
Appl. Math. Inf. Sci.8, No. 4, 1691-1698 (2014) 1691

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080425

A Parallel Branch and Bound Algorithm for Solving
Large Scale Integer Programming Problems

Mahmoud M. Ismail1, Osama abd el-raoof2,∗ and Waiel F. Abd EL-Wahed2

1 Operations Research Department, Zagazig University, EL-Sharkia, Egypt
2 Operations Research and DSS Department, Menofia University, Shebien El-koum, Egypt

Received: 26 Jul. 2013, Revised: 28 Oct. 2013, Accepted: 29 Oct. 2013
Published online: 1 Jul. 2014

Abstract: Branch and Bound technique is commonly used for intelligent search in finding a set of integer solutions within a space of
interest. The corresponding binary tree structure provides a natural parallelism allowing concurrent evaluation of subproblems using
parallel computing technology. While the master-worker paradigm is successfully used in many parallel applications as a common
framework to implement parallel applications, it has drawbacks when a large number of computing resources are connected via WAN.
A supervisor-master-sub-master-worker algorithm has been proposed. From the solved benchmark example this algorithm proved
to provide a considerable save of time. Results show that a consistently better efficiency can be achieved in solving integer equations,
providing reduction of time. The hierarchical supervisor-master-sub-master-worker algorithm sustains good performance revealed from
the knapsack problem solved as a benchmark example.

Keywords: Branch and bound, parallel processing, and Integer Programming

1 Introduction

Combinatorial Optimization is the process of finding one
or more of best solutions in a well-defined discrete
problem space [24]. Such problems occur in almost all
fields of management (e.g. finance, marketing,
production, scheduling, inventory control, facility
location and layout, data-base management), as well as in
many engineering disciplines. Branch-and-bound
algorithms are general methods applicable to various
combinatorial optimization problems that belong to the
class of NP-hard problems [4]. These algorithms are
search-based techniques that enumerate the entire
solution space. Parallelization is an appropriate method
for accelerating the enumeration process. Since the
algorithms is usually time consuming in the evaluation of
a subproblem, high-level parallelism of such algorithms is
implemented, in which case all the existing subproblems
are parallelized simultaneously provided that an adequate
number of processors is available. Even though there are
several criteria for classifying parallel branch-and-bound
algorithms [5], [7], [9] and [19], the most useful criterion
is the search tree management. The search tree is
managed with a single subproblem pool in the central

control case (central control scheme) or with multiple
subproblem pools in the distributed control case
(distributed control scheme). Parallelization with a single
subproblem pool usually achieves higher efficiency until a
large number of processors are used [11] and [20].

Parallel Branch and Bound algorithm for Integer
programming has been studied since the early eighties
[2], [8], [16], [17], [22], [23] and [25]. Parallel computers
in general and distributed multiprocessor computers in
particular are increasingly accepted as platforms which
provide enhanced computational power in a cost effective
way. Developing parallel search techniques for these
platforms has two alternative motivations, namely,
speeding up the solution time for a given model and to
increase the size of the solvable IP problems; these are
known as speed-up and scale-up in the parallel algorithm
literature. In developing Parallel Branch and Bound
(PB&B) algorithms, the broad aim is to reduce the
execution time in relation to the number of processors
used and to solve large size problems.

The paper is organized such that the next section 2
provides a brief overview of integer programming.
Section 3 describes the basics of Parallel Branch and
Bound algorithm. Section 4 describes the method of the

∗ Corresponding author e-mail:osamaabd@hotmail.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080425

1692 M. M. Ismail et. al. : A Parallel Branch and Bound Algorithm for Solving...

proposed parallel branch and bound algorithm used.
Section 5 discusses Solving Integer Programming
Problem by the Proposed Parallel Branch and Bound
Algorithm. Section 6 discusses the computational results.
In section 7, a conclusion is introduced.

2 Integer Programming

It is often impossible to represent certain features of many
real-world problems using only linear constraints and
continuous variables. In modeling a real world problem, it
is often necessary to represent discrete activities by
variables which are restricted to take only integer values.

