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Abstract: The paper presents an application of Bayesian structural time-series model to forecast long-term electricity demand.

Accurate trend specification in long-term forecasting is important; otherwise erroneous forecasts could be obtained especially in South

Africa where it is difficult to determine if the trend would continue a downward trajectory or would revert to an upward trajectory.

Long-term probabilistic electricity demand forecasts in South Africa from 2013 to 2023 are presented in this paper. The findings are;

(a) electricity demand in South Africa is less likely to exceed the highest historical hourly demand of 36 826 kW until 2023 (b) South

African demand from Eskom is more likely to maintain the downward trend until 2023 (c) electricity demand lies between 15 849 kW

and 39 810 kW with a 90% probability between 2013 and 2023. The contributions of the paper are; (a) application of BSTS to long-

term electricity demand forecasting (b) use of autocorrelation plot to determine the number of time lags in long-term electricity demand

forecasting (c) long-term forecasting of electricity demand using South African data with their uncertainties quantified.
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1 Introduction

Electricity load is defined as an amount of electricity that
balances the amount generated with that drawn from the
electricity grid. In the absence of black-outs,
load-shedding and availability of electricity generated
from the renewable sources, electricity load is equivalent
to electricity demand in South Africa. Therefore, in this
study, the hourly electricity demand is defined as an
amount o electricity in kW sent out every hour by Eskom
to meet consumersdemand. Eskom is the main supplier of
electricity to the South Africans and it generates
approximately 95% of the total electricity consumed in
South Africa while municipal-owned power plants and
independent power producers (IPPs) generate the
remaining 5% [27].

The economic growth of any country is dependent on its
energy security. For planning purposes, it is important to
ensure that long-term electricity demand is accurately
forecasted, which would avoid wasted investment in the

construction of excess generation facilities while ensuring
that future electricity demand is sufficiently met. As
indicated in [23], there is a need for probabilistic
forecasting of hourly electricity demand in South Africa
due to the inherent uncertainties related to long-term
forecasting. Discussions of probabilistic forecasting can
be found in [6], [19] and [21] while more information on
probabilistic forecasting of peak electricity demand can
be found in [7], [9] and [13]. The point forecasts of
electricity demand represent the mean of the demand
distribution and hence they inevitably under predict some
peak electricity demand.

It must be accepted by forecasters and people using
forecasts that all forecasts will inevitably differ with the
actuals. Hong and Fan argue that researchers have long
been pursuing the most accurate forecasts which resulted
in researchers hoping to find the best forecasting
technique which is a myth [8]. In search of the best
forecasting technique, some researchers combined
different modeling techniques to form hybrid models
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[14], [18] and [20]. According to Hong and Fan most of
the hybrid techniques are of minimal value for load
forecasting practice [8]. Hong and Fan pointed out that
researchers and practitioners must understand that a
universally best technique does not exist [8].

Forecasting, by nature, is a stochastic problem, but most
of the utilities are still developing and using point
forecasts, which are very difficult to defend, instead of
using probabilistic forecasts [7]. One of the advantages of
probabilistic forecasts is that they provide the full
probability distribution of possible future electricity
demand, and most importantly, the uncertainties in the
forecasts are quantifiable.

Hourly electricity demand could be modelled through a
Bayesian or a frequentist approach. In the frequentist
approach, the attention is restricted to phenomena that are
repeatable under identical conditions and the probability
of an event is defined to be the limiting relative frequency
with which the outcome would occur in n repetitions as n
goes to infinity. The model parameters in this framework
are considered to be fixed while the data are random.
Under this framework, Quantile Regression (QR) is an
attractive approach for probabilistic forecasting, as shown
in [23] in which the demand was forecasted at the
specified quantiles of the demand distribution.

