
Math. Sci. Lett.6, No. 3, 279-286 (2017) 279

Mathematical Sciences Letters
An International Journal

http://dx.doi.org/10.18576/msl/060309

Assessing the Lifetime Performance Index of Extreme
Value Model Based on Progressive Type-II Censored
Samples
Rashad M. EL-Sagheer∗

Mathematics Department, Faculty of Science, Al-Azhar University, Naser city 11884, Cairo, Egypt

Received: 23 Jan. 2017, Revised: 2 Jul. 2017, Accepted: 28 Jul. 2017
Published online: 1 Sep. 2017

Abstract: In practice, effective management and assessment of quality performance for products is important in modern enterprises
and the process capability analysis is utilized to measure business performance. Hence, lifetime performance indexCL is used to
measure the potential and performance of a process, whereL is the lower specification limit. In the technology of data transformation,
this study constructs a maximum likelihood estimator (MLE)of CL under the extreme value distribution (EVD) with the progressive
type-II censored sample. The MLE ofCL is then utilized to develop the new hypothesis testing procedure in the condition of knownL.
Also we assuming the conjugate prior distribution and squared error loss function, this study constructs a Bayes estimator of CL. The
Bayes estimator ofCL is then utilized to develop a credible interval in the condition of knownL. Moreover, we propose a Bayesian test
to assess the lifetime performance of products. Finally, wegive example and the Monte Carlo simulation to assess the behavior of the
lifetime performance index.

Keywords: Performance index; Extreme value distribution; Progressive type-II censoring; Maximum likelihood estimator; Bayes
estimator.

1 Introduction

Lifetime performance assessment is important in service
(or manufacturing) industries, process capability indices
(PCIs) are used to measure process potential and
performance, process capability indices are utilized to
assess whether product quality meets the required level.
For instance, Montgomery [1] and Kane [2] proposed the
process capability indexCL (or CPL) for evaluating the
lifetime performance of electronic components, whereL
is the lower specification limit, since the lifetime of
electronic components exhibits the larger-the-better
quality characteristic of time orientation. All of the above
(PCIs) have been developed or investigated under normal
lifetime model. Nevertheless, in many process which
including manufacture process, service process and
business operation process, the assumption of normality
is common in process capability analysis, and is often not
valid. Many researcher e.g. [3,4,5,6] noted that the
lifetime of products frequently possesses an exponential,
gamma or Weibull distribution, etc. Since the lifetime of

products exhibits the larger-the-better quality
characteristic of time orientation.

Recently, there have been many works on the
statistical inference for lifetime performance index based
on the usual type-II and progressive type-II censoring
schemes with various lifetime distributions, see for
example Hong et al. [7,8], Lee et al. [9,10], Lee et al
[11]. Also, Lee et al. [12] have constructed a credible
interval forCL using a Bayesian approach and proposed a
Bayesian test for evaluating the lifetime performance of
the products, Ahmadi et al. [13] have constructed a
confidence interval and the maximum likelihood
estimator forCL based on the progressive first-failure
censored sample under Weibull distribution and
Mahmoud et al. [14] have constructed ML-estimator and
a Bayes estimator ofCL based on a progressively type-II
censored sample under the assumption of Lomax
distribution.

In this paper, we consider the case of the progressive
type-II censoring. A progressive type-II censoring is a
useful scheme in which a specific fraction of individuals
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at risk may be removed from the experiment at each of
several ordered failure times, see Cohen [15,16], Sen
[17], Balakrishnan and Cohen [18], Viveros and
Balakrishnan [19], Balakrishnan and Sandhu [20],
Balakrishnan and Aggarwala [21], Balakrishnan et al.
[22], Balakrishnan and Lin [23], Fernandez [24],
Asgharzadeh [25] and Wu et al. [26].

