this work.

For the sake of our discussion, we define the spectral
radius of a matrix, denoted hy(.), as the largest of the
moduli of the eigenvalues of the iteration matrix. It is well
known that a matrix is said to be diagonally dominant if
in every row of the matrix, the magnitude of the diagonal
entry in that row is larger than or equal to the sum of the
magnltudes of all the other (non-diagonal) entries in that

More precisely, the matrixn is diagonally dominant if
laii| > ¥ |aij| for all i,wherea;j denotes the entry in the
i#i

it" row andjt" column.

Lemma 4.1. The Successive OverRelaxation (SOR)
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method is convergent for the acceleration factor whés p(Gy,) <1 and p(égy) <p(Gy,).
fﬂ?metrlc and positive definite or diagonally dominant. Proof.

nn ) By Lemma 4.1 and since the block SOR iteration matrix
Theorem 4.1.Let A € R™" be nonsingular. Then there Gy, in (22) is diagonally dominant, we can conclude that
exist nonsingular matrice® such thatPA is diagonal p(Gy,) < 1 which proved the first part of the theorem.
dominant. 1.9]. Also 'from Theorem 4.1 and Corollary 4.1, it is clear that

i - p(Gy,) < 1.
Corollary 4.1. The Jacobi method, the Gauss-Seidel

method and the SOR method are convergent for allNow, because of the matrid of (12) is a diagonally
nonsingular linear systems in the sense of preconditionegiominant and the iteration matr&, given by:
14

version. [L5]. Gy, = (1= yL)"H{(1—y)I + W}, from [9] there exists a

The matrix A in (13) can be decomposed into pos[tiv? \I/e.ctor y such that G,y = yp(Gy), or
A=D-E—F, whereD = D; = diag(A,A,,,...A,) cduivalently:

and [P+ Wl =yp(G)(1 - ). (26)
—A1j for j<i —A”. for j>i

E=L=E, :{O for i’ F=Vi=F :{O for j<i Therefore, we can get:

are block matrices consisting of the block diagonal, strict lyp(Ge, )L+ W]y =[p(Gy,) — 1+ y)y. 27)

block lower triangular, and strict block upper triangular
parts ofA. Here, the diagonal entrie& are nonsingular. Hence,

The block Jacobi iteration matrix is = — - —
BJ(A) _ Dfl(E 4 F) =L + U, Where L = DflE’ Gﬁyy_yp(ny) :y{l _yl-}_l[(l_Y)l +VU _p(G/y){I _VLH
U = D~!F while the block Gauss-Seidel iteration matrix =y{l —yL} (21— y—p(Gy,))l + Y0 (Gy, )L+
is Bgs(A) = (I-L)"U. The Block Successive yal.

Over-Relaxation method (BSOR) iteration matrix is (28)
therefore

1 Obviously, from Egs. (27) and (28), we can see that for
Gy, = (1 =) H{A-yI + W} (22) o< y<2, if p(Gy)<lthen p(G,)<p(Gy,).

The preconditioned system (15) can be written as: Thus, the proof is complete.

ay v a The spectral radius of the preconditioned matrix is
(H+K)AR= (1 +K)b. (23) smaller than the unpreconditioned matrix which implies
Hence, that we should expect the rate of convergence of the
AW =Db (24)  preconditioned version to be faster than its
— — — - unpreconditioned counterpart.
where:A= (1 +K)A=1-L—-KL—-(U—-K+KU) and
b= (I+K)h.

