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Abstract: Steady thermosolutocapillary instabilities in a horizontal thin fluid layer with deformable free surface and uniform
temperature at the bottom boundary in the presence of insoluble surfactant and gravity force are examined. The surface tension at
the free surface is assumed to be linearly dependent on temperature and concentration gradients. The linear stability theory and the
Galerkin method are used to obtain the closed form solutions. The effects of the controlling parameters, namely the Rayleigh number,
Biot number, Lewis number, and elasticity parameter on the onset of Marangoni convection are analyzed. The results showthat the
gravitational force acts as destabilizer while the presence of surfactant delays the onset of convection.
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1 Introduction

MARANGONI flow is induced by surface tension
variation along liquid-liquid and liquid-gas interfaces.
The Marangoni behaviours of fluid dynamics in thin
liquid films have been extensively investigated by
researchers due to the great importance of its applications
in industries and material processing, for examples
coating, spray painting and moulding. Thin liquid films
also exist in a variety of biological context. Variety of
waveforms are generated at the interface between the
flowing liquid and surrounding gas. These waveforms are
determined by the balances of principle driving forces
such as gravity, surface tension and viscous effect.

The main subject that always been stressed in the
studies of thermocapillary and solutocapillary is their
instabilities. The studies of convective instability started
with the experimental and theoretical works of [1], [2]
and [3]. [3] was the first to investigate theoretically the
Marangoni instability in a liquid layer by introducing the
linear stability analysis. [4] extensively reviewed and
discussed the thermocapillary instability. The
investigation of the instabilities is important to avoid
striation, dendrites or bubbles in the process of
manufacturing due to any disturbances that might occur

during the process, for example, due to the external forces
and stresses. The disturbances can cause steady flows to
change to an undesired oscillatory motion.

Many factors affect the instability of Marangoni
convection. The onset of instabilities is proven to delay by
the use of feedback control mechanism as discussed in [5]
where the Marangoni-Benard convection is altered and
maintained by the use of thermal proportional feedback
control. The influences on the onset of Marangoni
convection such as variable viscosity, free surface
deformation, gravity waves, controller gains and heat
transfer mechanism are discussed by [6] and [7] through
the exact analytical solutions to the system. Magnetic
field is also one of the factors that can influence the onset
of Marangoni instabilities [7].

The onset Marangoni convection can be influenced by
the existence of surface active agent or surfactant. The
surface tension in a fluid layer can be affected by the
presence of surfactant which produces the additional
tangential stresses and therefore influences the
convection. The presence of the temperature and solute
concentration will affect the surface tension of the fluid
layer [8,9]. When the surface is deformable, long-wave
instability sets in [10,11]. [12] and [13] studied the
long-wavelength Marangoni instability with
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nondeformable and deformable free surface in the
presence of insoluble surfactant for both steady and
oscillatory convection. They also examined the
parametric excitation by periodic heat flux modulation. It
was found that the surface active agent has stabilizing
effect on the monotonic instability. The ratio of the
amplitude of the external heat flux modulation to the
stationary mean heat flux and the frequency of the
modulation affected the subharmonic instability region.

Numerical investigation has been carried out by [14]
on the onset of convection in a horizontal layer of fluid
heated from below in the presence of various gravity field.
The method of weighted residual (Galerkin type) and
collocation employed provide fairly accurate
approximation validated by viola’s eigenvalue problems.

[15] focused on a weak nonlinear analysis of double
diffusive convection with an applied uniform magnetic
field with the effect of time periodic gravity field on heat
and mass transfer. The derivation of complex
Guinzburg-Landau amplitude equation was performed.
The range of viscoelastic parameters provides oscillatory
behavior. The presence of magnetic field delayed the
onset convection whereas the Rayleigh number advanced
the onset convection.

[16] emphasized on the stability analysis of dependent
non-linear base concentration profile on the concentration
and velocity disturbances in the Rayleigh-Bernard,
Benard-Marangoni and Rayleigh-Benard-Marangoni
problems. They developed spatial base-profile influenced
frozen-time marginal state analysis model (SIFTM) to
calculate the critical Rayleigh number and Marangoni
number.

Theoretical observation has been made by [17] on the
thermalvibrational instabilities of the Marangoni-Bernard
and Rayleigh-Marangoni-Bernard by using linear stability
analysis in a two layer liquid system. The vertical
vibration leads to the stability and horizontal vibration
makes the system unstable. The presence of
g-disturbances affects the oscillatory region.

In this paper, we consider the steady
thermosolutocapillary instability in a fluid layer in the
presence of insoluble surfactant and gravity for
nondeformable surface. The exact analytical solution is
obtained for the critical Marangoni number and some
physical parameters are assessed.

