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Abstract: In this paper some common fixed point results for two hybridspaf non-self mappings in the framework of partial metric
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1 Introduction Recently, there has been several studies on possible
] ) ] generalizations of the existing metric fixed point resudts t
The study of common fixed points for pair(s) of partial metric spaces. This paper forms a part of the
single-valued and multi-valued mappings, also calledstydies for metric fixed point results for two hybrid pairs
hybrid fixed point theory, is a landmark in the of weakly compatible non-self mappings of complete
development of fixed point theory as the existing metrically convex metric spaces. The purpose of this
literature of the theory contains numerous results for thepaper is to genera”ze a metric fixed point theorem due to

pair(s) of mappings. Assad and Kirle][initiated the  Khan and Imdad]1] to partial metric spaces.
study of fixed points for non-self mappings of metric

spaces, by proving a fixed point theorem for multi-valued
mappings of complete metrically convex metric spaces.
Their results have been extended by several researche
including Rhoades]]. Khan and Imdad11] established ] o o
some metric fixed point results for two hybrid pairs of The following definitions and preliminary results are
non-self mappings of complete metrically convex metric hecessary to establish the results.
spaces, which generalize partially or completely, in Definition 2.1.Let X be a non-empty set. Lat: X — 2X,
particular, fixed point results due to Rhoadglsgnd Ciric where X denotes the collection of all non-empty subsets
and Ume f]. of X, be a multi-valued mapping arfd X — X be a single-
Partial metric spaces are one of the generalizations ofalued mapping, then a poibte X is called a common
the notion of metric spaces such that the distance of dixed point of T andf if t = ft € Tt.

point from itself is not necessarily zer8][ Partial metric  pofinition 2.2 ([8]) Let X be non-empty set. A partial
spaces were first introduced and studied by Matthews, atric spac.e. is a paifX,p), where p is a function

while studying denotational semantics of computer 5.y y _, [0,0), called the partial metric, such that for
programming languages, showing that the essential toolg; , y.zeX: o '

of metric spaces like the Banach contraction principle can '~ '

be generalized to partial metric spacég]. Aydi, Abbas (P1x=y< p(x,y) = p(X,x) = p(y,y);

and Vetro P] introduced and studied the notion of partial (P2)p(x,X) < p(X,Y);

Hausdorff metric, and established the Nadler’s fixed poin{P3)p(x,y) = p(y,x); and

theorem §] in the setup of partial metric spaces. (P4p(x,y) + p(z,2) < p(x,2) + p(zy).

?SPreIiminaries
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Clearly, by (P1) - (P3)p(x,y) = 0 impliesx=y. But,
the converse is in general not true.

p(x,A) =inf{p(x,a):ac A},
0p(A,B) =sup{p(a,B) :ac A}

A classical example of partial metric spaces is the pairand J,(B,A) = sup{p(b,A) : b€ B}. Then the mapping

([0,00), p) wherep(x,y) = max{x,y} for all x,y € [0, ).

Hp is a partial metric, called theartial Hausdorff metri¢

For more examples of partial metric spaces, we refer theonCBP(X) induced by the partial metrig.

reader to, 8].
Each partial metrigp on X generates dg topologytp

Lemma 2.3([2]) Let (X, p) be a partial metric space. Let
A,B € CBP(X) andqg > 1. Then for anya € A, there exists

on X whose basis is the collection of all open p-balls i, ¢ B that depends oa such that

{Bp(x,€) : xe X, € > 0} where
Bp(x,€) ={y e X: p(xy) < p(x,x)+ £} forallxe X and
€ is areal number.

Let (X, p) be a partial metric spacg,any non-empty
subset of the se&X andx an element of the set. It is well
known [10] that x € B, whereB is the closure o8B, if and
only if p(x,B) = p(x,X). Also, the seB is said to be closed
in (X, p) ifand only if B=B.

Definition 2.3.([8])

(i) A sequence{x,} in a partial metric spacéX, p) is
said to converge to somecs X if and only if p(x,x) =
lIMn_ye P(X,Xn)-

(i) A sequence{xy} in a partial metric spacéX, p) is a
Cauchy sequence if and only if  liffh—e P(Xn, Xm)
exists and is finite.

