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1 Introduction

The study of common fixed points for pair(s) of
single-valued and multi-valued mappings, also called
hybrid fixed point theory, is a landmark in the
development of fixed point theory as the existing
literature of the theory contains numerous results for the
pair(s) of mappings. Assad and Kirk [6] initiated the
study of fixed points for non-self mappings of metric
spaces, by proving a fixed point theorem for multi-valued
mappings of complete metrically convex metric spaces.
Their results have been extended by several researchers
including Rhoades [1]. Khan and Imdad [11] established
some metric fixed point results for two hybrid pairs of
non-self mappings of complete metrically convex metric
spaces, which generalize partially or completely, in
particular, fixed point results due to Rhoades [1] andĆirić
and Ume [4].

Partial metric spaces are one of the generalizations of
the notion of metric spaces such that the distance of a
point from itself is not necessarily zero [8]. Partial metric
spaces were first introduced and studied by Matthews
while studying denotational semantics of computer
programming languages, showing that the essential tools
of metric spaces like the Banach contraction principle can
be generalized to partial metric spaces [7,8]. Aydi, Abbas
and Vetro [2] introduced and studied the notion of partial
Hausdorff metric, and established the Nadler’s fixed point
theorem [9] in the setup of partial metric spaces.

Recently, there has been several studies on possible
generalizations of the existing metric fixed point results to
partial metric spaces. This paper forms a part of the
studies for metric fixed point results for two hybrid pairs
of weakly compatible non-self mappings of complete
metrically convex metric spaces. The purpose of this
paper is to generalize a metric fixed point theorem due to
Khan and Imdad [11] to partial metric spaces.

2 Preliminaries

The following definitions and preliminary results are
necessary to establish the results.

Definition 2.1.Let X be a non-empty set. LetT : X → 2X,
where 2X denotes the collection of all non-empty subsets
of X, be a multi-valued mapping andf : X →X be a single-
valued mapping, then a pointt ∈ X is called a common
fixed point ofT and f if t = f t ∈ Tt.

Definition 2.2. ([8]) Let X be non-empty set. A partial
metric space is a pair(X, p), where p is a function
p : X×X → [0,∞), called the partial metric, such that for
all x,y,z∈ X:

(P1)x= y⇔ p(x,y) = p(x,x) = p(y,y);
(P2)p(x,x)≤ p(x,y);
(P3)p(x,y) = p(y,x); and
(P4)p(x,y)+ p(z,z)≤ p(x,z)+ p(z,y).
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Clearly, by (P1) - (P3),p(x,y) = 0 impliesx= y. But,
the converse is in general not true.

A classical example of partial metric spaces is the pair
([0,∞), p) wherep(x,y) = max{x,y} for all x,y ∈ [0,∞).
For more examples of partial metric spaces, we refer the
reader to [5,8].

Each partial metricp on X generates aT0 topologyτp
on X whose basis is the collection of all open p-balls
{Bp(x,ε) : x∈ X, ε > 0} where
Bp(x,ε) = {y∈ X : p(x,y)< p(x,x)+ ε} for all x∈ X and
ε is a real number.

Let (X, p) be a partial metric space,B any non-empty
subset of the setX andx an element of the setX. It is well
known [10] that x∈ B̄, whereB̄ is the closure ofB, if and
only if p(x,B) = p(x,x). Also, the setB is said to be closed
in (X, p) if and only if B= B̄.

Definition 2.3.([8])

(i) A sequence{xn} in a partial metric space(X, p) is
said to converge to somex∈ X if and only if p(x,x) =
limn→∞ p(x,xn).

(ii) A sequence{xn} in a partial metric space(X, p) is a
Cauchy sequence if and only if limn,m→∞ p(xn,xm)
exists and is finite.

(iii) A partial metric space(X, p) is said to be complete
if every Cauchy sequence{xn} in X converges with
respect to the topologyτp to a pointx ∈ X such that
p(x,x) = limn,m→∞ p(xn,xm).

Lemma 2.1.([8]) Let (X, p) be a partial metric space, then
the mapping
ps : X×X → [0,∞) given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y)

for all x,y∈ X defines a metric onX.