A Bayesian approach on the other hand is a natural
approach to probabilistic forecasting, where the data are
considered to be fixed and the model parameters random.
Under this framework, the model parameters are
estimated with their full distributions. There are two
approaches to Bayesian modelling which are full and
empirical Bayes. In the full Bayes modelling, the prior
parameters or the distribution of the prior parameters are
assumed known while in the empirical Bayes modelling,
the observed data are used to estimate the prior
parameters and then proceeding as though the priors were
known. In both Bayes approaches, the prior distribution
represents what is known about the parameters before
observing the data which can be based on past experience
(expert information) of previous related studies. If the
expert information is not available, then non-informative
priors are used which give the data more weight in the
posterior distribution. The next step is to collect data and
form a likelihood function, and then the prior is combined
with the likelihood function to form the posterior
distribution.

Cottet and Smith applied Bayesian model to forecast
intraday electricity load using a multi-equation approach
[5]. They used a first-order Vector Autoregression (VAR)
to model the errors and a Bayesian model selection
methodology to explore the intraday correlation structure.
Sigauke and Chikobvu used a Bayesian approach to
forecast the short-term extreme electricity demand in
South Africa [18]. According to Carstens, Xia and

Yadavalli one of the disadvantages of point forecasts is
that the confidence interval either contain the value, or it
does not and the probability is either zero or one [28]. The
confidence interval is therefore not associated with
probability.

Short-term forecasts according to McSharry, Bouwman
and Bloemhof are future values ranging from five minutes
to one week ahead, and are used to ensure system
stability, medium-term forecasts are mainly used for
maintenance scheduling and they range from one week to
six months ahead, while the long-term forecasts are used
for capital planning and they range from six months to
many years ahead [13]. There is a vast body of literature
on forecasting of annual electricity demand as well as
peak electricity demand in South Africa [2], [10], [11],
[15], [18] and [22]. Maharaj and Yadavalli modelled the
stochastic behaviour of the price dynamics of the
electricity spot prices with a three-regime Markov
switching model and they concluded that seasonality and
uncertainties play important roles in predicting hourly
spot prices [29].

The literature on Bayesian structural time series (BSTS)
is very limited; however, a BSTS modelling approach
would be ideal for forecasting long-term electricity
demand in South Africa. This is because the electricity
demand trend has shown changes in the recent past and
therefore it may be difficult to make assumptions
regarding the shape of the future electricity demand trend.
The BSTS modelling approach makes it possible to
determine the contribution of each component of the
model and therefore it makes it possible to investigate the
origin of the problem if results appear to be
counter-intuitive.

The objective of this paper is to use the BSTS modelling
approach to forecast the long-term (ten years) electricity
demand in South Africa in the face of uncertainties which
could among others emanate from increased technologies
making use of electricity, population growth, general
randomness in individual usage of electricity, prevailing
economic patterns, change in weather conditions,
escalating costs of electricity, use of power saving
electrical appliances, the growing sources of renewable
electricity and the possible market penetration of electric
vehicles. To the best of our knowledge the BSTS has not
been applied for forecasting the long-term electricity
demand.

2 Methodology

The model parameters in the BSTS model are estimated
through the Bayesian modelling approach. In general, the
formulation followed in this study is that of Marin, Diez
and Insua [12]. The posterior distribution of electricity
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demand in this study can be defined as in (1);

π(θ |x) = π(x|θ )π(θ )/
∫

θ
π(x|θ )π(θ )dθ (1)

where; θ denotes the parameter space, that is
θ = θ1,θ2, . . . ,θn representing the set of demand for
electricity parameters to be estimated; x = x1,x2, . . . ,xn

are the drivers of demand for electricity; π(x|θ ) is the
function generating the demand for electricity data given
the model parameters (the likelihood function), π(θ ) is
the prior distribution representing information on the
model parameters before the electricity demand data are
observed and

∫
θ π(x|θ )π(θ )dθ is a normalising constant

which makes it difficult to compute posterior in a closed
form, it gives evidence that the demand for electricity
data is generated by the model, therefore the posterior
distribution in (1) can be written as;

π(θ |x) ∝ π(x|θ )π(θ ).