A schematic illustration of progressively type-II
censored sample can be described as follows, suppose
that n independent items are put on a life test with
continuous identically distributed failure times
X1,X2, ...,Xn. Suppose further that a censoring scheme
(R1,R2, ...,Rm) is previously fixed such that immediately
following the first failure X1, R1 surviving items are
removed from the experiment at random, and
immediately following the second failureX2, R2 surviving
items are removed from the experiment at random. This
process continues until, at the time of them th observed
failure Xm, the remainingRm surviving items are removed
from the test. Them ordered observed failure times
denoted byX (R1,...,Rm)

1:m:n ,X (R1,...,Rm)
2:m:n , ...,X (R1,...,Rm)

m:m:n are called
progressively type-II right censored order statistics of size
m from a sample of sizen with progressive censoring
scheme (R1,R2, ...,Rm). It is clear that
n = m + R1 + R2 + ... + Rm. The special case when
R1 = R2 = ...= Rm−1 = 0 so thatR = n−m is the case of
conventional type-II right censored sampling. Also when
R1 = R2 = ... = Rm−1 = 0, so that m = n, the
progressively type-II right censoring scheme reduces to
the case of no censoring (ordinary order statistics).

In this paper, process capability analysis is utilized to
assess the non-normal quality data under a specific
non-normal distribution. Hence, the lifetime performance
index (or larger-the-better process capability index)CL is
also utilized to measure product quality with the EVD.
The two parameters extreme value distribution
EVD(β ,λ ), has the probability density function (PDF),
and cumulative distribution function (CDF), given
respectively, by

f (x) =
1
β

exp

{

x−λ
β

}

×exp

(

−exp

{

x−λ
β

})

, (1)

F (x) = 1−exp

(

−exp

{

x−λ
β

})

, (2)

for −∞ < x < ∞, −∞ < λ < ∞ andβ > 0. The aim of this
paper apply data transformation technology to constructs
MLE of CL under the EVD with the progressively type-II
censored sample. The MLE ofCL is then utilized to
develop a new hypothesis testing procedure in the
condition of knownL. Also we propose a Bayesian test to
assess the lifetime performance of products. The new
testing procedure can be employed by managers to assess
whether the lifetime of products adheres to the required
level in the condition of knownL.

The rest of this paper is organized as follows: Section
2 contains some properties ofCL for lifetime of product

with the EVD based on the progressively type-II censored
sample. Section 3 investigates the relationship between
CL and the conforming rate of products. We propose the
MLE of CL and its statistical properties in Section 4.
Section 5 then presents the Bayes estimator under the
conjugate prior distribution and squared error loss
function of CL and its statistical properties. Section 6
develops a 100(1− α)% one-sided credible interval, a
Bayesian test and a 100(1− α)% one-sided confidence
interval forCL. Numerical example to illustrate the use of
testing procedure based on the Bayes estimator and the
MLE under the given significance level are given in
Sections 7. A comparison between the MLE and Bayes
estimator is made through a Monte Carlo simulation
study in Sections 8. Finally, concluding remarks are given
in Section 9.

2 The Lifetime Performance Index

Suppose that the lifetimeX of products has the
two-parameter EVD with the PDF and CDF are given as
(1) and (2). Clearly, a longer lifetime implies a better
product quality. Hence, the lifetime is a larger-the-better
type quality characteristic. The lifetime is generally
required to exceedL unit times to be both financially
profitable and satisfy customers whereL is the known
lower specification limit. Montgomery [1] developed a
capability indexCL to measure the larger-the-better type
quality characteristics. ThenCL is defined as follows:

CL =
µ −L

σ
(3)

where µ denotes the process mean,σ represents the
process standard deviation, andL is the known lower
specification limit. To assess the lifetime performance of
products,CL can be defines as the lifetime performance
index. UnderX has the EVD and the data transformation
Y = 1

λ exp
(

x−λ
β

)

, for −∞ < x < ∞, λ > 0 andβ > 0, the

distribution ofY is a exponential distribution. Hence, the
PDF ofY is

f (y) = λ exp{−λ y} , y > 0, λ > 0. (4)

Moreover, there are several important properties, as
follows:

–The lifetime performance indexCLy can be rewritten as

CLy =
µy −Ly

σy
= 1−λ Ly, CLy < 1, (5)

where the process meanµy = E (Y ) = 1/λ , the
process standard deviationσy =

√
VARY = 1/λ and

Ly is known lower specification limit.
–The CDF ofY is given by

F(y) = 1−exp{−λ y} , y > 0, λ > 0, (6)
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The failure rate functionr(y) is defined by

r(y;) =
f (y)

1−F(y)

=
λ exp{−λ y}

1− (1−exp{−λ y}) = λ . (7)