Lemma 2.2.([8])

(i)A sequence{xn} in a partial metric space(X, p) is a
Cauchy sequence in(X, p) if and only if it is a Cauchy
sequence in the metric space(X, ps).

(ii)A partial metric space(X, p) is complete if and only if
the metric space(X, ps) is complete.

Let (X,d) be a metric space andCB(X) denotes the
collection of all non-empty bounded closed subsets ofX.
ForA,B∈CB(X), define

H(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}

whered(x,A) = inf {d(x,a) : a∈ A} is the distance from
a pointx ∈ X to the setA ∈ CB(X). It is well known [9]
that H is a metric, called the Pompeiu-Hausdorff metric,
on CB(X) induced by the metricd. The metric space
(CB(X),H) is complete whenever(X,d) is complete.

Definition 2.4. ([2]) Let (X, p) be a partial metric space
and CBp(X) denotes the collection of all non-empty
bounded and closed subsets ofX. For A,B∈ CBp(X) and
x ∈ X, defineHp(A,B) = max{δp(A,B),δp(B,A)} where

p(x,A) = inf {p(x,a) : a∈ A},
δp(A,B) = sup{p(a,B) : a∈ A}
and δp(B,A) = sup{p(b,A) : b∈ B}. Then the mapping
Hp is a partial metric, called thepartial Hausdorff metric,
onCBp(X) induced by the partial metricp.

Lemma 2.3.([2]) Let (X, p) be a partial metric space. Let
A,B∈CBp(X) andq> 1. Then for anya∈ A, there exists
b∈ B that depends ona such that

p(a,b)≤ qHp(A,B).

Definition 2.5. ([4]) Let (X,d) be a metric space andK be
a non-empty subset of X. The mappingsF : K → CB(X)
and f : K → X are said to be weakly compatible onK if,
for any sequences{xn} and{yn} in K such thatf xn ∈ K,
Fxn∩K 6=∅, the following limits exist and satisfy:

(i)limsupn→∞ D( f yn,F f xn)
≤ limsupn→∞ H(F f xn,Fxn), and

(ii)limsupn→∞ d( f yn, f xn) ≤ limsupn→∞ H(F f xn,Fxn),
whenever{yn} ∈ Fxn∩K and limn→∞ d(yn, f xn) = 0.

Definition 2.6.([6]) Let (X,d) be a metric space. If for
eachx,y∈ X, x 6= y there existsz∈ X, x 6= y 6= z, such that
d(x,z)+d(z,y) = d(x,y), thenX is said to be a metrically
convex metric space.

Lemma 2.4.([6]) Let (X,d) be a metrically convex metric
space andK a non-empty closed subset ofX. Then for
given x ∈ K, y 6∈ K, there existsz∈ ∂K, boundary ofK,
suchd(x,z)+d(z,y) = d(x,y).

Analogous to Definition 2.6. we have the following
definition.
Definition 2.7. ([12]) Let (X, p) be a partial metric space

. If for eachx,y ∈ X, x 6= y there existsz∈ X, x 6= y 6= z
such thatp(x,z) + p(z,y) = p(x,y) + p(z,z), then X is
said to be a metrically convex partial metric space.

Lemma 2.4. extends to partial metric spaces.
Lemma 2.5.([12]) Let (X, p) be a metrically convex
partial metric space andK a non-empty closed subset of
X. Then for givenx ∈ K , y 6∈ K, there existsz ∈ ∂K,
boundary ofK, suchp(x,z)+ p(z,y) = p(x,y)+ p(z,z).

Definition 2.5. extends to partial metric spaces as
follows:
Definition 2.8. Let (X, p) be a partial metric space andK

be a non-empty subset of X. LetF : K → CBp(X) and
f : K → X be mappings. If for any sequences{xn} and
{yn} in K such thatf xn ∈ K, Fxn∩K 6= ∅, the following
hold:

(i) limsupn→∞ p( f yn,F f xn)≤
limsupn→∞ Hp(F f xn,Fxn), and

(ii) limsupn→∞ p( f yn, f xn)≤ limsupn→∞ Hp(F f xn,Fxn),
whenever{yn} ∈ Fxn∩K and limn→∞ p(yn, f xn) = 0.