2 Problem formulation

Consider a horizontal fluid layer of thickness d bounded
by a rigid plate at the lower boundary atz = 0 and the
upper surface is a deformable free surface atz = d. The
lower boundary has a non slip condition and is
maintained at a fixed uniform temperature. The fluid is
assumed to be incompressible and the surface tensionσ is

assumed to depend linearly on temperature and surfactant
concentration,

σ = σ0−σ1(T −T0)−σ2(Γ −Γ0) (1)

whereT andΓ are the temperature of the liquid and the
surfactant concentration, respectively.σ0 is the reference
surface tension corresponding to the reference
temperatureT0 and reference concentrationΓ0 andσ1 and
σ2 are positive constants.

Other physical properties of the liquid such as density,
pressure, viscosity etc. are assumed to be constants. When
the fluid is at rest, the hydrodynamic pressurepb with the
atmospheric pressurepa and the gravitational acceleration
g at the reference steady state is

pb = pa −ρg(d− z). (2)

The governing equations of the liquid system are

∇ ·v = 0, (3)

∂v
∂ t

+(v ·∇)v =−

∇p
ρ

−ν∇2v− gλ (T −T0)expz, (4)

∂T
∂ t

+(v ·∇)T = χ∇2T, (5)

which represent the equations of continuity (mass),
momentum and energy, respectively.v = (u,v,w) is the
fluid velocities in the (x,y,z) directions, g is the
gravitational field,χ is the thermal diffusivity,ν is the
kinematic viscosity,p is the pressure,ρ is the density,λ
is a constant andt is the time. The surfactant distribution
at the free surface [12], is

∂Γ
∂ t

+∇s · (uτΓ )+KunΓ = D0∇2
s Γ , (6)

where un and uτ are normal and tangential velocities,
respectively,D0 is the surfactant diffusivity,K is the local
surface curvature and∇s is the surface gradient.

At the free nondeformable surface, where the value of
surface deflectionZ = 0, the linearized system of
equations and boundary conditions become

D4W −2k2D2W + k4W + k2Rθ = 0, (7)

D2θ − k2θ +W = 0. (8)

The no-slip and temperature conditions at the bottom
surfacez = 0.

W = DW = 0, (9)

θ = 0. (uniform temperature) (10)

At the upper free surface,z = 1,

W = 0, (11)
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Dθ =−Biθ , (12)

(D2+ k2)W +Mk2θ +
NDW

L
= 0, (13)

where W and θ are the velocity and temperature
amplitudes, respectively, andk is the wave number. The
nondimensional parameters are the Biot numberBi,
Lewis numberL , Marangoni numberM and elasticity
numberN andD = d

dz .
The onset of steady Marangoni convection can be

determined by solving the system of equations (7) – (13).
The analytical solutions for the steady Marangoni
convection will be determined and the marginal curves
will be plotted to assess the effects of the parameters on
the critical Marangoni number.

3 Solutions to the linearized problems

The system of equations (7) – (13) are solved using the
Galerkin Method. Multiplying (7) and (8) by W and θ ,
respectively and integrating the resulting equations by
parts with respect toz from 0 to 1. The chosen trial
functions are

W1 = z2
− z4 and θ1 = z2

−

2+Bi
1+Bi

, (14)

which satisfy all the boundary conditions (9) to (13) and
takingW = AW1 andT = Bθ1 whereA andB are constants
. The expression for the Marangoni numberM is

M =
C1−C2C3

C4
(15)

where

C1 = Rk2
<W1θ1 >

2
, (16)

C2 = Rk2
<W1θ1 >

2
, (17)

C3 =
N
L
[DW1(1))

2+< (D2W1)
2
>−2k2

< (DW1)
2
>

(18)

+ k2
<W 2

1 >],

C4 = k2DW1(1)θ1(1)<W θ1 >, (19)

where the angle brackets< ·> denote the integration with
respect to z from 0 to 1.

Performing the integration yields

C1 =
Rk2(46+11Bi)2

176400(1+Bi)2, (20)

C2 =
50Bi+10Bi2+40+ k2(16+7Bi+Bi2)

30(1+Bi2)
, (21)

C3 =
8N(k4

−33k2+819)
315L

, (22)

C4 =
k2(46+11Bi)
210(1+Bi)2 , (23)

M =
1

2520(46+11Bi)k2L

(

6348RLk2+3036RLBik2

(24)

+363RLk2Bi2−18345600NBi−1829184NBik2

+81088NBik4
−3669120NBi2−219072Nk2Bi2

+10304Nk2Bi4−14676480N−5279232Nk2

+218624Nk4
−7168Nk6

−3136NBik6
−448NBi2k6

)

,

4 Result and discussion

The solution to the steady thermocapillary instabilities are
shown in the form of marginal curves in the plane(k,M).
The values ofM and its critical valuesMc will be
determined. The curves are plotted by accessing the
physical parameters such as Rayleigh number, Lewis
number, Biot number and elasticity number.

