
Appl. Math. Inf. Sci.9, No. 2L, 599-607 (2015) 599

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L35

A Paravirtualized File System for Accelerating File I/O
Kihong Lee, Dongwoo Lee, Dong Hyun Kang and Young Ik Eom∗

College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Received: 19 Jun. 2014, Revised: 23 Aug. 2014, Accepted: 24 Aug. 2014
Published online: 1 Apr. 2015

Abstract: Recently, virtualization technologies have gained widespread use in various systems since several new technologies assist
virtual machines (VMs) in achieving high performance. However, I/O-intensive workloads still suffer from performance degradation
due to CPU mode switching and duplicated I/O stacks in both the guest and host operating systems. In this paper, we proposea
framework for improving file I/O performance in a virtualized environment, which consists of a paravirtualized file system, a shared
queue, and an I/O-dedicated thread. The key ideas are to handle file I/O requests without the interference of the hypervisor and to
have I/O requests bypass the guest I/O stack. To verify the performance improvement of our approach, we implemented a prototype and
measured the performance. Experimental results demonstrate that our framework outperforms virtio, the predominant I/O virtualization
framework, by providing 1.2–1.6x better throughput and that it eliminates mostvmexits during I/O process.

Keywords: I/O virtualization, paravirtualization, hypervisor, filesystem, I/O stack

1 Introduction

As a result of the development of high-performance
virtual machine (VM) technologies, virtualization is now
being widely used in both desktop and server systems.
The methods to support virtualization can be categorized
into hardware-based and software-based approaches. A
hardware-based approach supports virtualization by
adding special features to the CPU, memory, I/O devices,
or other hardware components. With this, a VM can
directly access physical devices or the device itself can
recognize whether the tasks are being performed in a VM
or not. On the other hand, a software-based approach can
support virtualization without any special hardware
features, but it sometimes needs a change in the guest
kernel to improve performance or to assist with special
virtualization functionality. Nowadays, while the
hardware-based approach is dominant in processor and
memory virtualization, both hardware- and
software-based approaches are being actively studied for
I/O device virtualization.

SR-IOV [1] and IOMMU [2] are well-known
techniques for hardware-based I/O virtualization. By
providing the direct access interface to the VM, these
techniques provide high performance close to that of
non-virtualized systems. However, there are only a few
products that have adopted the techniques because they
increase the cost of the product. Additionally, cloud

service centers are unwilling to adopt the hardware-based
I/O virtualization technology because it may weaken key
characteristics of virtualization, such as portability,
flexibility, and security since it allows each VM to control
the physical devices directly. In contrast, a software-based
approach makes it easy to encapsulate VMs (e.g., for live
migration or VM snapshot creation) and therefore it can
more easily facilitate virtualization. Software featurescan
also enable a VM to utilize virtual devices with no
physical counterpart (e.g., a image file can be used as a
block device). On account of these advantages,
software-based techniques are currently preferred for I/O
device virtualization such as virtio [3] and split driver
model implemented in Xen [4]. Unfortunately, a
software-based approach provides relatively worse
performance than hardware-based one because the entire
virtualization mechanism should be done only with
software.

In this paper, we concentrate on two major causes of
performance degradation in software-based I/O
virtualization. First, the hypervisor should interfere with
the guest I/O process because a VM has no privilege to
access physical I/O devices. Thus, whenever a VM
executes an I/O operation, the CPU core running the VM
should switch its mode to host mode, i.e.vmexit, to
handle it. Second, there exist duplicated I/O stacks during
the process of I/O requests. In a hosted virtual machine

∗ Corresponding author e-mail:yieom@skku.edu

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L35

600 K. Lee et. al.: A Paravirtualized File System...

environment, a host and a guest have their own OS, each
of which contains the I/O stack. Some previous studies
pointed out the problem [5,6], and some parts of the
duplicated I/O stack are redundant and therefore can be
skipped.

In order to resolve these problems, we propose a new
framework for a virtualized environment that remarkably
improves file I/O performance. It consists of three
components: a paravirtualized file system, a shared queue,
and an I/O-dedicated thread. With the paravirtualized file
system, I/O requests are sent to the host directly rather
than to the block layer of the guest OS, and so we can
avoid the execution of a redundant I/O stack on the guest
side. The I/O-dedicated thread and the shared queue help
VMs reducing the number ofvmexits by utilizing a
polling mechanism.