Then the mappings{F, f} are said to be weakly
compatible onK.

Khan and Imdad [11] established the following
common fixed point theorem.
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Theorem 2.1. Let (X,d) be a complete and metrically

convex metric space andK be a nonempty closed subset
of X. Let the mappingsF,G : K → CB(X) and
g, f : K → X satisfy the following condition:

H(Fx,Gy)≤hmax

{

1
a

d( f x,gy),D( f x,Fx),D(gy,Gy),

1
a+h

[D( f x,Gy)+D(gy,Fx)]

}

(1)

for all x,y∈ X with x 6= y,

where 0< h<
2
3

, a≥ 1+
2h2

1+h
, and

(i) ∂K ⊆ gK∩ f K, FK ∩K ⊆ f K, GK∩K ⊆ gK,
(ii) f x∈ ∂K ⇒ Fx⊆ K,gx∈ ∂K ⇒ Gx⊆ K,
(iii) {F, f} and {G,g}

are weakly compatible mappings, and
(iv) g and f are continuous on K.

Then there exists a points in K such that
s= f s= gs∈ Fs∩Gs.

In this paper Theorem 2.1. is generalized to partial
metric spaces.

3 Main Results

We now present a generalization of Theorem 2.1. to partial
metric spaces.

Theorem 3.1.Let (X, p) be a metrically convex complete
partial metric space. LetK be a non-empty closed subset of
X. Let the mappingsF,G : K →CBp(X) andg, f : K → X
satisfy the following condition:
H(Fx,Gy)

≤hmax

{

1
a

p( f x,gy), p( f x,Fx), p(gy,Gy),

1
a+h

[p( f x,Gy)+ p(gy,Fx)]

}

(2)

for all x,y∈ X with x 6= y,

where 0< h<
2
3

, a≥ 1+
2h2

1+h
, and

(i) ∂K ⊆ gK∩ f K, FK ∩K ⊆ f K, GK∩K ⊆ gK,
(ii) f x∈ ∂K ⇒ Fx⊆ K,gx∈ ∂K ⇒ Gx⊆ K,
(iii) {F, f} and {G,g}

are weakly compatible mappings, and
(iv) g and f are continuous on K.

Then there exists a points in K such thats= gs= f s∈
Fs∩Gs.

Proof. We construct two sequences{xn} and{yn} in K
as follows: Lety0 ∈ X be an arbitrary point in∂K. Since
y0 ∈ ∂K and∂K ⊆ gK∩ f K, we can find a pointx0 ∈ K
such thatf x0 = y0 ∈ ∂K. By Theorem 3.1. (ii) we have
Fx0 ⊆ K, and by Theorem 3.1. (i) we can find a pointx1 ∈

K such thatf x1 ∈ Fx0 ⊆ K. Sety1 = f x1. Let q be any real
number such that

q> 1 and qh= t <
2
3

(for instanceq=
3
2
−h). (3)

Sincey1 ∈ Fx0, by Lemma 2.3., there exists a pointy2 ∈
Gx1 such that

p(y1,y2)≤ qHp(Fx0,Gx1).

We proceed as follows:

(i) y2n ∈ Gx2n−1, y2n+1 ∈ Fx2n
(ii) y2n ∈ K ⇒ y2n = f x2n or y2n /∈ K ⇒ f x2n ∈ ∂K,

and p(gx2n−1, f x2n)+ p( f x2n,y2n) = p(gx2n−1,y2n)+
p( f x2n, f x2n)

(iii) y2n+1 ∈ K ⇒ y2n+1 = gx2n+1 or
y2n+1 /∈ K ⇒ gx2n+1 ∈ ∂K,
and p( f x2n,gx2n+1) + p(gx2n+1,y2n+1) =
p( f x2n,y2n+1)+ p(gx2n+1,gx2n+1)

(iv) p(y2n−1,y2n)≤ qHp(Gx2n−1,Fx2n−2)
(v) p(y2n,y2n+1)≤ qHp(Fx2n,Gx2n−1)

We denote
P0 = { f x2i ∈ { f x2n} : f x2i = y2i},
P1 = { f x2i ∈ { f x2n} : f x2i 6= y2i},
Q0 = {gx2i+1 ∈ {gx2n+1} : gx2i+1 = y2i+1},
Q1 = {gx2i+1 ∈ {gx2n+1} : gx2i+1 6= y2i+1}.