Similarly, the matrixA in (24) can be decomposed into 5 Numerical Experimentation and Results
A=1-L-U, whereL =L +KL andU =U —K+KU. To illustrate the results obtained in Section 4 and confirm
the superiority of the proposed preconditioned scheme,

The SOR iteration matrix will result in an Enhanced ,merical experiments have been carried out to solve the
Block Successive Over-Relaxation iteration matrix following Navier-Stokes equationg]|

(EBSOR) and is given by

G, = -y Ha-yi+Wl.  (29) = o @9)
The result of Lemma 4.1, Theorem 4.1 and Corollary 4.1With the boundary conditions
enable us to prove the following theorem: W(x,0) = Y(x,1) = w(x,0) = w(x1) =0, 0< X< 1,
Theorem 4.2.LetA=1—L—U andA=1—L—U be the (0,y) =yY(Ly) =w(0y) =w(ly)=0,0<y <(§O)
matrices of the linear system (12) and (15) respectively. If P
the matrix A of (12) is diagonally dominant and and the exact solution is
q< .y < 2, then the block SQR itera.tio.n matric€g, and PH(xY) = X2(x— 1)2y%(y — 1)2, (31)
Gy, in (22) and (25) respectively satisfied, w*(xy) = —0g*(xy).
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The grid spacing used was h = 0.1 and the problem wadable 1: Iteration numbers and timings for the MEDG and
solved for various values of Reynolds numtiee > 1. Preconditioned MEDG outer-inner iterative methods for selected

For each case, the experimental optimum relaxatior?€ fanging from 1to 1000

Unpreconditioned MEDG SOR Method Preconditioned MEDG SOR Method

paramete[y was Chosen to W|th|n 001 Wh|Ch g|VeS the Re | Time [ value | No.of No.of No.of Re [ Time [ value | No.of | No.of No.of

(secs)| ofy outer inner inner (secs)| ofy outer inner inner

most rapid convergence. Throughout the experiment, a iterm) | fter. of | fter of & ier.(m) | fter. of | iter. of &
11 . . 1 0.56 1.23 1 18 1 0.28 1.39
tolerance ofd = € = 10" was used as the termination 16 10
. . . . . 1
criteria for both the outer and inner iterations. The 1
10 0.59 1.23 18 10 0.30 1.39

computer processing unit was Intel(R) Core(TM) 2Duo
with memory of 3Gb and the software used to implement
and generate the results was Developer C++ \ersior
49.9.2. Tables 1 and 2 list the iteration counts and
timings for both the original and preconditioned MEDG 5551545133
SOR methods for selectd®kranging from 1 to 1000 and
from 5000 to 7682 respectively. The results from
preconditioned MEDG SOR scheme portray similar
behavior as the original MEDG SOR. However, it can be
seen that the preconditioned MEDG requires only about

50-5509/ of the time required by the original method. We Table 2: Iteration numbers and timings for the MEDG and
can also observe that the proposed preconditioned MED®reconditioned MEDG outer-inner iterative methods for elected
SOR scheme has shown considerable improvement in thBe ranging from 5000 to 7682

13
2
1

18 100 | 0.45 | 1.39

16
5
2
1

24 1000 | 1.26 | 1.47

22

17

10
4
1

CUBRWNPOAWNRSWNPA®WN P
=N e~ =
rroRRrrwEERRrNE RO
CUBRWNPORWNRSWNPA®WN P
= = =
rhNo@ERRrwoRRRoE R wo
. =
rraNBERRroR ok ook R N©

number of iterations and execution time compared t0 that s S o e a1 Re T T o e ot
of the preconditioned scheme displayed in Ali and Saeed el oty | e | iorty | o oo R T e P P
[13] . 5000 7.31 0.67 ; 311 23 5000 3.86 0.90 ; l14 g
It is observed that our model problem is same as the A - A I
problem in p] whenRe+# 0 and<;= 0 in Eq. (2). Tables P I N I
3 and 5 display the values of the computed values of the s | 1| 2 N
streamfunctiony and the values of the exact solutigrx. rizT | veas| oS |11 | e[ Ter|7er|om [T [ i |
Tables 4 and 6 display the values of the computed values 3 on | o 3| ow ) o
of the vorticity w and the values of the exact solutiar. s | oo | o= s | oz | o
Comparisons between Tables 3 and 5 show good R O -
agreement in the results. Similarly, Tables 4 and 6 alsg A 3 N !
show the computed values are very close to the exact .., overge| | Lo | e Diverge