The general mathematical form of integer
programming problems is:

Maximize

Z =
n

∑
i=1

cixi . (1)

Subject to.

n

∑
i=1

a ji xi ≤ b j ,(j = 1,2,3, ...,m), (2)

xi ≥ 0, xi integers and(i = 1,2,3, ...,n). (3)

Such problems are called linear integer-programming
problems. It is said to be mixed integer program when
some, but not all, variables are restricted to be integer, and
is called a pure integer program when all decision
variables are integers. If the constraints are of network
nature, then an integer solution can be obtained by
ignoring the integrality restrictions and solving the
resulting linear program. Otherwise, variables will be
fractional in the linear-programming solution, and further
measures must be taken to determine the integer-
programming solution.

Note, that MIPs in maximization form can be
transformed to minimization form by multiplying the
objective function vector by -1. Similarly, ”≥ ”
constraints can be multiplied by -1 to obtain ”≤ ”
constraints. Equations can be replaced by two opposite
inequalities [1].

We consider the 0-1 integer programming problem:
Maximize

Z =
n

∑
i=1

cixi . (4)

Subject to.

n

∑
i=1

a ji xi ≤ b j ,(j = 1,2,3, ...,m), (5)

x j = 0 or 1 ,(i = 1,2,3, ...,n). (6)

We will restrict our attention to the case where a is
0-1, and where b is integer. Also with these restrictions,

the problem is NP-hard, and several well known NP-hard
problems, such as the set partitioning, covering and
packing problems, are conveniently stated in this way.
Common solution methods for ILP are based on solving
LP, which can usually be done efficiently. If LP happens
to give a 0-1 solution, this is also an optimal solution to
ILP, and for certain common and nontrivial subclasses of
0-1 problems, LP always have an integer solution. For
more difficult problems particular instances may also be
easy in this sense. If however the LP solution has many
noninteger values, very little information about the
solution to the 0-1 problem is obtained in this way, and
typically techniques such as branch and bound have to be
used to resolve the solution to integrality. This can work
very well for small problems and also for larger problems
with special structure, but nevertheless strongly limits the
range and size of problems that can be solved. For a full
presentation of existing methods, see for example [10]
and [21].

Branch and bound method is the basic workhorse
technique for solving integer and discrete programming
problems. The method is based on the observation that the
enumeration of integer solutions has a tree structure. The
main idea of the branch and bound algorithm is to find an
optimal solution and to prove its optimality by
successively partitioning the feasible set of the solution,
or the original problem, into subproblems of smaller size.
These subproblems are investigated by computing
lower/upper bounds of the objective function. These
lower/upper bounds are used to avoid exhaustive search
of the solution space.

3 Parallel Branch and Bound

The branch and bound is the divide and conquer method.
We divide a large problem into a few smaller ones. (This
is the ”branch” part). The conquering part is done by
estimate how good a solution we can get for each smaller
problems (to do this, we may have to divide the problem
further, until we get a problem that we can handle), that is
the ”bound” part [3].

The branch and bound algorithm is able to be
parallelized by distributing computation of subproblems
on multiple computing nodes. Parallel branch and bound
algorithms with the master-worker algorithm, where a
single master process dispatches tasks to multiple worker
processes, have been proposed in many literatures [3],
[18]. In master-worker algorithm, a single master process
dispatches subproblems, which correspond to leaf nodes
on the search tree, to multiple worker processes and
receives the computed results from the worker processes.
The computed results contain the best upper bound of the
objective function, and subproblems that have generated
by branching and have not been pruned on a worker
process. Also, the parallel algorithm with the hierarchical
master-worker paradigm is proposed to improve

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1691-1698 (2014) /www.naturalspublishing.com/Journals.asp 1693

performance on large-scale computing environment [13]
and [28].

3.1 Previous work

Carrying out a literature revealed that the master-worker
used in large scale size problems suffers from
communication overhead, and bottleneck on a Single
Master Process.

3.1.1 Communication overhead

Communication overhead between a master process and
worker processes affects the performance of an
application significantly. Communication occurs when a
master process dispatches a task to a worker process and a
worker process returns computed results to a master
process. Performance degradation occurs when
communication overhead is relatively large compared
with execution time of a single task. Thus, the impact of
communication overhead on performance could be
significant. In the supervisor-master-sub-master-worker
algorithm, the traffics between supervisor-masters
processes, master-submasters processes, and
submaster-worker processes are reduced.

