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1 Introduction

There has been much written on the possible values
attained by the probability that a random pair of elements
in a finite group commute: see for instance [5], [9], [7],
[10], [12], [4], [6], [3], and [8]. The corresponding
question for finite rings was examined in [11] and [2]. In
this paper, we examine the probability that a random pairs
of elements in a finite ring anticommute.

Let f (X,Y) = aXY + bYX be a formal
noncommutative polynomial in the unknownsX and Y,
where a,b ∈ Z. We use f as a symbol of the function
f R : R×R→ R, defined byf R(x,y) := axy+ byx, on an
arbitrary ringR. For such a symbolf , and a ringR of
finite cardinality, let

Prf (R) :=
|{(x,y) ∈ R×R : f R(x,y) = 0}|

|R|2
, (1.1)

where|S| denotes the cardinality of a setS. WheneverC is
a class of finite rings, we define the associatedf -spectrum
S f (C )⊆Q∩ (0,1] by

S f (C ) := {Prf (R) | R∈ C } .

We give Prf (R) andS f (C ) special terminology and
notation in three important cases: thecommuting
probability andcommuting spectrum, Prc(R) andSc(C ),
correspond tof (X,Y) := XY−YX; the anticommuting
probability and anticommuting spectrum, Prac(R) and
Sac(C ), correspond tof (X,Y) := XY + YX; and the

annihilating probability and annihilating spectrum,
Prann(R) andSann(C ), correspond tof (X,Y) := XY.

The commuting spectrum was investigated in [2],
where all sufficiently large spectral values were given
explicitly, both for the classCfin of all finite rings and for
the classCp of all rings of order a power of a given prime
p. In [1], some relationships between the various spectra
were discussed: in particular, it was shown that the
annihilating spectrum of various classes of finite rings
contains thef -spectrum of the same class for eachf as
above. However [1] does not discuss any particular values
that lie in any of these spectra, so in this paper we carry
out such an investigation for anticommuting spectra (and
annihilating spectra for commutative rings), although
some of our results apply equally well tof -spectra for a
general symbolf .

We use three parametrized proportions in our main
results:

α(k; p) :=
pk+ p−1

pk+1 ,

δ (p) :=
3p−2

p3 ,

ε(p) :=
2p3+ p2−3p+1

p5 ,

where p is a prime andk ∈ N. For comparison with the
results of [2], we also defineγ(p) := (p3+ p2−1)/p5. We
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will see in Section2 that for all primesp andk∈ N,

γ(p)< ε(p)< δ (p)≤
1
p
< α(k+1;p)< α(k; p) , (1.2)

with all inequalities being strict forp> 2.
Let Cfin and Cp be as above. In [2], all elements of

Sc(Cp)∩ [γ(p),1] andSc(Cfin)∩ [γ(2),1] are explicitly
listed for all primes p. In the following theorem, we
explicitly list all elements ofSac(Cp) ∩ [ε(p),1] and
Sac(Cfin)∩ [ε(2),1]; note thatε(2) = 15/32.

Theorem 1.1. For all primes p,

Sac(Cp)∩ [ε(p),1] ={α(k; p) | k∈ N}∪

∪
{

1,α(1;p)2,δ (p),ε(p)
}

.

The above values are all distinct except for the equation
α(1;2)2 = α(3;2). Moreover,

Sac(Cfin)∩ [ε(2),1] ={α(k;2) | k∈ N}∪

∪{1,5/9,1/2,15/32} .

Comparing the above result with [2, Theorem 1], we
see that

Sc(Cp)∩ [ε(p),1] = {α(2k; p) | k∈ N}(

(Sac(Cp)∩ [ε(p),1] ,
Sc(Cfin)∩ [ε(2),1] = {α(2k;2) | k∈ N}(

(Sac(Cfin)∩ [ε(2),1] .

Not only are there more large anticommuting values than
large commuting values, but the isomorphism types
associated with large anticommuting values are
considerably more diverse than those associated with
large commuting values; see Theorem4.6. It is because of
this extra complexity that we chose a larger cutoff value
than that employed in [2]; note thatγ(2) = 11/32 but
ε(2) = 15/32.