The posterior distribution summarises all available
information about the parameters of the drivers of
electricity demand after observing the demand for
electricity data. The posterior mean of the parameters of
the demand for electricity are estimated by;

E(θ |x) =

∫
θ

θπ(θ |x)dθ (2)

which serves as the point estimate of the parameters θ
given the data. The future values of (x) represented by
(xn+1) can also be predicted by using the posterior
predictive distribution;

π(xn+1|x) =

∫
θ

π(x|θ )π(θ |x)dθ (3)

The detailed formulation of the Bayesian model is given
by Marin, Diez and Insua [12]. The complicated integrals
in (1) make it difficult to compute the posterior
distribution hence, the numerical method, the Markov
Chain Monte Carlo (MCMC) is used to estimate the
model parameters through sampling from the posterior
distribution. The idea is to attain a chain whose
equilibrium distribution matches that of the hourly
electricity demand posterior distributin. The sampling
stops when the chain reaches its equilibrium. In time
series, De Jong suggested the simulation smoother
procedure for simulating from the posterior density of the
states given a Gaussian state space time series [25].

According to Brodersen, et al. and Scott and Varian the
BSTS is formulated as a state space model [4] and [16].
The state space models are attractive because they are
modular as the independent state components can be
combined by concatenating the observation vectors Zt

[16]. There are two pieces to this model, that is, the
observation equation that links the observed hourly
demand for electricity (yt) with the unobserved latent

state (αt ). The observation equation is represented in (4).

yt = ZT
t αt + εt , εt ∼ N(0,Ht), t = 1,2, . . . ,24 (4)

where; yt is the demand for electricity at hour t; αt is a
vector of latent variables (a set of unknown parameters);
Ht and Zt are structural parameters where Ht is a constant
diagonal matrix with diagonal elements σε

2 and Zt is the
observation vector. The transition equation is given in (5);

αt+1 = Ttαt +Rtηt , ηt ∼ N(0,Qt), t = 1,2, . . . ,24
(5)

where; Tt , Rt and Qt are structural parameters and ηt is a
lower dimension than αt . Qt is a constant diagonal matrix
with diagonal elements σu

2, σω
2 and σϕ

2.
ηt = (vt ,ϕt ,ωt) are the independent components of the
Gaussian random noise. The state space model
representation of the BSTS model used in this study is
presented in (6) and its components are represented by
(7), (8) and (9);

yt = µt + γt +β T Xt + εt (6)

µt = µt−1 + δt−1 +ϕt (7)

δt = δt−1 + vt (8)

γt =−
s−1

∑
s=1

γt−s +ωt (9)

where; yt is the demand for electricity at hour t.

The µt is the local-level trend of the demand for
electricity series. The trend is assumed to follow a
random walk with ϕt representing some errors where;
ϕt ∼ N(0,σϕ

2). The prior is on σϕ
2.

The γt is the seasonal component of the demand for
electricity series. The seasonal model can be thought of as
a regression on n seasons dummy variables with
coefficients constrained to sum to one. If there are S

seasons then the state vector γt is of dimension S− 1. ωt

are seasonality errors, ωt ∼ N(0,σω
2) and the prior is on

σω
2.

The εt is the irregular component, β T Xt is the regression
component, the local-level term which defines how the
latent state evolves over time and it is often referred to as
an unobserved trend; the level is µt plus slope δt , and
seasonal S − 1 dummy variables with time varying
coefficients that are expected to sum up to zero and yt is
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the response series representing demand for electricity at
hour t.

The εt is the irregular component (noise) and are assumed
to follow an autoregressive process of order one (AR(1))
and it is distributed as εt ∼ N(0,σ2). The prior
coefficients for the AR(1) component are set at β = 0,
σ2 = 1 and the stationarity is ensured by setting
−1 < φ1 < 1.