To give details of our framework, this paper is
organized as follows. In Section 2, we give an overview
of related work. Section 3 describes our framework and
its components in detail. The experimental results of our
prototype are presented in Section 4, and Section 5
discusses some issues related to our approach, including
compatibility and safety, and also introduces alternatives
for the limitations of our framework. Finally, we conclude
this paper in Section 6.

2 Related Work

One of the predominant device driver frameworks for
virtualization is virtio [3], which has been included in the
mainline of the Linux kernel since version 2.6.24. Virtio
utilizes a shared queue called virtqueue so the guest
device driver sends I/O requests to the queue rather than
directly executes the I/O operation. Since full emulation
of I/O devices is complicated and inefficient, virtio
relatively achieves better performance than typical device
emulation. When numerous requests are generated
simultaneously, virtio is able to coalesce the requests to
reduce the number ofvmexits. To handle the requests on
the host side, however,vmexitshould be triggered and it
causes significant overheads. In particular, the faster a
device operates, the morevmexits are generated in given
time. This implies that virtio cannot controlvmexits well,
whereas our proposed approach remarkably reduces the
number ofvmexits by using a paravirtualized file system
and a polling mechanism.

Some previous studies have suggested that VM
performance can be improved through the structures
using dedicated CPU cores. SplitX [7] is a new
virtualization model in which the hypervisor runs on the
dedicated CPU core. The suggested model can reduce the
direct and indirect costs associated withvmexits. On the
contrary, our approach uses an I/O-dedicated thread to
handle block I/O requests. VPE [8] and ELVIS [9] are
systems using dedicated cores to efficiently handle I/O
requests. Their studies demonstrated that using dedicated
cores for I/O is an effective way to reducevmexits in a

virtualized environment. These two studies aimed to
improve the performance of general I/O devices and
modified the device driver to add virtualization
awareness. On the other hand, we only focus on the block
I/O and file system layers. In file I/O process, our
approach not only effectively reducesvmexits but also
bypasses the redundant block I/O stack on the guest side,
so we can achieve better performance enhancement in file
I/O than them.

There is some research on adding virtualization
awareness to the components of file system layer. VirtFS
[10] was proposed as a virtualization-aware file system. It
uses a client-server model similar to that of network file
systems and utilizes virtio framework. Both VirtFS and
our approach follow the same concept of optimizing I/O
procedures by utilizing virtualization awareness at the file
system level, but we further take into account the
overhead caused byvmexits. Multilanes [11] is a storage
system for OS-level virtualization on many-core systems.
It has a similar mechanism as ours with respect to directly
delivering guest block I/O requests to the host. However,
Multilines focuses on the contention of shared data
structures between multiple guest systems, and eliminates
performance interference by partitioning the VFS and the
I/O device driver.

3 Architecture Design

In this section, we explain the structure and mechanism of
the proposed framework. Frequently generatedvmexits
and duplicated I/O stacks are major causes of
performance degradation in virtualized environments.
Since the overheads generated byvmexit makes up a
significant portion, minimizing the occurrence ofvmexits
is one of the best ways to improve the system
performance [12]. Accordingly, we suggest a
paravirtualized I/O framework that enables a VM to
interact with the hypervisor withoutvmexits. Another
virtue of the design is the elimination of the redundant
guest I/O stack. In a hosted virtual machine environment,
there exist multiple I/O stacks. One is for the host OS and
the others are for the VMs. Therefore, a request will pass
through two block I/O stacks but some procedures within
the I/O stack do not need to be performed twice. Our
proposed framework consists of a paravirtualized file
system, a shared queue, and an I/O-dedicated thread. The
overall system structure is illustrated in Figure1.

3.1 Paravirtualized File System

Paravirtualized file system is aware of virtualization so it
can behave differently from typical file systems. The main
role of the paravirtualized file system is to bypass the
redundant guest I/O stack. When an application requests
file I/O, the paravirtualized file system passes the I/O

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 599-607 (2015) /www.naturalspublishing.com/Journals.asp 601

Fig. 1: The structure of a proposed I/O framework

requests to the host instead of to the block layer of guest
kernel. After the requests are processed in the host, the
file system takes the outcome of the request from shared
queue, and acts the same as if it was handled in the block
layer of the guest.