3.1.2 Bottleneck on a Single Master Process

The performance of a master process could be a
bottleneck of application performance if the master
process controls too many worker processes. A master
process continuously communicates with all worker
processes to find an idle worker process, to dispatch new
tasks and to receive computed results. A master process
needs to perform these procedures in very frequent
manner. Thus, if a master process controls too many
worker processes (in large scale problems), procedures
for computation and I/O on a master process degrades
performance.

4 Proposed Parallel Branch and Bound

This section describes the proposed parallel branch and
bound algorithm to solve the large-scale integer
programming Problems with the hierarchical
supervisor-master-sub-master-worker paradigm, where a
supervisor process controls multiple process sets, each of
which is composed of a master processes. Each master
composed of sub-master processes and each sub-master
composed of worker processes. A set of
master-sub-master-worker processes performs a parallel
branch and bound method for a subset of a search tree,
that is, a master process dispatches subproblems to
multiple sub-masters, each sub-master process dispatches

subproblems to worker processes and receives computed
results from the worker processes. A supervisor process
performs load balancing among master processes by
delivering subproblems to master processes. A Master
process performs load balancing among sub-master
processes by delivering subproblems to sub-master
processes. Also, a supervisor process, master processes,
and sub-master processes gather the best upper bound of
the objective function, which is computed on each worker
process, and updates the current best upper bound on all
worker processes hierarchically.

The updating of the current best upper bound
improves the performance of the application. Figure 4.1
shows an overview of the proposed algorithm. On the
figure, ZWk, ZMi , ZSM j, and Z denote the current best
upper bound of the objective function stored on a worker
processWk, a master processMi , a sub-master process
SM j and a supervisor process, respectively. Here,k = 1,2
... is the number of worker processes in a set of a master
and worker processes andi = 1,2 ... is the number of
master processes, andj = 1,2 ... is the number of sub-
master processes.

The supervisor, master, sub-master, and worker
processes in the proposed algorithm are described in
details in the rest of this section.

Fig. 1: Proposed Hierarchical Supervisor-Master-Sub master-
Worker Paradigm

4.1 Supervisor Process

A supervisor process achieves load balancing; distribute
the equal number of subproblems to master processes,
and shares the best upper bound of the objective function
among all processes by performing the following steps:

1.A supervisor process receives the computed results
from the master processMi .

2.A supervisor process comparesZMi with the current
best upper bound Z. IfZMi is less than Z a supervisor
process updates Z to the value ofZMi and requests all
master processes to update the current best upper
bound on the master processes with the updated Z.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1694 M. M. Ismail et. al. : A Parallel Branch and Bound Algorithm for Solving...

3.A supervisor process computes the lowest lower
bound of the objective function by comparing the
lowest lower bounds computed on master processes,
and examines the optimality of the problem, if the
problem is feasible and optimal, a supervisor process
requests all master processes to terminate
computation.

4.2 Master Process

A master process,Mi , achieves load balancing; distribute
the equal number of subproblems to sub-master
processes. It repeats the following steps until it receivesa
request from a supervisor process to terminate the
computation.

1.Mi receives new subproblems and the current best
upper bound of the objective function stored on
supervisor, or Z, from supervisor.

2.Mi compares the best upper bound stored on the
supervisor process Z, with the currentZMi . If Z is less
thanZMi , Mi updatesZMi to the value of Z.

3.Mi sends the results to a supervisor process containing
the number of subproblems assigned toMi , ZMi the
current lowest lower bound of the objective function,
and the solution of the objective function.

4.Mi searches for idle sub-master processes. IfMi finds
an idle sub-master process,SM j , it performs the
following steps:

–Mi receives computed results containing
subproblems generated onSM j , ZSM j and the
solution of the objective function, fromSM j .

–Mi prunes subproblems which their lower bounds
exceedZMi .

–Mi compares the currentZMi andZSM j. If ZSM j is
less thanZMi , SM j updatesZMi to the value ofZSM j.