In this model, a time series component captures the
general trend (µt), seasonality (γt) and irregular patterns
(ut) in the data. The priors for the time series component
of the model are specified during the creation of the state
specification of the model.

The β T Xt represents the regression component of the
BSTS model where β represents the vector of regression
coefficients of the demand for electricity model. The
concept of sparse modelling asserts that if there are many
possible predictors for the demand for electricity variable,
some of them are expected to have zero coefficients. The
natural way to represent sparsity in Bayesian modelling is
through a spike and slab prior on the regression
coefficients [16]. In this way, possible drivers of demand
for electricity are selected. The prior is on the set of β
coefficients.

Since the BSTS model in this paper has a regression
component, the spike and slab priors are used to select the
model variables. The spike part governs the probability of
a given variable to be selected into the model (having a
non-zero coefficient). The slab part shrinks the non-zero
coefficients towards the prior expectation (often zero).

Let τ denotes a vector of ones and zeros where; one
indicates that the variable is selected into the model
(non-zero coefficient) and zero indicates that the variable
is not selected into the model. If βτ is the subset of
elements of β where, τk = 1 if βk 6= 0 and τk = 0 if
βk = 0, then the spike and slab prior for the electricity
demand model can be written as in (10);

p(τ,β ,σ2
ε ) = p(τ)p(σ2

ε |τ)p(βτ |τ,σ
2
ε ) (10)

where; σ2
ε is the error variance, the marginal distribution

ρ(τ) is the spike representing probability of choosing a
given variable for inclusion into the demand for electricity
model and it is assumed to follow a Bernoulli distribution
given in (11);

p(τ) =
J

∏
j=1

π j
τ j (1−π j)

1−τ j j = 1,2, . . . ,J (11)

where; π j is a prior probability of variable j being included
into the demand model. For practical consideration, all π j

are assumed to have the same value π . If there are h non-
zero predictors, then π = h/k, where k is the dimension

of xt . For the specific values of j, some variables can be
forced to be included or excluded by setting π j = 1 for
inclusion and π j = 0 for exclusion. For the slab part, a
normal prior is used for β which leads to inverse gamma
prior for σ2

ε and it is given by;

1/(σ2
ε )∼ G(vε/2,sε/2), (12)

where; vε is the prior sample size (shrinkage parameter)
which can be thought of as a prior sample size for learning
the variance parameter of each coefficient, and sε is the
prior sum of squares.

sε/vε = (1−R2)s2
y (13)

where; s2
y is the sample variance and R2 is the amount of

variation explained by the regression model.

In this paper, the spike and slab priors for the regression
component are set in such a way that all potential
independent variables are given equal chances (50%) of
being included in the model (π j = 0.5). The prior for the
overall variation explained by the model is set at 0.5
(R2 = 0.5) and a shrinkage parameter is set at 1%
(vε = 0.01). The full Bayes approach is used with a minor
violation as s2

y is data-determined. The detailed
formulation of BSTS is given by Brodersen, et al. and
Scott and Varian [4] and [16]. Since this is a Bayesian
model, the parameters are estimated through MCMC.

The time-lags in time-series analysis are important
because values within time-series tend to correlate with
previous values in the series, this is called autocorrelation.
Using a regression-based technique like BSTS; it
becomes a challenge to include time-lags in long-term
forecasting and to determine the number of lags to be
included. In this model, the number of time-lags is
determined by using the autocorrelation plot in Figure 1.
The highest correlations are at every 24th data point
(Figure 1). The correlation cycle stops at the 168th point
and the new cycle starts, hence the number of time-lags to
include is the number of data points at every 24th point in
the cycle (i.e. 24, 48, 72, 96, 120, 144 and 168). Each
cycle represents a week. With one time-lag, only one
future value can be forecasted, while two time-lags would
only allow two future values to be forecasted. Therefore,
n time-lags would enable n future values to be forecasted.
If the first lag is n, then the next 6 lags are (n+24, n+48,
n+72, n+96, n+120 and n+144). The time-lags are done in
such a way that the shape of the autocorrelation pattern is
maintained and the leap years coincide.
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Fig. 1: Autocorrelation of hourly electricity demand