A file system is the first step in handling file I/O
requested by user applications. If I/O requests are passed
to the host at this point, the rest of the guest I/O stack,
e.g., I/O scheduler and device driver, can be bypassed.
Compared to the I/O process in a non-virtualized system,
duplicated I/O stacks are one major cause of performance
degradation. In particular, when a VM utilizes image files
as block devices, merging and sorting operations of an I/O
scheduler may have negative effects on the I/O process in
the host. This is because consecutive disk blocks from a
viewpoint of the guest are no longer consecutive in the
host, and it depends on the file system type of both the
host and the guest as well as the format of the disk image
file. Consequently, eliminating a redundant I/O stack of
the VM can improve file I/O performance.

Bypassing guest I/O stack also enables the VM to
avoid caching files. In a hosted virtualization
environment, files are cached in memory of both the guest
and the host whenever the files are accessed in a VM, and
it incurs waste of memory. Moreover, it becomes serious
when multiple VMs access a single file concurrently.
Each guest OS caches the file separately and the host OS
regards each instance of the file as a different one. As a
result, one file may be loaded into memory twice the
number of VMs. The main reason of this situation is the
lack of information sharing between the host and the
guest. There are several studies on reducing data
duplication in page cache and they propose to provide the
host with additional information on the pages accessed by

the VM in order to reduce the duplication [13,14]. Our
paravirtualized file system also can deliver semantic
information on the file system layer to the host OS to
reduce page duplication, as well as it can avoid file
caching in VMs.

3.2 Shared Queue Between Host and Guest

The shared queue is used to support interaction between
the guest and the host. Originally an I/O operation
triggers avmexitbecause it attempts to access a physical
block device but the VM has no privilege for the access.
When the shared queue is used, however, I/O operations
are substituted with memory operations which can be
executed in the VM directly. In this context, the memory
address should be appropriately translated among the
guest virtual addresses, the guest physical addresses, and
the host virtual addresses.

After block I/O requests are enqueued from the
paravirtualized file system, the I/O-dedicated thread
handles them and updates the completion status in the
queue toTRUE. Finally, the file system dequeues the
requests havingTRUE of completion status and continues
the remaining I/O process. To carefully manage I/O
requests generated by several VMs, each VM has its own
shared queue. With this, the I/O-dedicated thread can
select the queue of the VM to be handled preferentially.
In order to share the queue, both the VM emulator and the
virtual machine should know the memory address of the
queue. In a typical hosted virtualization environment, it is
not difficult to share memory addresses because the
emulator and its virtual machine have the same address
space.

3.3 I/O-dedicated Thread

Our framework makes the guest OS delegate the block
I/O process to the I/O-dedicated thread, and through the
shared queue I/O requests are sent to the host without
triggering a vmexit. However, there remains one more
problem: notifying the host of arriving the new requests in
the queue. virtio also utilizes the shared queue called
virtqueue so it can deliver the request to the host without
avmexittoo. To notify, however, virtio intentionally raises
a vmexit[3]. To avoid this we introduce an I/O-dedicated
thread which monitors the queue to determine whether
new requests have arrived or not. The thread utilizes a
polling mechanism to check the queue as fast as possible.
Although the polling thread negatively affect CPU usage,
it can improve I/O performance when I/O-intensive
workloads are running on the system. In addition, block
I/O operations are asynchronous, and so one
I/O-dedicated thread can simultaneously handle several
I/O requests from many VMs.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