Hence, the data transformationY = 1
λ exp

(

x−λ
β

)

, λ > 0

and β > 0 for −∞ < x < ∞ is one-to-one and strictly
increasing, so data set ofX and transformed data set ofY
have the same effect in assessing the lifetime performance
of products. Moreover, the data transformation

Y = 1
λ exp

(

x−λ
β

)

, for −∞ < x < ∞, λ > 0 andβ > 0,

enables the calculation of important properties to be easy,
when the mean 1/λ (> Ly) then the lifetime performance
indexCLy > 0. From (5) and (7), we can see that the larger
the mean 1/λ the smaller the failure rate and the larger
the lifetime performance indexCLy. Therefore, the
lifetime performance indexCLy reasonably and accurately
represents the lifetime performance of new product.

3 Conforming Rate

If the lifetime of a productX which Y = 1
λ exp

(

x−λ
β

)

,

for −∞ < x < ∞, λ > 0 and β > 0 exceeds the lower
specification limit Ly, then the product is defined as a
conforming product. The ratio of conforming products is
known as the conforming ratePr, and can be defined as

Pr = P(Y ≥ Ly) =
∫ ∞

Ly

λ exp{−λ y}dy

= exp
{

−λ Ly
}

= exp
{

CLy −1
}

, (8)

where −∞ < CLy < 1. Obviously, a strictly positive
relationship exists betweenPr andCLy. Thus, the larger
the index valueCLy, the larger conforming ratePr. Table 1
lists variousCLy values and the correspondingPr. For the
CLy values which are not listed inTable 1, the conforming
ratePr can be easily calculated. The conforming rate can
be calculated by dividing the number of conforming
products by the total number of products sampled. To
accurately estimatePr, Montgomery [1] suggests to use a
large sample size. However, a large sample size is usually
not practical from the perspective of cost, since collecting
the lifetime data of new products involves damaging the
products which may prove to be cost prohibitive if not
practically in feasibility. In addition, a complete sample
is, as mentioned earlier, not practical. Since a one-to-one
mathematical relationship exists betweenPr and CLy,
utilizing the one-to-one relationship betweenPr andCLy,
lifetime performance index can be a flexible and effective
tool, not only for evaluating product quality, but also for
estimatingPr.

Table 1: The lifetime performance index
v.s. the conforming rate.

CLy Pr CLy Pr
−∞ 0.00000 0.15 0.42741

-9.00 0.00004 0.20 0.44933
-8.00 0.00012 0.25 0.47237
-7.00 0.00033 0.30 0.49659
-6.00 0.00091 0.35 0.52205
-5.00 0.00248 0.40 0.54881
-4.50 0.00409 0.45 0.57695
-4.00 0.00673 0.50 0.60653
-3.50 0.01111 0.55 0.63763
-3.00 0.01832 0.60 0.67032
-2.50 0.03019 0.65 0.70469
-2.00 0.04979 0.70 0.74082
-1.50 0.08208 0.75 0.77880
-1.00 0.13534 0.80 0.81873
-0.50 0.22313 0.85 0.86071
0.00 0.36788 0.90 0.90484
0.05 0.38674 0.95 0.95123
0.10 0.40657 1.00 1.00000

4 MLE of CLy

Let Y denote the lifetime of such a product andY has the
one-parameter exponential distribution with the PDF as
(4). With progressive type-II censoring,n products (or
items) are placed on test. Consider that
Y1:m:n,Y2:m:n, ...,Ym:m:n is the corresponding progressive
type-II censored sample, with censoring scheme
R = (R1,R2, ...,Rm). The joint PDF of allm progressive
type-II censored order statistic is given by (see
Balakrishnan and Aggarwala [21])

L(y
¯
|λ ) =C

m

∏
i=1

f (yi,m,n|λ ) [1−F(yi,m,n|λ )]Ri , (9)

where C =
n(n − 1− R1)(n − 2− R1− R2) · · · (n − ∑m−1

i=1 (Ri + 1)),
f (yi,m,n|λ ) is the PDF ofY Eq. (4) andF(yi,m,n|λ ) is the
CDF ofY Eq. (6). So, the likelihood function is given by

L(y
¯
|λ ) =Cλ m exp

{

−λ
m

∑
i=1

(Ri +1)yi

}

. (10)