After some preliminaries in Section2, we characterize
all values of Prf (R) for p-rings R (meaning rings inCp)
satisfying| f (R,R)| = p in Section3; here f (R,R) is the
additive subgroup ofR generated by all elements of the
form f (x,y), x,y∈ R. There are two key ideas introduced
in that section to accomplish this characterization:
reductions to rings of a simpler form (split and canonical
forms), and an augmentation process that produces a
sequence of values of Prf (·) once we find a single value
Prf (R) < 1. Split form also allows us to prove that the
anticommuting spectrum for all finite rings, or allp-rings,
equals the annihilating spectrum for all finite
commutative rings, or all commutativep-rings,
respectively.

Finally in Section4, we prove Theorem1.1. We also
list there all possible isomorphism types of canonical-form
commutativep-ringsRwith the property Prann(R)≥ ε(p).

2 Preliminaries

Rings and algebras are always assumed to be associative,
but are not necessarily unital. The classesCfin andCp are
as defined in the introduction; we call a ring inCp a
p-ring. We also defineCc to be the class of all finite
commutative rings, andCac to be the class of all finite
anticommutative rings. IfR is a ring, thenR2 will always
denotes the additive subgroup generated by all products
xy, rather than the cartesian product which will be
denotedR×R. A null ring is a ringRwith R2 = 0.

Zn denotes the ring of integers modn, Z∗
n is the set of

units inZn, andCn denotes a cyclic group of ordern. The
p-adic valuationνp : Z\{0} → {0,1,2, . . .} is defined by
νp(n) = k whenevern= ipk, i,k∈ Z, andi is not divisible
by the primep. If S is a subset of a vector spaceV, we
write spanS for the subspace spanned byS; usuallyV will
be the additive group of aZp-algebra.

f (X,Y) := aXY+ bYX is a symbol, with a,b ∈ Z.
Given a symbolf and a ringR, f R : R×R→ R is defined
by f R(x,y) := axy+ byx. SupposeR is a ring. Forx ∈ R,
we write f (x,R) for the additive subgroup
{ f R(x,y) | y ∈ R} of (R,+), and f (R,R) is the additive
subgroup generated byf R(x,y), x,y ∈ R. The right
f -annihilator of x∈ R is

r-Annf ,R(x) := {y∈ R | f R(x,y) = 0} ,

and theright f -annihilator of Ris

r-Annf (R) := {z∈ R | f R(x,z) = 0 for all x∈ R} .

The left-handed variants l-Annf ,R(x) and l-Annf (R) are
defined analogously. The(two-sided) f -annihilator of Ris
Annf (R) := r-Annf (R) ∩ l-Ann f (R). These various
annihilators are not in general ideals, soR/r-Annf (R),
R/ l-Ann f (R), R/Annf (R) always refer to factor groups
of (R,+). If f (X,Y) = XY, we drop references tof in the
above terminology and notation, so r-AnnR(x) is theright
annihilator of x∈ R, Ann(R) is theannihilator of R, etc.

We will need to deal with direct sums of rings, but
also direct sums of abelian groups, and sometimes the
groups involved in the latter are additive groups of
associated rings. To distinguish between the two concepts,
we write A⊕B for a direct sum of rings, andA⊞B for a
direct sum of abelian groups.

If a ring R equals R1 ⊕ R2, then Prf (R) =
Prf (R1)Prf (R2): this follows easily from the fact that the
kernel of f R is precisely the cartesian product of the
kernels of f R1 and f R2. ThusS f (C ) is a monoid under
multiplication, with 0 as an accumulation point, whenever
C is a class of finite rings closed under direct sums that
contains at least one commutative ring and at least one
noncommutative ring.

Since a finite ring is a direct sum of rings of prime
power order, it follows that the numbers inS f (Cfin) are
precisely the set of all products∏n

i=1 ti , where n ∈ N,
ti ∈ S f (Cpi ), and eachpi is prime. To understand the
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structure ofS f (Cfin)∩ [a,1] for any given 0< a < 1, it
therefore suffices to understandS f (Cp) ∩ [a,1] for all
primes p. For this reason, we mostly concentrate on
investigating the spectraS f (Cp).

By considering the surjective group homomorphism
f R
x : R→ f (x,R), fx(y) = f (x,y), we make the following

observation; note that kerf R
x = r-Annf ,R(x).

Observation 2.1. For eachx in a ring R, the additive
groupsR/r-Annf ,R(x) and f (x,R) are isomorphic.