(iii) A partial metric spacgX, p) is said to be complete
if every Cauchy sequenclx,} in X converges with
respect to the topology, to a pointx € X such that
P(X,X) = liMp mose0 P(Xn Xim)-

Lemma 2.1([8]) Let (X, p) be a partial metric space, then
the mapping
ps: X x X — [0,) given by

P°(X,Y) = 2p(X,y) — P(X,X) — P(Y;Y)

for all x,y € X defines a metric oX.
Lemma 2.2.([8])

(DA sequence{x,} in a partial metric spacéX, p) is a
Cauchy sequence {iX, p) if and only if it is a Cauchy
sequence in the metric space, p°).

(i)A partial metric spacéX, p) is complete if and only if
the metric spacéX, p°) is complete.

Let (X,d) be a metric space an@B(X) denotes the
collection of all non-empty bounded closed subsetX of
ForA,B € CB(X), define

H (A, B) = max{supd(a,B),supd(b,A)}
acA beB

whered(x,A) = inf{d(x,a) : ac A} is the distance from
a pointx € X to the setA € CB(X). It is well known ]
thatH is a metric, called the Pompeiu-Hausdorff metric,
on CB(X) induced by the metricd. The metric space
(CB(X),H) is complete whenevéiX, d) is complete.
Definition 2.4. ([2]) Let (X, p) be a partial metric space
and CBP(X) denotes the collection of all non-empty
bounded and closed subsetsxofFor A,B € CBP(X) and

x € X, defineHp(A,B) = max{Jp(A,B),5,(B,A)} where

p(a,b) < qHp(A,B).

Definition 2.5.([4]) Let (X,d) be a metric space arkibe
a non-empty subset of X. The mappings K — CB(X)
andf : K — X are said to be weakly compatible #nif,
for any sequencef«} and{yn} in K such thatfx, € K,
FxnNK # @, the following limits exist and satisfy:

(Nimsup,_,e D(fyn, F fXn)
< limsup,_e H(F fXn, FXn), and
(iNlimsup,_,ed(fyn, fXn) < limsup,_ H(F fXn, FXn),
wheneveryn} € Fx,NK and liny_e d(Yn, fXn) = 0.

Definition 2.6.([€]) Let (X,d) be a metric space. If for
eachx,y € X, x # y there existz € X, x # y # z, such that
d(x,z) +d(zy) =d(x,y), thenX is said to be a metrically
convex metric space.

Lemma 2.4([6]) Let (X,d) be a metrically convex metric
space anK a non-empty closed subset ¥ Then for
givenx € K, y € K, there existz € K, boundary ofK,
suchd(x,z) +d(z,y) =d(x,y).

Analogous to Definition 2.6. we have the following
definition.
Definition 2.7.([12]) Let (X, p) be a partial metric space

. If for eachx,y € X, X # y there existz € X, X#Yy # z
such thatp(x,z) + p(zy) = p(x,y) + p(z 2), then X is
said to be a metrically convex partial metric space.
Lemma 2.4. extends to partial metric spaces.
Lemma 2.5([17)) Let (X,p) be a metrically convex

partial metric space and a non-empty closed subset of

X. Then for givenx € K , y € K, there existz € K,

boundary oK, suchp(x,z) + p(z,y) = p(X,y) + p(z,2).
Definition 2.5. extends to partial metric spaces as

follows:

Definition 2.8. Let (X, p) be a partial metric space akd

be a non-empty subset of X. L& : K — CBP(X) and
f : K — X be mappings. If for any sequencés,} and
{¥n} in K such thatfx, € K, Fx, NK # &, the following
hold:

(i) limsup,_,e P(fyn,FfXn) <
limsup,_,e Hp(F fXn, FXn), and
(i) limsup,_,e P(fyn, TXn) <limsup, . Hp(F fXn, FXn),
whenevedyn} € FxnNK and limy e p(yn, fxn) = 0.

Then the mappings{F,f} are said to be weakly
compatible orK.

Khan and Imdad 11] established the following
common fixed point theorem.
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Theorem 2.1.Let (X,d) be a complete and metrically K such thatfx; € Fxg C K. Sety; = fx;. Letqbe any real
convex metric space arid be a nonempty closed subset Number such that

of X. Let the mappingsF,G : K — CB(X) and
g, f : K — X satisfy the following condition:

H(Fx,Gy) <hmax{ Zdi(x.0y). D1 FX.D(@yGy)

1

R Gy D@ @

forall x,y € X with x £y,
2

2 2h
where O< h < 3 a>1+ TR and
() K CgKN K, FKNK C fK, GKNK C gK,
(i) fxe dK=FxCK,gxedK = GxCK,
(i) {F,f} and {G,g}
are weakly compatible mappings, and
(iv) gandf are continuous on K.