–Mi dispatches a new subproblem and sendsZMi to
SM j .

4.3 Sub-Master Process

A sub-master process performs a parallel branch and
bound method with worker processes and achieves load
balancing in cooperation with a master process. A
sub-master process, SMj, repeats the following steps until
it receives a request to terminate the computation from a
master process.

1.SM j receives new subproblems and the current best
upper bound of the objective function stored onMi , or
ZMi , from Mi .

2.SM j compares the best upper bound stored on the
master process, orZMi , with the currentZSM j. If ZMi is
less thanZSM j, SM j updatesZSM j to the value ofZMi .

3.SM j sends the results to a master process. The results
contain the number of subproblems assigned toSM j ,
ZSM j the current lowest lower bound of the objective
function, and the solution of the objective function.

4.SM j searches for idle worker processes. IfSM j finds
an idle worker process,Wk, it performs the following
steps:

–SM j receives computed results, which contains
subproblems generated onWk, ZWk and the
solution of the objective function fromWk.

–SM j prunes subproblems which their lower bounds
exceedZSM j.

–SM j compares the currentZSM j andZWk. If ZWk is
less thanZSM j, SM j updatesZSM j to the value of
ZWk.

–SM j dispatches a new subproblem and sendsZSM j
to Wk.

4.4 Worker Process

A worker process,Wk, performs the following steps
whenever it is dispatched a subproblem from a sub-master
process,SM j .

1.Wk receives a subproblem and the current best upper
bound of the objective function stored onSM j , orZSM j,
from SM j .

2.Wk applies branch and bound technique on the
subproblem and generates a tree of subproblems.

3.Wk computes the lower/upper bound of the objective
function for subproblems on the tree. For each
subproblem on the tree, if the computed upper bound
is less than the current best upper bound stored onWk,
or ZWk, Wk updatesZWk to the lower value.

4.Wk prunes subproblems which their lower bounds
exceedZWk.

5.Wk returns the computed results, or subproblems that
have not been pruned,ZWk and the solution of the
objective function toSM j .

4.5 Waiting nodes organizing

Each worker keeps a local list of waiting nodes on the
basis of node evaluation criterion. The list of waiting
nodes is the most important item, which is requested by
the sub-master. Moreover, the nodes which are higher up
in the sorted list are more likely to be transmitted first.
Therefore, a procedure has been set up to keep the list of
waiting nodes sorted considering their priority as
determined by the given criterion. Whenever a worker
produces two new nodes or receives a number of nodes
from the sub-master, this procedure is called to place
these nodes. The nodes are then stored according to the
given priority in the local list. The following is a
summary of the procedure by which the list of waiting
nodes is organized.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1691-1698 (2014) /www.naturalspublishing.com/Journals.asp 1695

–Sorting the list: If there are new nodes to add to the
local list then insert them into the list of waiting nodes
in their proper priority, according to the strategy
chosen.

–Pruning nodes:
-If the list is empty then Exit.
-If the node satisfies the pruned conditions then
prune this node.

-Otherwise: Pointing to the next node to be solved.
–Exit.

Fig. 2: Flowchart for proposed Parallel B&B

5 Solving Integer Programming Problem by
the Proposed Parallel Branch and Bound
Algorithm

benchmark tests the algorithm and compares results in
many papers, so let us solve the following example by the
proposed algorithm, Assuming that we have two masters.

Max

Z = 2x1−x2+4x3+7x4−5x5+12x6+9x7−4x8−x9+2x10 (7)

S.t.

3x1−x2+2x3+4x6−3x7+8x8+x9 ≥ 5 (8)

x1−x2+3x4+7x5+8x6+5x7−x8−7x9+4x10≥ 12 (9)

4x2+7x3+x4+2x5−5x6+3x9+9x10≥ 1 (10)

2x1+4x3−x4+4x8+5x9+3x10≥ 2 (11)

x j are integers f or j= 1,2,3,,10 (12)

The first step is to solve the problem using
LP-relaxation and put the solution into the supervisor list,
the initial solution is shown in Table 5.1.