solutions.
In order to check the efficiency and accuracy of our

proposed preconditioned iterative method, we extendedl_able 3: Computed values ofy at (xy) where [x=0.2, 0.7

our experim_ents_to larger _mesh poi_nts with Re:1_.0 and0.9 and y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000) for preconditioned
the error estimations are displayed in Table 7. This table,,-r methoél T

shows the discrete; norm | — f|, wherey denotes 5 02 03 0 07 09
the computational solution on anxm grid (h=1/n) and 0.2 | 0.15855E-02] 0.21304E-02| 0.25861E-02| 0.21363E-02| 0.84822E-03

w* |S the exact Solutlon It |S Observed that the results 0.7 | 0.21403E-02| 0.28861E-02| 0.35054E-02| 0.28853E-02| 0.11508E-02
behave |n S|m||ar manner as |ﬁ][ 0.9 | 0.25544E-02| 0.31334E-02| 0.38264E-02| 0.32436E-02| 0.45543E-02

6 Conclusion Table 4: Computed values ofv at (x,y) where [x=0.2, 0.7,
0.9 and y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000) for preconditioned

In this paper, we derive a new preconditioned Modified MEDG method

EXpIICIt Decoupled GrOUp SUCC@SSive Over_Relaxation Xéé O.SSZOdélE-Ol 0.4340986501 O.SOGOAé?E»Ol 0.4430238E-01 0.2100427501
(MEDG SOR) for solving a coupled system of elliptic | 0.7 [ 0.434886E-01 0.556857E-01 0.645341E-01] 0.556858E-01| 0.267081E-01
equations Wthh represents the Stream-VortiCity 0.9 | 0.642755E-01| 0.676967E-01| 0.776526E-01| 0.637758E-01| 0.347131E-01]
formulation of the steady-state Navier-Stokes equation.

The preconditioned schemes have shown improvements

in the number of iterations and the execution times

experimentally. The significance of this study is that theequation for certain relaxation parameters lying in an
proposed preconditioner is able to substantially reduceoptimum range. Hence, we conclude that the proposed
the operation counts of the original method which preconditioner is suitable to be implemented on the newly
confirms the more favourable spectral properties of thedeveloped MEDG SOR method resulting in a viable
preconditioned scheme as proven in Theorem 4.2 iralternative solver for the stream-vorticity formulatioh o
solving the two dimensional steady-state Navier-Stokeghe steady-state Navier-Stokes equation.
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Table 5: Exact values ofp« at (x,y) where [x=0.2, 0.7, 0.9 and
y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000)
x\Yy 0.2 0.3 0.5
0.2 | 0.15849E-02| 0.21283E-02| 0.25857E-02
0.7 | 0.21411E-02| 0.28856E-02| 0.35122E-02
0.9 | 0.25573E-02| 0.31346E-02| 0.38343E-02

0.7
0.21345E-02
0.28848E-02
0.32444E-02

0.9
0.84772E-03
0.11505E-02
0.45621E-02

Table 6: Exact values otox at (x,y) where [x=0.2, 0.7, 0.9 and
y=0.2, 0.3, 0.5, 0.7, 0.9] (Re=1000)

X\y 0.2 03 05 0.7 0.9
0.2 | 0.349051E-01| 0.434764E-01] 0.506387E-01| 0.443266E-01| 0.210386E-01
0.7 | 0.429877E-01| 0.556848E-01| 0.644636E-01| 0.556849E-01| 0.267025E-01
0.9 | 0.642688E-01| 0.676886E-01| 0.776495E-01| 0.636957E-01| 0.346842E-01

Table 7: Error estimates of different mesh size h
*
h o™= yll,,
= 0.855749E-05
55 7.588931E-06
= 3.911702E-06
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