3 Data, Results and Discussion

3.1 Data

The South African total hourly electricity demand data
from 1997 to 2015 are provided by Eskom. During this
period, the highest hourly electricity demand is
36 826 kW and reached in 2011, while the minimum is
13 533 kW in 1998. The whole dataset provided is used in
the modelling (data from 1997 to 2006 are used in the
formation of time-lags).

The model is built from the logarithmically-transformed
time-series. Logarithmic transformations are convenient
means of transforming a highly-skewed variable into one
that is approximately normal [1]. After carrying out a
number of transformations of hourly electricity demand
from the Box and Cox family, the logarithm is found to
best fit the data [3]. Therefore, the logarithmic hourly
electricity demand data is modelled. The electricity
demand data between 2007 and 2012, inclusively, are
used to train the model, while the data from 2013 to 2015
are withheld and used in model validation. The hourly
electricity demand is forecasted from 2013 to 2023. The
forecasts from 2013 to 2023 are out of sample forecasts.

A number of time-related variables, the Fourier series or
harmonic transformation terms (to capture cycles inherent
in the time-series) and time-lag variables are included as
covariates to harness the correlation between hourly
electricity demand data. All variables considered are
given in Figures 7 and 8 in the appendix.

3.2 Model selection

The predictor variables in the regression component are
selected using the spike and slab priors. The first step in
variable selection is to estimate the coefficients of all
potential regression models given the covariates. The
averages of the coefficients of each variable from different
models are then calculated. The regression component is
dominated by eight variables (Friday, Monday, Saturday,
Sunday, lag70200, lag70224 and lag70248) because their
average coefficients are by far greater than the rest (Figure
5) in the appendix. Other variables have coefficients either
close to zero or zero which would likely be insignificant.

The variables that are selected into all possible models are
determined. In this paper, only variables that have got
selected into all possible models (inclusion probability of
one in Figure 8 in the appendix) are considered for
modelling. The good model with trend component
contributing less to the overall model is preferred.
Fruhwirth-Schnatter discussed how to discriminate
between different linear Gaussian state space models for a
given time-series using the Bayesian approach which
chooses the model that minimizes the expected loss [24].
In this way, a possible candidate Gaussian state space
model for modelling a time-series could be selected.

3.3 Assessment of the forecasts

The forecasted daily profiles at the 50 th percentile of the
electricity demand distribution in Figures 2 could be used
to assess the accuracy of the forecasts. If the forecasted
daily profiles capture the actual daily profiles over the
years and the forecasts at the 50 th percentile are close to
the actual electricity demand, then it would indicate that
the model is forecasting well. The forecasted daily
profiles are consistently compared well with the actual
daily profiles as shown in Figure 2. The MAPE between
the actual and the forecasts at the 50 th percentile of the
electricity demand distribution are mostly below 4% in all
hours, as shown in Table 1. Lewis indicates that a MAPE
of less than 10% can be classified as highly-accurate
forecast [26]. The MAPE in Table 1 are calculated from
the untransformed hourly electricity demand data from
2013 to 2015.