Remark 3.1. ( f x2n,gx2n+1) /∈ P1 × Q1 and
(gx2n−1, f x2n) /∈ Q1×P1.

We now consider three possible cases.

Case 1.If ( f x2n,gx2n+1) ∈ P0×Q0, then:

p( f x2n,gx2n+1)≤qHp(Fx2n,Gx2n−1)

≤ t max

{

1
a

p( f x2n,gx2n−1), p( f x2n,Fx2n),

p(gx2n−1,Gx2n−1),

1
a+h

[p( f x2n,Gx2n−1)+ p(gx2n−1,Fx2n)]

}

≤ t max

{

1
a

p( f x2n,gx2n−1), p( f x2n,gx2n+1),

p(gx2n−1, f x2n),

1
a+h

[p(gx2n−1, f x2n)+ p( f x2n,gx2n+1)]

}

≤ t max{p( f x2n,gx2n−1), p( f x2n,gxn+1)}

≤ t p( f x2n,gx2n−1)

Similarly, if (gx2n−1, f x2n) ∈ Q0 × P0, then
p(gx2n−1, f x2n)≤ t p( f x2n−2,gx2n−1).

Case 2.If( f x2n,gx2n+1) ∈ P0×Q1, then
p( f x2n,gx2n+1)+ p(gx2n+1,y2n+1) = p( f x2n,y2n+1)
+ p(gx2n+1,gx2n+1), which implies thatp( f x2n,gx2n+1)≤
p( f x2n,y2n+1) = p(y2n,y2n+1).
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By Remark 3.1. we have
p( f x2n,gx2n+1)≤ p(y2n,y2n+1)≤ qHp(Fx2n,Gx2n−1), and
hence from Case 1. we have
p( f x2n,gx2n+1)≤ t p( f x2n,gx2n−1).
Also, if p(gx2n−1, f x2n) ∈ Q1×P0, thenp(gx2n−1, f x2n)≤
t p(gx2n−1, f x2n−2).

Case 3.If ( f x2n,gx2n+1) ∈ P1×Q0, thengx2n−1 = y2n−1
and
p(gx2n−1, f x2n)+ p( f x2n,y2n)
= p(gx2n−1,y2n)+ p( f x2n, f x2n).
If we assume thatp( f x2n,gx2n+1)≤ p(gx2n−1,y2n), then

p( f x2n,gx2n+1 ≤ p(gx2n−1, f x2n−2)). (4)

We suppose now thatp( f x2n,gx2n+1) > p(gx2n−1,y2n).
Clearly from (4) we have two possibilities:

p( f x2n,gx2n−1) <
1
2

p(gx2n−1,y2n) or

p( f x2n,y2n)<
1
2

p(gx2n−1,y2n).

Proceeding as in Case 1. gives:
p( f x2n,gx2n+1)

≤qHp(Fx2n,Gx2n−1)

≤ t max

{

1
a

p( f x2n,gx2n−1), p( f x2n,Fx2n),

p(g2n−1,Gx2n−1),
1

a+h
[p( f x2n,Gx2n−1)

+p(gx2n−1,Fx2n)]}

≤ t max

{

1
a

p( f x2n,y2n−1), p( f x2n,y2n+1),

p(gx2n−1,y2n),

1
a+h

[p(gx2n−1,y2n)+ p(gx2n−1,y2n+1)]

}

Since
p( f x2n,gx2n−1)< p(gx2n−1,y2n)< p( f x2n,gx2n+1),
then:

1
a+h

[p(gx2n−1,y2n)+ p(gx2n−1,y2n+1)]

=
1

a+h
[p(gx2n−1,y2n)+ p(gx2n−1, f x2n)

+ p( f x2n,gx2n+1)]

≤
1

a+h
[p( f x2n,gx2n+1)+ p( f x2n,gx2n+1)

+ p( f x2n,gx2n+1)]

< p( f x2n,gx2n+1).

and therefore we havep( f x2n,gx2n+1)≤ t p( f x2n,gx2n−1).
Now proceeding as earlier, we also obtain
p(gx2n−1, f x2n)≤ t p(gx2n−1, f x2n−2).
Thus, if we setf x2n = z2n, gx2n+1 = z2n+1, then,
p(zn,zn+1) ≤ t max{p(zn−1,zn), p(zn−2,zn−1)} for n ≥ 2.

Using the approach of́Cirić [3] it can be shown that{zn}
is a Cauchy sequence, and therefore converges to a points
in K. It follows that{y2n} converges tos∈ K.
For eachy2n denote byY2n one of the subsets{Gx2n−1}
which containsy2n andy2n+1 denote byY2n+1 one of the
subsets{Fx2n} which containsy2n+1. Then

Hp(Yn,Yn+1)≤ hp(z2n−1,z2n),

Also,

Hp(Yn−1,Yn+1)≤ hmax{p(zn−2,zn−1), p(zn−1,zn)}.

Since{zn} is a Cauchy sequence so is{Yn}. Therefore,
{Yn} converges
toY, for someY in CBp(X), as(CBp(X),Hp) is a complete
partial metric space. So we have

p(s,Y)≤ p(s,z) for some z∈Y

≤ p(s,yn)+ p(yn,z)− p(yn,yn)

≤ p(s,yn)+Hp(Yn,Y)−Hp(Yn,Yn)

≤ p(s,s) as n approaches ∞.

Therefore,

p(s,Y) = p(s,s)⇒ s∈Y, since Y is closed. (5)

By the construction of the sequence there exists at least
one subsequence{ f x2nk} or {gx2nk+1} which is contained
in P0 or Q0 respectively. Consequently subsequence
{gx2nk+1} which is contained inQ0 for each k ∈ N,
converges toz. Since gx2n+1 = y2n+1, {ggx2nk+1} and
{Ggx2nk−1} are well defined.
Set

L j = p(gx2nk+1,Ggx2nk−1)

and
Rj = Hp(Gx2nk−1,Ggx2nk−1),

then

Rj ≤Hp(Y2nk,Y2nk+1)+Hp(Fx2nk,Ggx2nk−1)

≤Hp(Y2nk,Y2nk+1)+hmax
{

p( f x2nk,ggx2nk−1),

p( f x2nk,Fx2nk), p(ggx2nk−1,Ggx2nk−1),

[p( f x2nk,Ggx2nk−1)+ p(Fx2nk,ggx2nk−1)]
}

≤Hp(Y2nk,Y2nk+1)+hmax
{

p(y2nk,ggx2nk−1),

p(y2nk,y2nk+1), p(ggx2nk−1,Gx2nk−1)

+Hp(Gx2nk−1,Ggx2nk−1),

[Hp(Gx2nk−1,Ggx2nk−1)+ p(Fx2nk,ggx2nk−1)]
}

≤Hp(Y2nk,Y2nk+1)+hmax
{

p(gg2nk−1,Ggx2nk−1)

+Hp(Gg2nk−1,Gx2nk−1), p(y2nk,y2nk+1),

p(ggx2nk−1,Gx2nk−1))+Rj , p(ggx2nk−1,y2nk+1)

+Rj
}

.
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Hence

R j ≤Hp(Y2nk,Y2nk+1)+
2
3

max
{

p(ggx2nk−1,Ggx2nk−1)

+Rj , p(y2nk,y2nk+1),

p(ggx2nk−1,Gx2nk−1)+Rj , p(ggx2nk−1,y2nk+1)+Rj
}

.
(6)