Fig. 1: Stability curves for steady convection withR = 0.1,L = 1
andBi = 0.1 for various values of elasticity number.
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Fig. 2: Stability curves for steady convection withN = 5, L = 1
andBi = 0.1 for various values of Rayleigh number.

Fig. 3: Stability curves for steady convection withN = 5, L = 1
andR = 0.1 for various values of Biot number.

Figs.1 – 4 show the behaviour of marginal curves for
M in detemining the region of stabilities for various
values of the wave number. The values ofM are observed
corresponding to certain ranges of the parameters Biot
number Bi, Rayleigh numberR, Lewis numberL and
elasticity numberN. Fig. 1 shows the increasing values of
M as the elasticity number increases which means the
surfactant stabilizes the system. The same behaviour can

Fig. 4: Stability curves for steady convection withR = 0.1,N = 5
andBi = 0.1 for various values of Lewis number.

Fig. 5: The effect of Lewis number on the critical Marangoni
number for various values of elasticity number withR = 0.1 and
Bi = 0.1.

be seen in Fig.3 where the system is more stable with
larger values of Biot number. The Rayleigh number and
Lewis number have destabilizing effects on the system as
shown in Fig.2 and Fig.4 respectively. The value ofM
reaches the same minimal value in all cases. This means
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Fig. 6: The effect of Lewis number on the critical Marangoni
number for various values of Rayleigh number withN = 5 andBi
= 0.1.

Fig. 7: The effect of Lewis number on the critical Marangoni
number for various values of Biot number withR = 1 andN = 5.

that the values of the parameters does not affect the wave
number at the point whereM is minimal.

Figs. 5 – 13 illustrate the characteristics of critical
Marangoni number for several values of parametersN, Bi,
L andR. Figs.5 – 7 show the influences of Lewis number
L, Figs.8 – 10 give the effect of Biot numberBi and the
impact of elasticity numberN is shown in Figs.11 – 13.

Fig. 8: The effect of Biot number on the critical Marangoni
number for various values of elasticity number withL = 1 and
R = 0.1.

Fig. 9: The effect of Biot number on the critical Marangoni
number for various values of Rayleigh number withL = 1 and
N = 5.

When L is very small, the values of critical Marangoni
Mc is very high and asL increases, the values ofMc is
exponentially decreasing as shown in Fig.5. As the
values of elasticity number getting larger, there is slight
increment inMc. Elasticity number stabilize the fluid
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Fig. 10: The effect of Biot number on the critical Marangoni
number for various values of Lewis number withN = 5 andR
= 0.1.

Fig. 11: The effect of elasticity number on the critical Marangoni
number for various values of Rayleigh number withL = 1 andBi
= 0.1.

system. In Fig.6, Mc reaches negative values even with
small L but with large value ofR. Rayleigh number
destabilizes the system as the values ofR increases,Mc
decreases. The buoyancy effect driven by gravity force

Fig. 12: The effect of elasticity number on the critical Marangoni
number for various values of Lewis number withR = 0.1 andBi
= 0.1.

Fig. 13: The effect of elasticity number on the critical Marangoni
number for various values of Biot number withL = 1 andR = 0.1.

destabilizes the liquid layer system. Fig.7 shows similar
behaviour as in Fig.5 for various values of heat transfer
coefficientBi under the influence ofL . As Bi increases,
Mc increases. The fluid system is stable when more heat
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is allowed to transfer between the fluid and the gas phases
(i.e asBi increases).

Figs.8 – 10 show linear increment for critical values
Mc as Biot numberBi becomes larger as more heat is
allowed to escape from the liquid to the gas phases. The
marginal stability curves shift to a higher position whenN
increases which results in the increase of the values of
Mc. The values ofR andL decrease the values ofMc. N
stabilizes the fluid system whereas R andL have
destabilizing effect. Figs.11 – 13 also illustrate the
linearly increasing of the values ofMc as N increasing.
WhenN=0, Mc=0 for all values ofBi andL as shown in
Fig. 12and Fig.13.

5 Conclusion

In this paper, the steady thermosolutocapillary instability
in a liquid layer is discussed with the presence of
insoluble surfactant and gravity for nondeformable
surface. Analysis is done by using the linear stability
analysis and the analytical solution for Marangoni
number is obtained by using the Galerkin method. The
effects of physical parameters on the onset of steady
instability has been analysed. In conclusion we found that
the elasticity number and Biot number have stabilizing
effect as more heat is transferred between the fluid to the
gas phases whereas Lewis number and Rayleigh number
destabilizing the system. The increasing value of
Rayleigh number will increase the buoyancy driven flow
of the fluid. Gravitational force creates the destabilization
enviroment for thermocapillary convection in a liquid
layer.
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