602 K. Lee et. al.: A Paravirtualized File System...

(a) full emulation

(b) virtio (c) proposed structure

Fig. 2: Comparison of file I/O workflows in a virtualized environment

3.4 File I/O Workflow

In a virtualized environment, the rudimentary mechanism
of virtualizing an I/O device is the device emulation in
which the emulator provides a virtual device to the VM
and emulates them with software. This is also called full
emulation and its workflow is illustrated in Figure2a.
When a guest user application invokes a system call for
file I/O, the file system receives and processes the request.
The file system translates the file offset of the request into
a corresponding block number and generates block I/O
requests. Next, the requests are sorted and merged by the
I/O scheduler and are sent to the device. At this point, the
device driver attempts to execute I/O instructions, but a
VM has no privilege to directly access physical devices.
Thus, the CPU running as a vcpu immediately switches
its mode to the host mode (i.e.,vmexit) and the emulator
handles the exceptional situation. The emulator typically
runs in a host user mode, thereby the rest of the process is
almost equal to that in the previous steps. The only
difference is that the host has the privilege to control
physical devices so I/O instructions can be executed
directly. Namely, vmexit occurs whenever an I/O
operation is executed, and several previous studies [12,
15] have already pointed out the performance degradation
problem due to the overhead of executing I/O instructions
in a VM environment.

Figure 2b presents the block I/O workflow of the
system using virtio. The notable difference with full
emulation is the delivery process of I/O requests between
the guest and the host. Virtio utilizes virtqueue that is
shared between the guest and the host. The virtio driver
enqueues I/O requests to the shared queue and then raises
vmexit through the kick operation. After that, the
emulator handles the requests in the queue. In the case

where numerous I/O requests are generated by
I/O-intensive tasks, virtio can reduce the occurrence of
vmexits, by accumulating several requests in the queue
and handling them together with a single kick operation.

In comparison, the I/O workflow of our proposed
scheme can be described as seen in Figure2c. It also
utilizes a shared queue to support the interaction between
the guest and the host, in a manner similar to virtio, but
the actor is a file system. The paravirtualized file system
is aware of virtualization and so sends requests to the
shared queue instead of the block layer of the guest
kernel. In addition, the I/O-dedicated thread actively
checks whether new requests are put in the queue or not.
Through these mechanisms, the proposed structure can
bypass the guest block layer and can avoid triggering
vmexits.

4 Evaluation

In this section, we evaluate the proposed framework. To
verify the performance improvement of our approach, we
implemented a prototype and measured the file I/O
throughput and latency by using some benchmarks. We
also analyzed the overhead ofvmexits under our
framework and compared it with that of virtio.

4.1 Prototype Implementation

We used FUSE [16], a framework for file systems in
userspace, to handily manipulate file systems. We
implemented our scheme using fuse-ext2 [17] which is an
implementation of ext2 file system based on FUSE. The
overall mechanism of our modified fuse-ext2 is the same

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 599-607 (2015) /www.naturalspublishing.com/Journals.asp 603

0

5000

10000

15000

20000

128 512 1024 2048 4096 16384 32768

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

File size (kB)

Random Read

host virtio ours

0

20000

40000

60000

80000

128 512 1024 2048 4096 16384 32768

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

File size (kB)

Sequential Write

host virtio ours

0

20000

40000

60000

80000

128 512 1024 2048 4096 16384 32768

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

File size (kB)

Sequential Read

host virtio ours

0

5000

10000

15000

20000

128 512 1024 2048 4096 16384 32768
T

h
ro

u
g

h
p

u
t

(k
B

/s
)

File size (kB)

Backward Read

host virtio ours

Fig. 3: File I/O performance of IOzone benchmark

as that of the original fuse-ext2, except the modified one
sends I/O requests to the shared queue rather than to the
block layer of the guest kernel at the end of the internal
process. A file system implemented with FUSE, of
course, has partial differences with the kernel-level file
system, but it does not seem to be crucial just to verify the
performance improvement from our approach. We used
the Native Linux KVM tool [18] to emulate VMs, and
added the shared queue and the I/O-dedicated thread to it.
A non-blocking concurrent queue algorithm was applied
to the shared queue to ensure consistency and scalability
because the queue can be simultaneously accessed by the
I/O-dedicated thread and applications of the VM.

4.2 Experimental Setup

The test machine was equipped with an Intel i5 3570
processor (4 cores, 3.4 GHz) and 4 GB of RAM. A
Samsung 470 Series SSD was used for the experimental
disk, and all programs including the OS were installed on
other disks. We used KVM [19] as the hypervisor and
assigned one virtual CPU, i.e., vcpu, and 2 GB of memory
to the guest machine. The OSs of the host and the guest
were Ubuntu 12.04 with Linux kernel version 3.9.0.