It thus follows easily from the definition of Prf (·) that

Prf (R) =
1

|R|2 ∑
x∈R

| r-Annf ,R(x)|

=
1
|R| ∑

x∈R

1
|R/r-Annf ,R(x)|

=
1
|R| ∑

x∈R

1
| f (x,R)|

.

(2.1)

Since r-Annf ,R(x) = r-Annf ,R(x+ z), z∈ l-Ann f (R), we
can alternatively write

Pr(R) =
1

|R/A| ∑
[x]∈R/A

1
| f (x,R)|

, (2.2)

wheneverA is a subgroup of(l-Ann f (R),+); the sum
above involves one term for each coset[x] of A.

If R is a p-ring, it follows from (2.2) that

Prf (R) =
∞

∑
k=0

qk

pk = (p−1)
∞

∑
k=0

Qk

pk+1 , (2.3)

where qk is the proportion of cosetsx+ l-Ann f (R) in
R/ l-Ann f (R) such that| f (x,R)| = pk, andQk := ∑k

j=0q j .
Note that the series involvingqk is really a finite sum, but
the one involvingQk is always an infinite series: in fact
Qk = 1 for all sufficiently largek.

Related to the above discussion, we make the
following useful observation.

Observation 2.2. If a,b,a′,b′ ∈ R, with
a−a′,b−b′ ∈ Annf (R), then f R(a,b) = f R(a′,b′), so f R

induces a bilinear map

f̃ R : (R/Annf (R))× (R/Annf (R))→ R.

By the fundamental theorem of finite abelian groups,
a finite abelianp-group (A,+) can be decomposed as a
direct sum

⊞
m
i=1Cpki , k1 ≥ k2 ≥ . . .km > 0, m≥ 0,

We callki thei-th invariant of A; these invariants andmare
uniquely determined. Abasis of Ais a set{u1, . . . ,um}⊂A,
where eachui is a generator of theith summandCpki (when
we view A as an internal direct sum of such summands).
Equivalently, a basis ofA is a spanning set ofA with the

property that a sum of the form∑m
i=1niui , ni ∈ N, equals 0

only if each termniui equals 0.
Finally in this section, we justify (1.2). The inequalities

1/p < α(k+ 1;p) < α(k; p) are obvious, once we write
α(k; p) = p−1+ p−k−1(p−1). Next,δ (2) = 1/2, and the
inequalityδ (p) < 1/p is clear forp ≥ 3. The inequality
ε(p)< δ (p) holds because

p5(δ (p)− ε(p)) = (3p3−2p2)− (2p3+ p2−3p+1)

= (p−1)3 > 0.

Finally, the inequalityγ(p)< ε(p) holds because

p5(ε(p)− γ(p)) = (2p3+ p2−3p+1)− (p3+ p2−1)

= (p+2)(p−1)2 > 0.

It is noteworthy also thatε(p) = α(1;p)α(2;p).

3 Split form, canonical form, and
augmentation

In this section, we discuss the concept of split- (and
canonical-) form rings. Split-form rings are easier to
handle than general rings for Prf , and provide a useful
reduction because for every finite ringR, there is a
split-form ringSwith Prf (R) = Prf (S). This concept is an
outgrowth of the concept of canonical form developed as
part of the theory of isoclinism and isologism for certain
universal algebras in [1], but here we develop the concept
without reference to that theory.

We then define a process of augmentation that allows
us to use existing values ofS f (Cp) to find new ones. In
particular, we use this process for a general symbolf to
help us characterize the set of values of Prf (R) for rings
satisfying | f (R,R)| = p. Our augmentation process is
related to that discussed in [2, Section 4]: in fact the
earlier process roughly corresponds to the case where
f (X,Y) := XY − YX and S is a split-form
noncommutative ring of orderp3 in the following
definition.

3.1 Split form and canonical form

Definition 3.1. A ring (or algebra)R hassplit form (with
data(R1,R2)) if it satisfies the following conditions:

(a) (R,+) is an internal direct sum of two abelian groups
R1 and R2, and we write elementsx ∈ S as x1 + x2,
wherexi ∈ Ri , i = 1,2.

(b) R1 has an associated multiplication that makes it into
a ring, and such that multiplication inR is then given
by the equation

(x1+x2)(y1+y2) = 0+x1y1 ∈ R2 .
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Part (b) above can be rewritten as

R2 ⊆ R2 ⊆ Ann(R) = l-Ann(R)∩ r-Ann(R) . (3.1)

It is sometimes useful to replace these containments by
equations, if possible.