3.4 Results and discussion

For illustration purposes, four days in June are selected in
such a way that the day with the highest hourly electricity
demand of the year is included with some days closer to
it. The highest hourly electricity demand in 2013 is
35 393 kW on the 18 June while in 2014, it is 36 039 kW
on the 12 June and it is 34 481 kW in 2015 on the 11 June
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Table 1: Mean absolute percentage error (Forecasts at 50 th

percentile)

Hours 2013 2014 2015 Average

0 3.714 2.190 4.093 3.332

1 3.531 2.221 4.349 3.367

2 3.456 2.320 4.841 3.539

3 3.603 2.324 4.702 3.543

4 4.282 2.569 3.809 3.553

5 6.331 4.691 4.162 5.061

6 5.970 4.699 4.722 5.130

7 4.135 2.673 4.266 3.692

8 4.299 2.337 3.361 3.332

9 4.303 2.315 3.036 3.218

10 4.480 2.367 3.437 3.428

11 4.226 2.337 3.798 3.454

12 3.927 2.362 4.340 3.543

13 3.840 2.463 4.753 3.685

14 3.829 2.717 5.065 3.870

15 4.127 2.881 4.921 3.976

16 4.501 3.012 4.443 3.985

17 4.523 3.187 4.020 3.910

18 4.099 3.333 3.399 3.611

19 3.951 2.997 3.125 3.358

20 4.593 2.771 3.442 3.602

21 4.653 2.479 3.845 3.659

22 4.272 2.256 3.815 3.448

23 3.941 2.189 3.912 3.347

Average 4.274 2.737 4.069 3.693

and they all happen at 18h00. The forecasted electricity
demand profiles have well captured the actual electricity
demand profiles. The interval between the black graphs in
Figures 2, 3 and 4 represents the 90% credible intervals
for the forecasted hourly electricity demand.

Electricity demand in Figure 2 has been forecasted to lie
between 26 316 kW (logdemand = 4.4202) and 39 496 kW
(logdemand = 4.5966) with a 90% probability on the 18 th
June 2013 at 18h00 while the actual electricity demand is
35 393kW (logdemand = 4.5489) and the forecasted
electricity demand at the 50 th percentile is 32 126 kW
(logdemand = 4.5065). The blue graph represents the
forecasted hourly electricity demand at the 50 th
percentile of the demand distribution while the red circles
represents the actual hourly electricity demand. The black
graphs represent the lower and upper 90% credible
intervals for hourly electricity demand.

By comparing electricity demand density functions over
the years, insight into expected shifts in electricity
demand patterns can be obtained, that is, whether the
distribution of electricity demand in Figure 5 is expected
to shift towards higher or lower electricity demand over
the years until 2023. The forecasted electricity demand
distributions in Figure 3 for the period investigated,

Fig. 2: Comparison of actual and forecasted hourly demand at

50 th percentile with 90% credible interval: 2013 actual hourly

demand against forecasted

Fig. 3: Comparison of actual and forecasted hourly demand at

50 th percentile with 90% credible interval: 2014 actual hourly

demand against forecasted

suggest that electricity demand from Eskom is likely to
shift towards lower demand over the years until 2023.
There are some signs of electricity demand shifting
towards lower demand in the historical data in the last
four years until 2015 which could be attributed to the
following: the growing renewable sources of electricity in
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Fig. 4: Comparison of actual and forecasted hourly demand at

50 th percentile with 90% credible interval: 2015 actual hourly

demand against forecasted

South Africa, the sluggish economic growth, the steep
increases in electricity tariffs in the recent passed, and the
market penetration of energy efficient appliances.

The density functions in Figure 5 could also be used to
calculate the probabilities of exceeding certain electricity
demand values by integrating the density functions. For
example, to calculate the probability of exceeding the
highest historical hourly electricity demand in future and
to determine if demand can be met with the existing
generation infrastructure.

Figure 6 represents the full forecasted distribution of
hourly electricity demand in South Africa with its 90%
credible interval. The actual hourly electricity demand
from 2007 to 2012 (training data) are represented by the
black graph; while the blue graph represents the
forecasted posterior mean of the hourly electricity
demand distribution between 2013 and 2023. The interval
represented by the green graphs is the 90% credible
interval of the forecasted hourly electricity demand.