For fair experiments, we created three 16 GB
partitions on the SSD. The first partition was used to test
the file I/O of the host system, and the second and third
partitions were respectively used for virtio and for our
framework in the VM. Each VM and host system use raw
partitioned disks. To avoid effects of page cache,
assignment the disk to VM and all file I/O operations in

the VM were executed with theO DIRECT option.
Meanwhile, the I/O-dedicated thread of our prototype
uses polling mechanism while running on an dedicated
CPU core in the host.

4.3 Throughput Analysis

We measured file I/O throughput in the native host (i.e.,
the non-virtualized system), in a guest using virtio, and in
a guest using our framework. To compare our framework
with the others, all file system environments were based
on fuse-ext2. The host and the guest with virtio used an
unmodified fuse-ext2, and the guest with our framework
used the modified one mentioned above.

We utilized IOzone [20] benchmark to evaluate file
read/write throughput of various patterns, such as
sequential read/write, random read/write, and backward
read. The benchmark read and wrote the files whose sizes
were from 128 KB to 32 MB, and the results are describes
in Figure3. Ours achieves better throughput than virtio in
all cases, and the throughput is almost the same as that of
the native host system within the margin of error. The
throughput of ours sometimes exceeds that of the native
system because the I/O-dedicated thread of our
framework handles I/O requests instead of the guest
kernel. It can provide our framework with the advantage
of high cache hit ratio and low context switching
overhead. In the case of sequential read/write, our
framework achieves 40%–60% better performance than
virtio. Due to the direct I/O, which makes the block I/O
bypass the page cache, the results of the write operations

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

604 K. Lee et. al.: A Paravirtualized File System...

0

200

400

600

800

Read Write

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Case 1: Small size and
many transactions

virtio ours

0

10000

20000

30000

40000

50000

Read Write

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Case 2: Large size and
few transactions

virtio ours

0

60

120

180

240

300

360

Case1 Case2

T
im

e
 (

s)

Execution time

virtio ours

Fig. 4: File I/O performance measured by PostMark

are similar to those of the read operations. In the case of
random read/write and backward read, our prototype
outperforms virtio by 20%–25%. Random write also
shows similar results to random read, so we omit those
results. In a typical block device, non-sequential I/O is
slower than sequential I/O, so random and backward I/O
are less affected by the overhead generated byvmexits. As
a result, the performance of non-sequential operations
shows less improvement in our prototype.

Figure 4 shows the results of random file I/O
measured via Postmark. In Case 1, the benchmark
randomly reads and writes files with sizes from 0.5 KB to
10 KB with 5,000 transactions. In Case 2, it performs the
measurement with larger file sizes, from 1 MB to 20 MB
with 500 transactions. Case 3 shows the execute time of
the experiments. In both cases, our prototype has better
performance than virtio. The execution time of ours
relative to that of virtio is shorter by 25% for Case 1 and
by 33% for Case 2. Postmark randomly accesses the files,
but it sequentially reads or writes the blocks within a
single file. in Case 2 where the file size is larger and the
number of files are smaller, therefore the access pattern is
more sequential than Case 1, and overall throughput of

Case 2 gets better. Thus, similar to the result of IOzone,
our prototype achieves higher performance improvements
when blocks are more sequentially accessed and when the
block device performs faster.

4.4 Latency Analysis

Latency is another important factor in I/O performance.
Our framework can reduce I/O processes by eliminating
the redundant I/O stack of the guest, and also shortens the
latency time of each I/O operation by using the polling
mechanism. To validate this, we measured file I/O latency
with IOzone benchmark and the results are presented in
Figure 5. The benchmark performs 4KB sequential
read/write to a 32 MB file and measures the latency of
each operation. In the case of virtio, the average read and
write latencies were 94.64µs and 91.31µs, respectively.
On the other hand, our prototype spent 63.05µs and
61.56µs on average for each read and write operation.
Therefore, the I/O response time of ours was
approximately 33% shorter than that of virtio.

There are some peak points far above the average value
in all graphs, and their frequency is much higher than that
of the non-virtualized system. These peaks are thought to
be caused by virtualization. The major cause of huge delay
is due to VM scheduling in the host, which can make the
VM lose its vcpu.