Therefore,
SinceYn → Y, gx2nk+1 → s and asg is continuous, then
the sequence{Rj} is bounded and hence{supj Rj} is a
convergent sequence. Also, sinceG and g are weakly
compatible mappings (see Definition 2.8.), and as
gx2nk+1 = y2nk+1 ∈ K, y2nk+1 ∈ GK ∩ K and
limn→∞ p(gx2nk+1,y2nk) = 0, we have

lim sup
n→∞

L j ≤ lim sup
n→∞

Rj , (7)

and

lim sup
n→∞

p(ggx2nk+1,gx2nk−1)≤ lim sup
n→∞

Rj . (8)

We denote limsupj→∞ Rj by R. Taking the upper limit in
(6) and using (7), (8) yields

R≤
2
3

max{R,R,Hp(Y,Y),R}.

So we haveR≤
2
3

R, sinceHp(Y,Y)≤R. Therefore,R= 0.

Using (8), we havep(gs,s) = 0. This impliess= gs (see
Definition 2.2.) (P3).
In the similar way one can obtainf s= s.
We now consider,

p(y2nk+1,Gs)≤Hp(Fx2nk,Gs)

≤hmax
{

p( f x2nk,gs), p( f x2nk ,Fx2nk),

p(gs,Gs), [p( f x2nk ,Gs)+ p(gs,Fx2nk)]
}

Taking the limit asj → ∞ and using (5) gives,
p(s,Gs)

≤
2
3

max{p(s,s), p(s,s), p(s,Gs), p(s,Gs)+ p(s,s)}.

So we havep(s,Gs)≤
2
3
[p(s,Gs)+ p(s,s)], sincep(s,s)≤

p(s,Gs).
Hence,p(s,Gs) = 0⇒ p(s,Gs) = p(s,s), and therefores∈
Gs.
We next consider:

p(Fs,s)≤ Hp(Fs,Gs)

≤ hmax{p(s,s), p(s,Fs), p(s,s),

p(s,s)+ p(s,Fs)}

and hence,

p(s,Fs) = 0⇒ p(s,Fs) = p(s,s)⇒ s∈ Fs.

Therefore,s= f s= gs∈ Fs∩Gs, as desired.
For f = g, Theorem 3.1. reduces to the following

result, a generalization of a fixed point theorem due to
Ćirić and Ume [4] to partial metric spaces.

Corollary 3.1. Let (X, p) be a metrically convex complete
partial metric space. LetK be a non-empty closed subset
of X. Let the mappingsF,G : K →CBp(X) and f : K → X
satisfy the following condition:
H(Fx,Gy)

≤ hmax

{

1
a

p( f x, f y), p( f x,Fx), p( f y,Gy),

1
a+h

[p( f x,Gy)+ p( f y,Fx)]

}

(9)

for all x,y∈ X with x 6= y,

where 0< h<
2
3

, a≥ 1+
2h2

1+h
, and

(i) ∂K ⊆ f K,FK∩K ⊆ f K, GK∩K ⊆ f K,
(ii) f x∈ ∂K ⇒ Fx⊆ K, f x∈ ∂K ⇒ Gx⊆ K,
(iii) {F, f} and {G, f}

are weakly compatible mappings, and
(iv) f are continuous on K.

Then there exists a points in K such thats= f s∈ Fs∩Gs.
ForF =G and f = g= IK , Theorem 3.1. reduces to the

following result, a generalization of a fixed point theorem
due to Rhoades [1] to partial metric spaces.

Corollary 3.2. Let (X, p) be a metrically convex complete
partial metric space. LetK be a non-empty closed subset of
X. Let the mappingsF : K →CBp(X) satisfy the following
condition:
H(Fx,Gy)

≤ hmax

{

1
a

p(x,y), p(x,Fx), p(y,Fy),

1
a+h

[p(x,Fy)+ p(y,Fx)]

}

(10)

for all x,y∈ X with x 6= y,

where 0< h<
2
3

, a≥ 1+
2h2

1+h
, andx∈ ∂K ⇒ Fx⊆ K,

Then there exists a points in K such thats∈ Fs.
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