Table 1: Initial solution using LP-relaxation
z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
36.55 0 0 0 3.302 0 1.097 0.149 0 1.06 0

That is, the optimal value of the LP-relaxation is an
upper bound z = 36.5513, and there are four non integer
variables in the initial solutionx4, x6, x7, and x9, the
supervisor divides these variables among the masters
using the loading balance. Let’s deal with the non integer
variables in the initial solution, supervisor sends variables
x7 andx9 to 1st master(M1), and sendsx4 andx6 to 2nd

master(M2). M1 divides its variables among sub-masters
by sendingx9 to 1st sub-master(SM1), and sendingx7 to
the 2nd sub-master(SM2). M2 also divides its variables
among sub-masters by sendingx6 to 1st sub-master inM2,
and sendingx4 to the 2nd sub-master inM2.

SM1 in M1 assigns the variablex9 to the 1st worker(W1)
which uses the branch and bound technique for the non
integer variablex9. The solution that is gained is shown in
Table 5.2.

Table 2: Solution of B&B onx9 variable
z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
35.97 0 0 0 3.337 0 1.067 0.089 0 1 0

W1 delivers the solution toSM1 in M1 to add the new
non integer variablesx4, x6, andx7 to its list, and thenSM1
dispatches them to the workers by assigningx4 to W1, x6
to W2, andx7 to W3 to be solved, then the workers deliver
the solutions toSM1 in M1 to compare them and choose
the best solution among them. At the same time,SM2 in
M1, SM1 in M2, andSM2 in M2 do the same steps on the
non integer variables that have been assigned to each one
until we obtain the integer solution. The first integer
solution has been obtained inW3 in SM1 in M1 at the
iteration number three, and it is shown in Table 5.3.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1696 M. M. Ismail et. al. : A Parallel Branch and Bound Algorithm for Solving...

Table 3: First integer solution obtained
z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

32 0 0 0 3 0 1 0 0 1 0

SM1 in M1 compares the solutions of its workers and
find that the best solution is the integer solution atW3, and
then it delivers this solution toM1 which compares the
solutions ofSM1 andSM2 to find the best of them. Then it
delivers the solution to the supervisor which compares the
solutions ofM1 andM2 to find that the integer solution at
M1 is the best solution. Supervisor broadcasts the best
solution to masters, sub-masters, and workers to terminate
the solution. The final (optimal) solution of this problem
that has been broadcast by the supervisor is shown in
Table 5.4.

Table 4: Final solution of the problem
z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

32 0 0 0 3 0 1 0 0 1 0

6 Computational Results

This section presents computational results of the
proposed parallel branch and bound algorithm to solve
Large-scale Knapsack Problems with the hierarchical
supervisor-master-sub-master-worker paradigm. The
computational results show performance comparison
between the master-worker algorithm (MW) and the
hierarchical supervisor- master-sub-master-worker
algorithm (PPBB). Table 6.5, and Figure 6.3 present
execution time to solve knapsack problems by MW and
PPBB. A supervisor process, a master process,
sub-master process and worker processes run on
computers (PIV 3.0GHz, 1024MB RAM.) connected to
LAN.

Table 5: Execution time of different instances of knapsack
problems.

No. of Variables
PPBB MW

Z
Time
(ms)

Z
Time
(ms)

10 241 111 241 362
50 569 826 569 1558
100 460 1542 460 7188
500 965 6284 965 26115
1000 4266 10109 4266 73645
2000 10242 18127 10242 97518

Computed results show that in small problems; with
10, and 50 variables, the execution times were

Fig. 3: Execution time of different instances of knapsack
problems

approximately equal in both algorithms (PPBB, and
MW). However moving to largest scale problems, the
execution time of PPBB was obviously smaller than that
in MW. It may be included from the results that as the
number of variables , increases the difference between
execution time of the two algorithms will assure the better
performance of the PPBB algorithm with a clear
reduction of execution time dealing with large-scale
problems.

From the previous results we can conclude from the
authors view, the efficiency improvement between PPBB
and MW as shown in Eq. (13).

Tk

Tj
×100%. (13)

Where theTk is the execution time of PPBB method,
andTj is the execution time of MW method. The results
are shown in table 6.6.