It is easy to obtain that the MLE ofλ is given by

λ̂ML =
m

∑m
i=1(Ri +1)yi

. (11)

By using the invariance of MLE see Zehna [27], the MLE
of CLy can be written as

ĈLyML = 1− λ̂MLLy

= 1− m
T

Ly, (12)

where

T =
m

∑
i=1

(Ri +1)yi. (13)
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5 Bayes Estimator ofCLy

Bayesian approach provides the methodology for
incorporation of previous information with the current
data, andλ is considered a random variable having some
specified distribution. In this paper, we consider that the
conjugate prior distribution is gamma distribution with
PDF

π(λ |a,b) = ba

Γ (a)
λ a−1exp{−bλ} ,λ > 0. (14)

Here all the hyperparametersa andb are assumed to be
known (a and b are obtained from the past history) and
non-negative. From (10) and (14), we can obtain the
posterior distribution ofλ is given by

π∗(λ |Y1:m:n, ...,Ym:m:n) =
(b+T)a+m

Γ (a+m)
λ

a+m−1

×exp{−λ (b+T)} , (15)

for λ > 0, zero elsewhere. Under a squared error loss
function and using (15), then the Bayes estimator ofλ is

λ̂BS = E [λ |Y1:m:n, ...,Ym:m:n] =
a+m
b+T

. (16)

Hence, the Bayes estimatorĈLyBS of CL can be written as

ĈLyBS = 1− λ̂BSLy

= 1− (a+m)Ly

T ∗ , (17)

where

T ∗ = b+
m

∑
i=1

(Ri +1)yi = b+T. (18)

Next, given the observed values(Y1:m:n, ...,Ym:m:n) and Eq.
(15), then we shall show that 2λ T ∗ ∼ χ2

2(m+a). The
derivation of processes is as follows:

Suppose thatZ = 2λ T ∗, by using the change of
variables see Casella and Berger [28], pp. 184–185, then
we obtain that the PDF ofZ is given by

fZ(z) = π∗
(

Z
2T ∗ |Y1:m:n, ...,Ym:m:n

)

‖Jz‖ ,

=
(2T ∗)−1 Zm+a

Γ (a+m)2m+a (
Z

2T ∗ )
−1exp

{

−Z
2

}

,

=
Z

(

2(m+a)
2

)

−1

2

(

2(m+a)
2

)

Γ
(

2(m+a)
2

)

exp

{

−Z
2

}

. (19)

Hence,Z = 2λ T ∗ ∼ χ2
2(m+a).

6 Testing procedure forCLy

To determine whether the lifetime of products meets the
requirements, a credible (or confidence) interval is needed
to objectively assess whether the lifetime performance
index adheres to the required level. Assuming that the
required index value of lifetime performanceCLy is larger
thanc∗, wherec∗ denotes the lower bound ofCLy, the null
hypothesisH0 : CLy ≤ c∗ (the product is unreliable) and
the alternative hypothesisH1 : CLy > c∗ (the product is
reliable) are constructed.

In Bayesian approach, given the specified significance
level α, a 100(1− α)% one-sided credible interval for
CLy can be derived as follows:
Based on the pivotal quantity 2λ T ∗ ∼ χ2

2(m+a) and the

lower (1−α) percentile denoted byχ2
2(m+a)(1−α), we

obtain:

P
(

2λ T ∗ ≤ χ2
2(m+a)(1−α)|y

¯

)

= 1−α

⇒ P

(

λ ≤
(

χ2
2(m+a)(1−α)

2T ∗

)

|y
¯

)

= 1−α,

⇒ P

(

1−λ Ly ≥ 1−Ly

(

χ2
2(m+a)(1−α)

2T ∗

)

|y
¯

)

= 1−α,

⇒ P

(

CLy ≥ 1−Ly

(

χ2
2(m+a)(1−α)

2T ∗

)

|y
¯

)

= 1−α,

⇒ P

(

CLy ≥ 1+

(

−1+1− (a+m)Ly

T ∗

)

×
(

χ2
2(m+a)(1−α)

2(a+m)

))

= 1−α,

⇒ P

(

CLy ≥ 1−
(

1− ĈLyBS
)

(

χ2
2(m+a)(1−α)

2(a+m)

))