4.5 Occurrence of vmexits

One advantage of our approach is that file I/O does not
trigger vmexits. To verify this, we further analyzed the
pattern ofvmexitoccurrences in following cases:

(1) VM is in an idle state
(2) I/O-intensive workload is running with virtio
(3) The workload is running with our framework

+

+
9&3:+K: 9&*!+<=>+*"'!.0/+)!",@%!#+A/+<>-1.!+A!.0E)"%D+

"G3:Y+T;:U;+V,++

"G3:Y+T7:S7+V,++

"G3:Y+US:HK+V,++

"G3:Y+U7:KU+V,++

Fig. 5: File I/O latency measured by IOzone benchmark

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 599-607 (2015) /www.naturalspublishing.com/Journals.asp 605

13408

1818
4025

19086

12260

0

10000

20000

30000

40000

 idle virtio ours ours with

IRQ affinity

o
ve

rh
e

a
d

s
p

e
r

se
co

n
d

 (
�

s/
s)

I/O instruction

MSR write

NMI exception

External interrupt

Pending interrupt

EPT violation

Fig. 6: Detailed overheads caused byvmexits

(4) The workload is running with our framework and with
an IRQ affinity setting

We used perf tools [21] to count the discrete events of
vmexits, and Figure6 describes the results. In an idle
state, there were almost novmexits, and the overhead
caused byvmexits was only 0.0055%. In the case of
virtio, the overhead was of about 36 ms per second. In our
framework, on the other hand, most of the I/O
instructions, MSR writes, and NMI exceptions were
disappeared. However, relative to the idle state,vmexits
consumed about 13.9 ms, and the overhead was mainly
caused by external interrupts. This is due to hardware
interrupts; when a physical core running on the VM
receives hardware interrupts, it will switch to host mode
to handle them. In the case of our framework, I/O
requests are processed by the I/O-dedicated thread instead
of the vcpu, so the physical core stays in the guest mode
most of the time. To prevent the above problem, we set
IRQ affinity to deliver the interrupts of block I/O to the
I/O-dedicated thread. The interrupts from the block I/O
device are thereby delivered to the I/O-dedicated thread
instead of the VM, thus the amount ofvmexits can be
significantly reduced. As a result, the number of external
interrupts is reduced by 87%, and finally our framework
saves about 34 ms per second against virtio. The
remaining external interrupts are caused by the local
timer, rescheduling, etc. These interrupts can also be
removed with an IRQ affinity setting, but it is thought to
be inordinate configuration.

5 Discussion

As previously mentioned, our proposed framework
includes a paravirtualized file system, and this means that
the guest OS should be modified. Therefore our
framework cannot be applied to proprietary OSs which
restrict such modifications, e.g., Microsoft Windows.
However, Linux allows to build a new file system as a
module, so the paravirtualized file system can be utilized

without re-compiling the kernel. Additionally, if the file
system of our framework is implemented based on a
pre-existing file system, the two file systems can be fully
compatible with each other. For example, if the
paravirtualized file system is based on ext4, our
framework can utilize intact block devices formatted with
ext4. This is because the modification for
paravirtualization only alters the destination of the block
I/O requests, and it does not impact the intrinsic
mechanisms of the file system.

We should address the security issues of our approach
because it delegates a partial role of the guest to the host.
However, originally a VM could not directly execute I/O
operations, except in the case where SR-IOV devices are
used. In all other cases, block I/O requests from a VM
should be handled by the host. Our approach also
delegates the role of block I/O process to the host. With
the paravirtualized file system, only the point of delivery
of the I/O requests is put forward, and this would not
cause an additional tradeoff in safety or isolation.

Request coalescing is another consideration. Some
previous studies for improving I/O performance
suggested batching several I/O requests into one bundle
[3,5,8]. In the case of virtio, avmexitis triggered in order
to notify the host of newly arrived requests, and it incurs a
considerable delay. Coalescing can improve overall I/O
throughput, but it may increase the latency of each
request. The approach proposed in this paper, in contrast,
does not involve avmexitduring the I/O process so the
delay is minimized by sacrificing one core to poll the
shared queue. Thus, our approach can achieve the high
performance improvement close to that of non-virtualized
systems without coalescing I/O requests, and it also does
not sacrifice the file I/O latency.