Then there exists a poistin K such that
s=fs=gse FsNGs

g>1 and qh:t<§ (for instance}:g—h). 3)

Sincey; € FXp, by Lemma 2.3., there exists a pote
Gx; such that

P(y1,Y2) < qHp(FXo,Gx1).

We proceed as follows:

(1) yon € GXon—1, Yon+1 € FXon

(i) yon € K = yon = fxon Oryon ¢ K = fxon € 0K,
and p(gxen—1, Txan) + P(fXon,Yon) = P(O%n—1,Y2n) +
p(fX2n, fX2n)

(i) Yy € K = yna =
Yoni1 & K = gxong1 € 0K,

and P(fxon, O%nt1) +  P(@%ent1Yoni1) =

p( fX2mY2n+l) + p(gXZnJrla gX2n+l)

(V) p(Y2n-1,¥2n) < qHp(Gxen—1,FXon-_2)

gXon+1 or

In this paper Theorem 2.1. is generalized to partial (V) P(Y2n,Y2nt1) < qHp(FXan, GXen-1)

metric spaces.

3 Main Results

We denote

Po={fxo € {fxon}: fxo =yai},
Pr={fxo € {fxon} : TXoi #Yai},

Qo = {0%i+1 € {O¥ont1} : O%ir1 = Yois1},
Q1 ={0%i+1 € {O%nt1} : OXoit1 # Yoip1}-

We now present a generalization of Theorem 2.1. to partial

metric spaces.

Remark 3.1. (fxon,0%n+1) ¢ PL x Q1 and

Theorem 3.1.Let (X, p) be a metrically convex complete (gx,,_1, fxon) & Qq x Pi.

partial metric space. L&t be a non-empty closed subset of

X. Letthe mappingf,G: K — CBP(X) andg, f : K — X
satisfy the following condition:
H(Fx, Gy)

1
ShmaX{ ap(fx, ay), p(fx,Fx), p(gy; Gy),

1
S IP(X.CY+ play Py @

forall x,y € X with x £y,
2

2 2h
where O< h< 3 a>1+ n and
() K CgKNfK,FKNK C fK, GKNK C gK,
(i) fxe dK=FxCK,gxe dK = GxCK,
(i) {F,f} and {G,g}
are weakly compatible mappings, and
(iv) gandf are continuous on K.

Then there exists a poimstin K such thats=gs= fse
FsNnGs

Proof. We construct two sequencég,} and {y,} in K
as follows: Letyp € X be an arbitrary point idK. Since
Yo € dK anddK C gKn fK, we can find a poinkg € K
such thatfxg = yo € dK. By Theorem 3.1. (ii) we have
Fxo C K, and by Theorem 3.1. (i) we can find a poiate

We now consider three possible cases.
Case 1If (fxon,g%n+1) € Po x Qo, then:

p( fXon, gX2n+l) < qu(FXZna GXanl)
1
<tmax{ 2 i fan @ 1). P, P
P(9%n—1,GXn-1),

m [p( fxon, GXanl) + p(gXanla FXZn)]}

1
<tmax{ 2 it 92, P 9r-1),
p(gXanla fXZn)a
arh [P(g%en—1, FXon) + p(fX2n79X2n+1)]}

<tmax{p(fxan, @%n-1), P(fXon, O%11)}
<tp(fXon,O%n-1)

Similarly, if  (gxn-1,fXn) € Qo x Py, then
P(g%n-1, FXon) <tp(fXon—2,9%n-1).

Case 2f (fxan, @%nt1) € Pox Qy, then

P(fX2n, O%nt1) + P(9%en+1,Yont1) = P(FXon,Yoni1)

+ P(9%en+1,9%n+1), Which implies thap( fxzn, g%ens1) <

P(fXon,Yont1) = P(Yon,Yon+1)-

(© 2018 NSP
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By Remark 3.1. we have

P(fXon, 3%ont1) < P(Yon, Yont1) < qu(FXZm Gxon—1), and
hence from Case 1. we have

p( fXZr)a gx2n+1) <t p( fXon, gXanl)-
Also, if p(g%en-1, fx2n) € Q1 x Py, thenp(gxen—1, fXxon) <
tp(g%on—1, fXon—2).