Definition 3.2. A split-form ring (or algebra)R with data
(R1,R2) is said to havecanonical form if l-Ann(R) =
r-Ann(R) = R2 = R2.

Given a split-form ringR, there may be more than one
choice of data(R1,R2), although the split-form data are
uniquely defined ifR has canonical form, as is clear from
(3.1).

We now describe thesplit constructionwhich defines
a split-type ringS associated with a given ringR. First,
(S,+) equals the internal direct sum of the abelian groups
S1 and S2, whereS1 := (R,+) and S2 := R2. Writing a
general element ofS asx = x1 + x2, xi ∈ Ai , i = 1,2, we
define multiplication on S by the equation
(x1 + x2)(y1 + y2) = 0 + x1y1 ∈ S2, where x1y1 is an
R-product.

The utility of the split construction is tied to the fact
that it preserves several features of a ringR, as
summarized below. These features imply that if we wish
to investigateS f (C ) for some classC of finite rings,
then it often suffices to consider split-form rings. In the
following observations,f can be any symbol, and we use
the notation of the split construction above.

Observations 3.3.

(a) If R is ap-ring, or is commutative, or anticommutative,
thenShas the same property.

(b) f (S,S) can be identified withf (R,R).
(c) A(S) = A(R)⊞S2, whereA(·) stands for r-Annf (·),

l-Ann f (·), or Annf (·).
(d) Shas split form, with data(S1,S2).
(e) If R is finite, then Prf (R) = Prf (S) (as follows from

(2.2)).
(f) S3 = 0.

We now give thecanonical constructionwhich defines
a canonical-type ringSassociated with a split-form ringR
with data(R1,R2) that satisfies l-Ann(R) = r-Ann(R). Let
(S,+) be the internal direct sum ofS1 := R1/Ann(R1) and
S2 = R2, and we write a generalx ∈ S asx1 + x2, where
x1 ∈ S1 andx2 ∈ S2. Multiplication onS is defined by the
rule (x1+ x2)(y1+ y2) = 0+u1v1 ∈ S2, whereu1v1 is an
R-product, andu1,v1 ∈R1 are such thatx1 = u1+Ann(R1)
andy1 = v1+Ann(R1).

We now state some readily verified properties of the
canonical construction ofS from a given split-form ringR,
with notation as in the previous paragraph.

Observations 3.4.

(a) Observations3.3 all hold (since canonical form is a
special type of split form).

(b) S2 = S2 = R2.
(c) Ann(S) = S2.

(d) Shas canonical form, with data(S1,S2).
(e) The first invariant of(S,+) equals the first invariant of

both S1 andS2. In particular,S is aZp-algebra if and
only if S1 is an elementaryp-group.

Split form is of interest for all rings and all symbolsf ,
while canonical form will mostly be of interest for
f (X,Y) = XY in the case of commutative and
anticommutative rings. However we will see that it will
be useful by extension when working with symbols of the
form f (X,Y) = a(XY±YX), a∈ N.

Given a split-form ringR, we can always define a new
split-form ring with the same dataR′ := (R,+,◦), where
x◦ y := f R(x,y); associativity follows from the split-form
assumption. It is clear that Prann(R′) = Prf (R). Since split-
form rings give all possible values of Prf (·), we deduce
thatS f (C )⊆Sann(C ) if C = Cfin or if C = Cp for some
prime p; these containments were originally proved in [1].

The containmentS f (C ) ⊆ Sann(C ) might not be an
equality: for instance, Prann(Z2) = 3/4 /∈ Sc(Cfin)
according to the results of [2] or [11]. However we do
have the following result.

Theorem 3.5. Suppose p is a prime.

(a)Sac(Cfin) =Sann(Cc) andSac(Cp) =Sann(Cc∩Cp).
(b)Sc(Cfin) =Sann(Cac) andSc(Cp) =Sann(Cac∩Cp).

Proof. We prove only (a) since the proof of (b) is similar.
Since finite rings are direct sums of rings of prime power
order, it suffices to prove thatSac(Cp) = Sann(Cc ∩Cp).
When f (x,y) = xy+yx, the new multiplication forx◦y :=
f R(x,y) considered above is commutative (and associative
as long asR has split form, as mentioned above). Thus
Sac(Cp)⊆Sann(Cc∩Cp).