= 1−α,


































































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










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







































































(20)
whereĈLyBS and T ∗ are defined in (17) and (18). From
(20), we obtain that a 100(1− α)% one-sided credible
interval forCLy is

CLy ≥ 1−
(

1− ĈLyBS
)

(

χ2
2(m+a)(1−α)

2(a+m)

)

. (21)

Thus, the level 100(1−α)% lower credible bound forCLy
can be written as

LB = 1−
(

1− ĈLyBS
)

(

χ2
2(m+a)(1−α)

2(a+m)

)

. (22)

Similarly, in the non-Bayesian approach, by using the
pivotal quantity 2λ T ∼ χ2

(2m), whereT = ∑m
i=1(Ri +1)yi,
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we obtain that a 100(1 − α)% one-sided confidence
interval forCLy is

CLy ≥ 1−
(

1− ĈLyML

)

(

χ2
2m(1−α)

2m

)

, (23)

whereĈLyML is as in the above definition of Eq. (12), hence
the level 100(1−α)% lower confidence bound forCLy can
be written as

LBML = 1−
(

1− ĈLyML

)

(

χ2
2m(1−α)

2m

)

. (24)

The proposed testing procedure aboutCLy in Bayesian
approach can be organized as follows:

Step 1.Let the transformation ofY = 1
λ exp

(

x−λ
β

)

, for

−∞ < x < ∞, λ > 0, β > 0, i = 1,2, ...,m and the
progressive type-II censored sample
X1:m:n,X2:m:n, ...,Xm:m:n.

Step 2.Determine the lower lifetime limitLy for products
and performance index valuec∗, then the testing null
hypothesisH0 : CLy ≤ c∗ and the alternative hypothesis
H1 : CLy > c∗ is constructed.

Step 3.Specify a significance levelα.
Step 4.Calculate the level 100(1−α)% one-sided credible

interval[LB,∞) for CLy, whereLB is given in the above
Eq. (22).

Step 5.The decision rule of statistical test is provided as
follows:

If the performance index valuec∗ /∈ [LB,∞), it is
concluded that the lifetime performance index of the
product meets the required level.
In the non-Bayesian approach, the managers can also
employ the level 100(1 − α)% one-sided confidence
interval [LBML,∞) to determine whether the product
performance adheres to the required level, withLBML as
in the definition of Eq. (24). Therefore, the decision rule
of the statistical test is provided as follows:
If the performance index valuec∗ /∈ [LBML,∞), it is
concluded that the lifetime performance index of the
product meets the required level.

Based on the proposed testing procedure, the lifetime
performance of products is easy to assess. Numerical
example of the proposed testing procedure given in
Section 7, and these numerical example illustrate the use
of the testing procedure.

7 Numerical Example

A new hypothesis testing procedure is proposed to allow
the application of the above testing procedure to a
practical data set. Example 1 considered is the failure data
of n = 19, m = 9 electrical insulating fluids from Nelson
[29]. Also used by Al-Aboud [30].
Example 1 (Real Life Data). Nelson [[29], p. 105]

presents the results of a life-test experiment in which
specimens of a type of electrical insulating fluid were
subject to a constant voltage stress ( 34 KV/minutes). In
analyzing the complete data, Nelson assumed a Weibull
distribution for the times to breakdown. The 19 log-times
to breakdown are

−1.66073, −0.248461, −0.040822, 0.270027,
1.02245, 1.15057, 1.42311, 1.54116,
1.57898, 1.8718, 1.9947, 2.08069,
2.11263, 2.48989, 3.45789, 3.48186,
3.52371, 3.60305, 4.28895

In the numerical example, a progressively type-II
censored sample of sizem = 9 is generated randomly
from the n = 19 observations recorded at 34 k.v. The
observed failure times and the progressive censoring
scheme are given inTable 2.

By using the graphical method introduced by
Balakrishnan and Kateri [31], we obtained the estimation
of the parameters as̃λ = 2.2866 andβ̃ = 1.021. Then the
transformed progressive type-II censored sample with

transformation Yi = 1
λ exp

(

Xi−λ
β

)

, for λ = 2.2866,

β = 1.021, i = 1,2, ...,9 and X1:9:19,X2:9:19, ...,X9:9:19 is
given inTable 3.