In our proposed framework, the I/O-dedicated thread
uses the polling mechanism to monitor the shared queue.
With polling, we can avoid triggeringvmexits and reduce
I/O latency. However, it is not suitable for every situation
because the polling mechanism occupies one CPU core
all the time. In mobile devices or embedded systems,
there are restrictions on the number of cores, and polling
also causes excessive power consumption. Besides,
I/O-intensive tasks are not always running in VMs in
many cases. In these cases, one alternative would be an
event-driven mechanism. In this mechanism,
I/O-dedicated thread wakes up and processes I/O requests
only when receiving an event signals from the guest
rather than always polling the shared queue. This may
increase I/O latency against the polling mechanism but it
can efficiently utilize the CPU in case I/O requests are
generated infrequently. Therefore, dynamic switching
between polling and event-driven mechanism considering
the number of I/O requests and core utilization will help
our proposed framework overcome its limitations and
enhance adaptability in various situations.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

606 K. Lee et. al.: A Paravirtualized File System...

6 Conclusion

In a virtualized system, I/O-intensive workloads suffer
from performance degradation when compared with a
non-virtualized environment. First, access to physical I/O
devices leads tovmexits, and second, there are redundant
I/O stacks because of the nested OS. In this paper, we
proposed a new framework to improve file I/O
performance by eliminating the two causes mentioned
above. To deliver I/O requests without avmexit, we used a
shared queue and an I/O-dedicated thread. This thread
uses a polling mechanism to promptly handle requests
after they arrive in the shared queue. Our framework also
adopted a paravirtualized file system that bypasses the
redundant I/O stack of the guest when it receives I/O
requests, achieving a further enhancement in file I/O
performance. The polling mechanism makes the I/O
thread occupy one CPU core all the time, but this will
have little effect on the system because nowadays the
number of cores on a single CPU has been increasing
gradually. Therefore, our proposed approach can be
persuasive if it provides a reasonable performance
improvement. To verify this, we implemented a prototype
and evaluated our approach. The results show that our
proposed framework improves throughput by 20%–60%
and reduces latency by 33% against virtio on average.
Also, most of thevmexits were eliminated. Moreover, if
hardware itself achieves better performance, the
frequency of thevmexits will increase, and therefore our
approach would achieve an even greater performance
improvement.

Currently, we are investigating how to apply our
approach to ext4, a kernel-level file system. This would
help us to verify our approach more practically and
accurately. In the future, we plan to study how to
efficiently handle requests generated by numerous VMs.

Acknowledgement

This research was supported by the IT R&D program of
MKE/KEIT (10041244, SmartTV 2.0 Software Platform)
and Next-Generation Information Computing
Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (2010-0020730).

References

[1] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan,
High Performance Network Virtualization with SR-IOV,
Journal of Parallel and Distributed Computing72, 1471-
1480 (2012).

[2] AMD, I/O Virtualization Technology (IOMMU)
Specification, AMD Pub. (2009).

[3] R. Russell, Virtio: Towards a De-facto Standard for Virtual
I/O Devices, ACM SIGOPS Operating Systems Review42,
95-103 (2008).

[4] D. Chisnall, The Denitive Guide to the Xen Hypervisor,
Prentice Hall Open Source Software Development Series
(2008).

[5] A. Gordon, M. Ben-Yehuda, D. Filimonov, and M. Danhan,
VAMOS: Virtualization Aware Middleware, In Proceedings
of the 3rd Workshop on I/O Virtualization (2011).

[6] J. Liu, W. Huang, B. Abali, and D. K. Panda, High
Performance VMM-Bypass I/O in Virtual Machines, In
Proceedings of the 2006 USENIX Annual Technical
Conference, 29-42 (2006).

[7] A. Landau, M. Ben-Yehuda, and A. Gordon, SplitX: Split
Guest/Hypervisor Execution on Multi-core, In Proceedings
of the 3rd Workshop on I/O Virtualization (2011).

[8] J. Liu and B. Abali, Virtualization Polling Engine
(VPE): Using Dedicated CPU Cores to Accelerate I/O
Virtualization, In Proceedings of the 23rd International
Conference on Supercomputing, 225-234 (2009).