Case 3.If (fx2n,g%n+1) € P1x Qo, thengxen_1 = yon-1
and

p(gXanla fXZn) + p(fXZnayZn)
= p(g%n—1,Y2n) + P(FXan, FXon).
If we assume thap( fxon, 9%n+1) < P(gXn—1,Y2n), then

P(fXon, O%ni1 < P(@%en-1, FXon2)). 4)

We suppose now thap(fxon, 9%oni1) > P(9%en-1,Yon).
Clearly from @) we have two possibilities:

1

P(fXon,g%n-1) < > P(9%n-1,Y2n) or
1

P(fXon,Yon) < 2 pP(9%en—1,Y2n)-

Proceeding as in Case 1. gives:
P(fX2n,9%n+1)

< Hp(Fx2n,Gxen-1)

1
<t maX{ ap(szn,Qin_l), P(fxon, FXon),

P(gzn-1,GXen-1), a—Jlrh [P(fX2n, GXon-1)
+p(g%en-1,FXen)]}

<t max{ a%lp( fXan,Yan-1), P(fXan, Yan+1),
P(9%n-1,Y2n),

1
arh [P(9%n-1,Y2n) + p(gXZn—17YZn+1)]}

Since
P(fXon, 3%n—1) < P(O%en—1,Y2n) < P(FXon, I¥ons1),
th%n:

ath [P(g%n-1,Y2n) + P(G%en-1,Y2n+1)]

= a—+h[p(9X2n—1,Y2n) + p(g%en—1, FX2n)
+ P(fXon, @%n+1)]

1
< ath [P(fX2n, 9%n+1) + P(fXon, @Xon+1)
+ p( fxon, gX2n+l)]

< P(fXon, O%n+1)-

and therefore we have( fXon, 9%on+1) < tp(fXon, 9%n—1)-
Now proceeding as earlier, we also obtain

P(@%n-1, fXon) <tP(g¥en-—1, fXon-2).

Thus, if we setfXon = 2o, 9%nt1 = Zont1, then,
P(zn,Zn+1) < tmax{p(zn-1,2), P(Zn-2,Z0-1)} forn> 2.

Using the approach dgiri¢ [3] it can be shown thafz,}

is a Cauchy sequence, and therefore converges to agoint
in K. It follows that{ys,} converges ts c K.

For eachy,, denote byY,, one of the subset§Gxn—1}
which containsy,, andy,,,1 denote byY,, .1 one of the
subset{Fxz,} which contains/an 1. Then

Hp(Yn, Ynt1) < hp(zan-1,2n),
Also,
Hp(Ya—1,Yat+1) < hmax{p(zn-2,Zn-1), P(Zn-1,2n) }.
Since{z,} is a Cauchy sequence so {i¥,}. Therefore,
{Yn} converges

toY, for someY in CBP(X), as(CBP(X),Hp) is a complete
partial metric space. So we have

p(s,Y) <p(s,z) forsome zeY
<p(s,Yn) + P(Yn:2) — P(Yn,Yn)
<P(S,Yn) +Hp(Yn,Y) — Hp(Yn, Yn)
<p(s,s) as n approaches .

Therefore,

p(s,Y)=p(s,s)=seY, since Y isclosed. (5)

By the construction of the sequence there exists at least
one subsequendé xan, } or {g%n, 1} Which is contained

in Py or Qp respectively. Consequently subsequence
{g%n1} which is contained inQq for eachk € N,
converges toz. Since gXoni1 = Yoni1, {ggX2nk+1} and
{Ggxn,-1} are well defined.