In the Bayesian approach, we assumed thata = 1 and
b = 1. Under the transformed progressive type-II censored
sample and removed numbers are also reported inTable 3,
the proposed testing procedure forCLy can be stated as the
following algorithm

Step 1.The lower lifetime limitLy is assumed to be 0.021.
To deal with the product purchasers’ concerns
regarding operational performance, the conforming
rate Pr of products is required to exceed 80%.
Referring to Table 1, theCLy value is required to
exceed 0.80. Thus, the performance index value is set
at c∗ = 0.80. The testing hypothesisH0 : CLy ≤ 0.80
vs.H1 : CLy > 0.80 is constructed.

Step 2.Specify a significance levelα = 0.05.
Step 3.Calculate the 95% one-sided credible interval

[LB,∞) for CLy by (22), where

LB = 1− (1−0.9575)

(

χ2
2(9+1)(1−0.05)

2(9+1)

)

= 0.9332.

Step 4.Because of the performance index value
c∗ = 0.80 /∈ [0.9332,∞), we reject the null hypothesis
H0 : CLy ≤ 0.80.

In the non-Bayesian approach, we also obtain that the
95% one-sided confidence interval[LBML,∞) for CLy by
(24)

LBML = 1− (1−0.9520)

(

χ2
2(9)(1−0.05)

2×9

)

= 0.9230.
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Because of the performance index valuec∗ = 0.80 /∈
[0.9230,∞), we reject the null hypothesisH0 : CLy ≤ 0.80.
Hence, we can conclude that the lifetime performance
index of insulating fluids does meet the required level for
Bayesian and non-Bayesian approach.

Table 2: The observed failure times and
progressive censoring scheme at 34 k.v.

i 1 2 3
xi -1.66073 -0.248461 -0.040822
Ri 0 0 0
i 4 5 6
xi 0.270027 1.02245 1.15057
Ri 0 1 1
i 7 8 9
xi 1.54116 1.57898 1.8718
Ri 1 1 6

Table 3: The transformed progressive type-II
censored sample.

i 1 2 3 4 5
yi 0.01 0.04 0.0491 0.0665 0.139
Ri 0 0 0 0 1
i 6 7 8 9
yi 0.1576 0.231 0.2397 0.3194
Ri 1 1 1 6

8 Simulation Study

In order to compare the MLEs and Bayes estimates of the
lifetime performance indexCLy, Monte Carlo simulations
were performed utilizing 1000 progressively type-II
censored samples for each simulations. The mean square
error (MSE) is used to compare the estimators. The
samples were generated by using the algorithm described
in Balakrishnan and Sandhu [20] using
(λ ,β ) = (2.511,1.3045), with different sample of sizes
(n), different effective sample of sizes (m), different
hyperparameters(a,b), and different of sampling
schemes (i.e., differentRi values) we consider the
following scheme (CS):

CS I:R1 = n−m, Ri = 0 for i 6= 1.
CS II:R(m+1)/2 = n−m, Ri = 0 for i 6= (m+1)/2 if m odd;

Rm/2 = n−m, Ri = 0 for i 6= m/2 if m even.
CS III:Rm = n−m, Ri = 0 for i 6= m.

Under X has EVD and the data transformation
Y = 1

λ exp
(

x−λ
β

)

, for −∞ < x < ∞, λ > 0, β > 0 and

i = 1,2, ...,m, such that distribution ofY is a exponential
distribution. Based on the lower lifetime limit
Ly = 0.0195, the results of MSEs of the MLEs and Bayes
estimates forCLy, and coverage probabilities (CPs) of the
95% credible interval (CRI) and confidence interval (CI)
for CLy are reported inTable 4, 5, 6 and7.