Figure 6 shows that electricity demand during the period
between 2013 and 2023 would lie between 15 849 kW
(logdemand = 4.2) and 39 810 kW (logdemand = 4.6)
with 90% probability. The blue graph in Figure 6
indicates that the hourly electricity demand on average is
forecasted to lie between 18 000 kW and 35 000 kW
between 2013 and 2023 in South Africa.

Fig. 5: Comparisons of density functions of electricity demand

over years

Fig. 6: Predicted distributions of demand with 90% credible

interval

3.5 Managerial implications of electricity

demand in South Africa

The long-term electricity demand is forecasted under
uncertainties emanating from the increased technologies
making use of electricity, population growth, general
randomness in individual usage of electricity, seasonal
effects, prevailing economic patterns, change in weather
conditions, escalating costs of electricity, use of power
saving electrical appliances, the growing sources of
renewable electricity (whose data are not adequately
collected in South Africa) and the market penetration of
electric vehicles among others. Probabilistic modelling
accounts for uncertainties in electricity demand
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forecasting; hence, enabling decision makers to make
better decisions in the face of such uncertainties. The
decisions could have far-reaching consequences because
the decision for infrastructure expansion could result in
the construction of unnecessary power-generating
facilities while the decision without expanding on the
current infrastructure could result in failure to meet future
electricity demand. For planning purposes, probabilistic
forecasts of long-term electricity demand can help
managers to investigate a range of possible future
electricity demand values, and so that the more informed
decisions regarding the need for more (or fewer) power
stations could be taken.

4 Conclusions

The hourly electricity demand forecasts have shown that
it is unlikely for future electricity demand from Eskom to
exceed the highest historical electricity demand of
36 826 kW. The electricity demand is likely to shift
towards smaller demand over the years until 2023 and it is
estimated to lie between 15 849 kW (logdemand = 4.2)
and 39 810 kW (logdemand = 4.6) during the period
between 2013 and 2023 with a 90% probability.

One of the advantages of the BSTS model is that it
provides the contributions of individual components (e.g.
trend, seasonal and regression components) of the overall
model as standard output. For the South African
electricity demand data, it would be ideal for the trend
component to contribute less to the model as there are
uncertainties with regard to whether the trend would
continue the apparent decline trajectory as shown in the
last four years until 2015 or if it would stabilise or would
revert to the old upward trajectory going forward. If the
trend component contributes more to the model and it
were wrongly specified then the long-term electricity
demand forecasts could vastly deviate from the actual
electricity demand and this could have serious planning
implications.

The BSTS model uses the spike and slab priors to
minimise the correlation between variables in the model
if it exists and this is a powerful way of solving the
problem of multicollinearity and the resultant model is
always parsimonious.

One of the main advantages of the probabilistic forecasts
is that the planner could assess the chances of exceeding
the current electricity generation capability of the system
in future. If there are such chances, then the probability of
exceeding the maximum that the system can generate
currently can be calculated.

The BSTS model has a huge potential of accurately
forecasting the long-term electricity demand especially in
the case of a complicated electricity demand trend such as

that of the South African electricity demand data. The
uncertainties are quantifiable in the BSTS modelling
approach. Therefore, BSTS modelling approach is
recommended for forecasting the long-term electricity
demand in South Africa.
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4.1 Appendix

The regression component of the model was dominated
by eight variables (Friday, Monday, Saturday, Sunday,
weekday, lag70200, lag70224 and lag70248) because
their average coefficients were by far greater than the rest
(Figure 7). Other variables had coefficients either close to
zero or zero which would likely be insignificant.

Figure 8 represented the model variables with their
proportions of all possible models in which they would be
selected given the variables under consideration. There
were 20 variables that were selected in 100% of all
possible models which indicated that, given the variables
under consideration, 20 of them would be included in all
possible models. In this study, only variables that
appeared in all possible models were considered for
modelling resulting into a parsimonious model.
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Fig. 8: Spike-and-slab variable inclusion probabilities
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