Set
Lj = p(9%n,+1,GP%n,—1)
and
Rj = Hp(GXon,—1,Gg%n,—1),
then

R < Hp(YanaYanJrl) + Hp(FXana GgXanfl)

< Hp(YanaYanJrl) + hmax{ p( fXana ggXanfl)a
P(fXon; FXon, ), P(99%n -1, GO%n, 1),
[p( fXan GgXan—l) + p(FXana ggXan—l)]}

<Hp(Yan,, Yon+1) + hmax{ p(yzn, , 99%n, 1),
p(Yana)’anJrl)a p(ggXanfla GXanfl)
+Hp(GxXen, -1, GP%n, 1),
[Hp(GXanfla GgXanfl) + p(FXana ggXanfl)]}

<Hp(Yan,, Yon+1) + hmax{ p(ggn, 1, GO%n, 1)
"'Hp(Gankfla GXan,l), p(y2nkay2nk+l)a
P(99%n,—1,GXn,—1)) + Rj, P(99%n,—1,Yon,+1)
+Rj} .
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Hence

. 2
R] < Hp(YZFIkaYanJrl) + § max{ p(ggXan—la GQXan—l)

+R] ) p(Yan 3 y2nk+l)7

p(gg)(an—la GXanfl) + Rja p(ggXan—la)’anJrl) + R]} .
(6)

Therefore,

SinceYy — Y, gxn+1 — Sand asg is continuous, then
the sequencgR;} is bounded and hencgsup R} is a

convergent sequence. Also, sinGand g are weakly

compatible mappings (see Definition 2.8.), and as

Pon+1 = Y+l € K, ynm+1 € GKN K and
limn—e P(9%n+1,Y2n,) = 0, we have

limsupL;j <limsupR;, @)

n—o00 n—oo

and

lim sup p(g@%n, +1,P%n 1) < limsupR;.  (8)

n—oo n—o0

We denote limsup,,, R; by R. Taking the upper limit in
(6) and using 7), (8) yields

2
R< 3 max{R,R,Hp(Y,Y),R}.

2_ .
So we haviR < §R, sinceH(Y,Y) <R ThereforeR=0.

Using @), we havep(gs s) = 0. This impliess = gs(see
Definition 2.2.) (P3).

In the similar way one can obtaiis = s.

We now consider,

P(Yan+1, GS) <Hp(FXan,, GS)
<hmax{ p(fxzn,.99), P(fXon,, FXen, ).
P(gs G9), [p(fXan,, Gs) + p(gs Fxn,)] }
Taking the limit asj — o and using ) gives,
p(s,Gs)

< 2max(p(s:9),P(s,3), (5G9, B(5 B3 + p(5 9},

So we havep(s,Gs) < %[p(s, Gs)+ p(s,9)], sincep(s,s) <
p(s,Gs).
Hence p(s,Gs) = 0= p(s,Gs) = p(s,s), and therefors €
Gs
We next consider:
p(Fs,s) < Hp(Fs,Gs)
< hmax{p(ss), p(s,Fs),p(s,s),
P(s;s)+p(s Fs)}

and hence,

p(s,Fs) =0= p(s,Fs) = p(s,s) = se Fs.

Therefores= fs=gse FsNGs as desired.

For f = g, Theorem 3.1. reduces to the following
result, a generalization of a fixed point theorem due to
Ciric and Ume §] to partial metric spaces.

Corollary 3.1. Let (X, p) be a metrically convex complete
partial metric space. L be a non-empty closed subset
of X. Let the mappingF,G: K — CBP(X) andf : K — X
satisfy the following condition:

H(Fx,Gy)

< hmax{ Zp(1x.fy). p(1x FX), p(1y.Gy)

1
S P(X.GY+ plIYFX) | ©

forall x,y € X with x £y,
2

2 2h
where 0< h < 3 a>1+ rn and
(i) oK C fK,FKNK C fK, GKNK C fK,
(i) fxedK=FxCK,fxedK = GxCK,
(i) {F,f} and {G,f}
are weakly compatible mappings, and
(iv) f are continuousonK.

Then there exists a poirin K such thas= fs€ FsNGs

ForF =Gandf =g= Ik, Theorem 3.1. reduces to the
following result, a generalization of a fixed point theorem
due to Rhoadedl] to partial metric spaces.

Corollary 3.2. Let (X, p) be a metrically convex complete
partial metric space. L& be a non-empty closed subset of
X. Let the mappingb : K — CBP(X) satisfy the following
condition:

H(Fx,Gy)

1
< hmax{ £ pOy). PO ), OLFY).

(10)

1
R IPOFY) + PP

forall x,y € X with x £y,
2

where 0< h < g,az 1+£,andxe0K:>Fxg K,
3 1+h

Then there exists a poistin K such thas € Fs.
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