Table 4: MSEs of the MLEs and Bayes
estimates witha = b = 1 forCLy

n m CS MLE Bayes
a = b = 1

20 15 I 0.000219 0.000118
II 0.000227 0.000119
III 0.000231 0.000123

30 20 I 0.000155 0.000099
II 0.000159 0.000103
III 0.000162 0.000112

30 25 I 0.000109 0.000087
II 0.000112 0.000096
III 0.000118 0.000104

50 30 I 0.000097 0.000070
II 0.000103 0.000085
III 0.000107 0.000092

50 40 I 0.000073 0.000051
II 0.000092 0.000063
III 0.000101 0.000087

70 50 I 0.000050 0.000041
II 0.000055 0.000045
III 0.000060 0.000052

90 60 I 0.000039 0.000034
II 0.000047 0.000040
III 0.000056 0.000049

90 70 I 0.000036 0.000032
II 0.000038 0.000035
III 0.000043 0.000039

Table 5: MSEs of the MLEs and Bayes
estimates witha = b = 2 forCLy

n m CS MLE Bayes
a = b = 2

20 15 I 0.000221 0.000108
II 0.000226 0.000115
III 0.000230 0.000120

30 20 I 0.000157 0.000088
II 0.000159 0.000091
III 0.000161 0.000107

30 25 I 0.000110 0.000075
II 0.000113 0.000083
III 0.000116 0.000102

50 30 I 0.000094 0.000062
II 0.000104 0.000081
III 0.000109 0.000091

50 40 I 0.000067 0.000050
II 0.000095 0.000058
III 0.000100 0.000079

70 50 I 0.000053 0.000040
II 0.000056 0.000043
III 0.000061 0.000049

90 60 I 0.000038 0.000034
II 0.000044 0.000038
III 0.000057 0.000045

90 70 I 0.000035 0.000031
II 0.000037 0.000033
III 0.000044 0.000036
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Table 6: CPs of 95% CI and CRI
with a = b = 1 forCLy.

n m SC MLE Bayes
20 15 I 0.957 0.958

II 0.958 0.961
III 0.951 0.953

30 20 I 0.941 0.963
II 0.952 0.967
III 0.960 0.964

30 25 I 0.947 0.952
II 0.961 0.963
III 0.948 0.957

50 30 I 0.955 0.959
II 0.944 0.962
III 0.948 0.957

50 40 I 0.957 0.947
II 0.953 0.955
III 0.958 0.948

70 50 I 0.955 0.940
II 0.966 0.967
III 0.948 0.951

90 60 I 0.952 0.949
II 0.944 0.966
III 0.965 0.967

90 70 I 0.956 0.958
II 0.946 0.956
III 0.947 0.953

Table 6: CPs of 95% CI and CRI
with a = b = 2 forCLy.

n m SC MLE Bayes
20 15 I 0.958 0.959

II 0.946 0.966
III 0.959 0.960

30 20 I 0.955 0.962
II 0.968 0.971
III 0.949 0.959

30 25 I 0.959 0.969
II 0.950 0.952
III 0.951 0.954

50 30 I 0.946 0.966
II 0.947 0.954
III 0.950 0.959

50 40 I 0.954 0.957
II 0.947 0.961
III 0.948 0.953

70 50 I 0.943 0.958
II 0.956 0.971
III 0.951 0.957

90 60 I 0.952 0.963
II 0.954 0.975
III 0.958 0.959

90 70 I 0.940 0.967
II 0.954 0.956
III 0.951 0.948

9 Conclusions

This paper purposes to utilize the lifetime performance
index CLy in assessing the lifetime performance of
businesses and products more generally and accurately.
Under the assumption of the extreme value distribution,
this paper constructs a MLEs and Bayes estimator ofCLy
with the progressively type-II censored sample. The
MLEs and Bayes estimator ofCLy is then utilized to
develop the new hypothesis testing procedure in the
condition of knownLy. The proposed testing procedure is
easily applied and can effectively evaluate whether the
lifetime of products meets requirements. A simulation
study was conducted to examine the performance of the
different estimators. From the results, we observe the
following:

(i)From Table 4, when the effective sample proportion
m/n increases, the MSE of different MLEs and Bayes
estimators are reduced, also the censoring scheme
R = (n−m,0, ...,0) is most efficient for all choices, it
usually provides the smallest MSE for all estimators.

(ii)From Table 4, the Bayes estimates are generally
smaller than their corresponding MLEs, for the
considered differentn, m (n > m), censoring scheme
R = (R1,R2, ...,Rm) and hyperparametersa, b. So, the
Bayes estimates are better than their corresponding
MLEs for the considered cases. Hence, these results
from simulation studies illustrate that the performance
of our proposed Bayesian method is acceptable.

(iii)From Table 5, it is observed that the coverage
probabilities of one-sided credible interval and
one-sided confidence interval for lifetime
performance indexCLy close to the desired level of
0.95.
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