Table 6: Efficiency Improvement in Time between PPBB and
MW.

No. of variables Efficiency Improvement in Time
10 326.1%
50 188.6%
100 466.1%
500 415.8%
1000 728.5%
2000 537.9%

It appears that the efficiency in time of PPBB is much
greater than MW. Also, It appears that in large problem
sizes the time efficiency in PPBB gets better than MW.

Conclusion

This paper proposed a parallel branch and bound
algorithm to solve large-scale integer programming
problems that parallelized with the hierarchical
supervisor-master-sub-master-worker algorithm, and

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1691-1698 (2014) /www.naturalspublishing.com/Journals.asp 1697

compared its performance with conventional
master-worker algorithm. The algorithm effectively
overcomes the drawbacks of master-worker algorithm,
such as communication overhead by putting frequent
communication between a master process, a sub-master
processes, and worker processes in tightly coupled
computing resources. It also, overcomes bottleneck on a
single master process by distributing work among
multiple master processes. The algorithm also, increases
the efficiency of the solution process, improves the
performance scalability by distributing work among
multiple master processes, and increases the
diversification of solutions at the same time reducing the
execution time in comparison with master-worker
algorithm. The algorithm has been tested by solving a set
of large-scale knapsack problems. The proposed
algorithm is capable to provide a considerable reduction
of time compared with other algorithms most obviousely
at lower scale problems.

References

[1] A. Fgenschuh and A. Martin. Computational integer
programming and cutting planes. In K. Aardal, G.
L. Nemhauser, and R.Weismantel, editors, Discrete
Optimization, Handbooks in Operations Research and
Management Science,12, 69–122 (2005).

[2] B. W. Wah, G. J. Li, C. F. Yu, Multiprocessing of
Combinatorial Search Problems,IEEE Comp., 93-108
(1985).

[3] Epperly, T. G. W, Global Optimization of Nonconvex
Nonlinear Programs Using Parallel Branch and Bound,
Ph.D. thesis. University of Wisconsin, Madison, WI, (1995).

[4] G. Cybenko, Dynamic load balancing for distributed
memory multiprocessors,Jornal of Parallel and Distributed
Computing,7, 279–301 (1989).

[5] G. Gendron and T. G. Crainic, Parallel branch-and-bound
algorithms: survey and synthesis,Operations Research,6,
1042–1066 (1994).

[6] G. Mitra et al,Parallel Computing,23, 733–753 (1997).
[7] G. P. McKeown, V. J. Rayward-Smith, and S. A. Rush.

Parallel branch-and-bound,Parallel branch-and-bound,
Advanced topics in computer science, 111-150 (1992).

[8] G. P. McKeown, V. J. Rayward-Smith, S. A. Rush, H. J.
Turpin, Using transputer network to solve B&B problems,
Proceedings of the Transputing 91 Conference,2, 781–800
(1991).

[9] H. W. J. M. Trienekens,Parallel Branch and Bound
Algorithms, Ph.D. thesis. Erasmus Universiteit, Rotterdam,
(1990).

[10] Hu T. C.,Integer programming and network flows, Addison
Wesley, (1969).

[11] J. Eckstein. Control strategies for parallel branch-and-
bound, In Proceedings of Super-computing,94, 41–48
(1994).

[12] J. Goux, S. Kulkarni, J. Linderoth, and M. Yoder, An
enabling framework for master-worker applications on the
computational grid,IEEE Symposium on High Performance
Distributed Computing,9, (1994).

[13] K. Aida, W. Natsume and Y. Futakata, Distributed
Computing with Hierarchical Master-worker Paradigm
for Parallel Branch and Bound Algorithm,IEEE/ACM
International Symposium on Cluster Computing and the
Grid, 3, (2003).

[14] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C
Lee and H. Casanova, Overview of GridRPC,A Remote
Procedure Call API for Grid Computing, Grid Computing
Grid 2002, LNCS2536,(2002).

[15] M. O. Neary and P. Cappello, Advanced Eager Scheduling
for Java-Based Adaptively Parallel Computing,Proc. of
the 2002 joint ACM-ISCOPE conference on Java Grande,
(2002).