[9] N. HarEl, A. Gordon, A. Landau, M. Ben-Yehuda, A.
Traeger, and R. Ladelsky, Efficient and Scalable Paravirtual
I/O System, In Proceedings of the 2009 USENIX Annual
Technical Conference, 231-242 (2013).

[10] V. Jujjuri, E. Van Hensbergen, A. Liguori, and B. Pulavarty,
VirtFS – A Virtualization Aware File System Pass-through,
In Proceedings of the 2010 Linux Symposium, 109-120
(2010).

[11] J. Kang, B.Zhang, T.Wo, C. Hu, and J. Huai, MultiLanes:
Providing Virtualized Storage for OS-level Virtualization
on Many Cores, In Proceedings of the 12th USENIX
Conference on File and Storage Technologies, 317-329
(2014).

[12] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon, Software
Techniques for Avoiding Hardware Virtualization Exits,
In Proceedings of the 2012 USENIX Annual Technical
Conference, 373-385 (2012).

[13] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman,
Satori: Enlightened Page Sharing, In Proceedings of the
2009 USENIX Annual Technical Conference, 1-14 (2009).

[14] N. Amit, D. Tsafrir and A. Schuster, VSWAPPER:
A Memory Swapper for Virtualized Environments, In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 349-366 (2014).

[15] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A.
Landau, A. Schuster, and D. Tsafrir, ELI: Bare-metal
Performance for I/O Virtualization, ACM SIGARCH
Computer Architecture News40, 411-422 (2012).

[16] M. Szeredi, FUSE: Filesystem in Userspace,
http://fuse.sourceforge.net.

[17] fuse-ext2,http://alperakcan.net/projects/fuse-ext2.
[18] Native Linux KVM tool,

https://github.com/penberg/linux-kvm.
[19] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,

KVM: The Linux Virtual Machine Monitor, In Proceedings
of the 2007 Linux Symposium, 225-230 (2007).

[20] W. Norcott, IOzone Filesystem Benchmark,
http://www.iozone.org.

[21] A. Melo, The New Linux ’perf’ Tools, In Proceedings of the
17th International Linux System Technology Conference
(Linux Kongress), 21-24 (2010).

c© 2015 NSP
Natural Sciences Publishing Cor.

http://fuse.sourceforge.net.
http://alperakcan.net/projects/fuse-ext2.
https://github.com/penberg/linux-kvm.
http://www.iozone.org.

Appl. Math. Inf. Sci.9, No. 2L, 599-607 (2015) /www.naturalspublishing.com/Journals.asp 607

Kihong Lee received
the B.S. degree in Col-
lege of Information and
Communication Engineering
from Sungkyunkwan University
in 2013, and he is currently a
M.S. student at Sungkyunkwan
University. His research
interests include virtualization,
operating systems, and
embedded systems.

Dongwoo Lee received his
B.S. degree in the Department
of Computer Engineering
of Sungkyunkwan University,
Korea in 2010 and M.S.
degree in the Department
of Mobile Systems Engineering
from Sungkyunkwan University
in 2012. He is currently
a Ph.D. candidate in the
Department of IT Convergence

of Sungkyunkwan University. His current research
interests include virtualization, cloud computing, and
storage systems.

Dong Hyun Kang received
the B.S. degree in Computer
Engineering from Korea
Polytechnic University, Korea,
in 2007, and the M.S. degree
in College of Information
and Communication En-
gineering from Sungkyunkwan
University, Korea, in 2010. He
is currently a Ph.D. student at
Sungkyunkwan University. His
research interests include stor-

age systems, operating systems, and embedded systems.

Young Ik Eom received
his B.S., M.S., and Ph.D.
degrees from the Department of
Computer Science and Statistics
of Seoul National University in
Korea, in 1983, 1985, and 1991,
respectively. He was also a vis-
iting scholar in the Department
of Information and Computer
Science at the University
of California, Irvine from Sep.
2000 to Aug. 2001. Since 1993,

he is a professor at Sungkyunkwan University in Korea.
His research interests include system software, operating
system, virtualization, and system securities.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related Work
	Architecture Design
	Evaluation
	Discussion
	Conclusion