[16] M. J. Quinn, Analysis and implementation of B&B
algorithms on a hypercube multicomputer,IIEEE Trans.
Comput.,3, 384–387 (1990).

[17] M. J. Quinn, N. Deo, An upper bound for the speed-up of
parallel best-bound B&B algorithm,BIT, 26, 35–43 (1986).

[18] Nemhauser G. L. and Wolsey L. A. ,Integer and
Combinatorial Optimization, Wiley, (1989).

[19] R. Corra. A parallel formulation for general branch-and-
bound algorithms. In A.Ferreira and J.Rolim, editors,
Lecture Notes in Computer Science,980, 395–409 (1995).

[20] R. Lling and B. Monien. Two strategies for solving the
vertex cover problem on transputer network. In M.Raynal
and J.C-.Bermond, editors,Distributed Algorithms, Lecture
Notes in Computer Science,160–170 (1989).

[21] Schrijver A., Theory of Linear and Integer Programming,
Wiley,(1995).

[22] T. H. Lai, S. Sahni, Anomalies in parallel B&B algorithms,
Res. Contrib.,6, 594–602 (1984).

[23] T. L. Cannon, K. L. Hoffman, Large scale O-l linear
programming on distributed workstations,Ann. Operations
Res,22, 181–217 (1990).

[24] Tomar, Short course: Some applications of combinatorial
optimization in telecommunications, (2003).

[25] V. Kumar, G. Y. Ananth,Parallel Algorithms for Discrete
Optimisation Problems, Department of Computer Science,
University of Minnesota, Minneapolis, (1992).

[26] Y. Tanaka, M. Sato, M. Hirano, H. Nakada, and S.
Sekiguchi, Performance evaluation of a firewall compliant
globus-based wide-area cluster system,Proc. of IEEE
Symposium on High-Performance Distributed Computing,,
9, (2000).

[27] Yong Ching Lim, Fellow, IEEE, Y. Sun, and Ya Jun Yu,
Student Member, IEEE, Design of Discrete-Coefficient FIR
Filters on Loosely Connected Parallel Machines,IEEE
transactions on signal processing,50, (2002).

[28] Yoshiaki Futakata, Tokyo Institute of Technology, Parallel
Branch and Bound Algorithm with the Hierarchical Master-
Worker Paradigm on the grid,Presto, JST,2, (2006).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1698 M. M. Ismail et. al. : A Parallel Branch and Bound Algorithm for Solving...

Mahmoud Mohammed
Ismail got his BS.C.
in information system
and technology in May
2004, Faculty of Computers
and Informatics, Zagazig
University. He is Teaching
Assistant in decision Support
Department, Faculty of
Computers and Informatics,

Zagazig University..

Osama Abdel-Raouf
Abdel-Rahman Lecturer
of Operation Research
and decision support systems
Faculty of Computers
and Information Menoufia
University got his B.Sc.In
Electrical Engineering
faculty of engineering
Menoufia University, M.Sc.In

Electrical Engineering faculty of engineering Menoufia in
2000, PhD in computers and information- Menoufia
university in 2008, Demonstrator, 1997-2002 in electrical
engineering department faculty of engineering -
Menoufia university, Assistant Lecturer, 2002-2008
Operation Research Department - Faculty of Computers
and Information Menoufia University, and Lecturer,
2008-20013 Operation Research Department - Faculty of
Computers and Information Menoufia University.

Waiel Fathi Abd
El-Wahed Professor
of Operation Research
and decision support systems
Faculty of Computers
and Information Menoufia
University got his BS.C. in
electrical power engineering
in May 1985, Master
of sciences in Engineering

mathematics, 1989, and PH.D. in engineering
Mathematics, 1993. The author published his papers in
Fuzzy sets and Systems, OMEGA and other local
and international conferences. Also, the author has
contributed in books with chapters. The interest areas of
research are intelligent optimization, multi-objective
optimization, information science, and decision support.

c© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	Integer Programming
	Parallel Branch and Bound
	Proposed Parallel Branch and Bound
	Solving Integer Programming Problem by the Proposed Parallel Branch and Bound Algorithm
	Computational Results