Conversely, ifR is a commutativep-ring for some odd
prime p, then Prann(R) = Prac(R′), whereR′ := (R,+,∗)
andx∗ y= 2−1xy. ThusSann(Cc∩Cp) =Sac(Cp) for all
p> 2.

This argument can be modified to work also forp= 2.
First, we assume as we may that the commutative ringR
has split form with data(R1,R2). Write R2 as an internal
direct sum of groupsUi , 1 ≤ i ≤ m, where eachUi is a
cyclic group of order 2ki with generatorui . Let S2 be the
abelian group which is an internal direct sum of cyclic
groupsVi of order 2ki+1 with generatorsvi , 1≤ i ≤ m. We
define an injective homomorphismµ2 : R2 → S2 by the
equations µ2(ui) = 2vi , 1 ≤ i ≤ m. Let S be the
commutative split-form ring with data(R1,S2) whose
multiplication∗S is defined byx∗Sy= µ2(xy) ∈ S2 for all
x,y ∈ R1, wherexy is an R-product. Givenx,y ∈ R1 we
have xy = 0 in R if and only if x ∗S y = 0, and so
Prann(R) = Prann(S).

We choose a basisB := {u1, . . . ,um} of R1. Since
ui ∗Su j ∈ 2S2 for all ui ,u j ∈ B, we can define a function
F : B × B → S2 with the properties that
F(ui ,u j) = F(u j ,ui) and 2F(ui ,u j) = ui ∗S u j for all
1 ≤ i, j ≤ m. Using bilinearity, we then define a new
multiplication ∗′S on S such thatS′ := (S,+,∗′) is a
split-form commutative ring with data(R1,S2) satisfying
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ui ∗
′ u j = F(ui ,u j). By bilinearity, we deduce that

2x ∗′ y = x ∗S y for all x,y ∈ S. It follows that
Prac(S′) = Prann(S), as required.�

Remark 3.6. The above theorem makes canonical form
useful for studying Prc and Prac: we first transform the
study of Prc(R) or Prac(R) for p-rings R to the study of
Prann(S) for anticommutative or commutativep-rings S,
respectively. By applying the canonical construction if
necessary, we can then assume thatS has canonical form
(bearing in mind Observations3.4).

Remark 3.7. For the benefit of someone who has read
[1], we mention that replacing a ringR by a related
canonical-form ring when investigating Prc or Prac
corresponds in the language of [1] to replacingR by a
canonical-form ring for isologism with respect to the
variety of commutative or anticommutative rings,
respectively. Furthermore two rings are isologic in this
sense if and only if the associated canonical-form rings
are isomorphic; see [1, Theorem 4.16(b)]. Thus
subsequent statements in this paper concerning
isomorphism types of canonical-form rings with certain
properties can be reworded as statements about the
isologism types of rings with those properties.

We have the following variant of (2.2) for split-form
ringsRwith data(R1,R2):

Prf (R) =
1

|R1|
∑

x1∈R1

1
| f (x1,R)|

. (3.2)

A split ring homomorphism h is a ring
homomorphism between split-form ringsR,S such that
h(Ri) ⊆ Si , i = 1,2, where(R1,R2) and (S1,S2) are the
data ofR andS, respectively.Split ring isomorphismsare
then defined in the natural way.

3.2 Augmentation

Definition 3.8. SupposeR andSare split-form rings with
data(R1,R2) and(S1,S2), respectively. Given an injective
homomorphismµ : S2 → R2, we define R⊕µ S, the
augmentation of R by S (viaµ), to be the unique ringT
with the following properties:

(a) (T,+) equals the internal direct sumR1⊞R2⊞S1.
(b) Write a general elementx ∈ T as x = x1 + x2 + x3,

wherex1 ∈R1, x2 ∈R2, andx3 ∈S1, multiplication inT
is defined by(x1+x2+x3)(y1+y2+y3) = 0+[x1y1+
φ(x3y3))]+0∈ R2 .

It is convenient below to have an alternative notation
for split-form data: if R has data(R1,R2), we write
∆1(R) := R1 and ∆2(R) := R2. In the following
observations, we use the notation of Definition3.8.

Observations 3.9.

(a) If R,S are both p-rings, or commutative, or
anticommutative, thenR⊕µ Shas the same property.

(b)T has split form with data(T1,T2), whereT1 :=R1⊞S1
andT2 := R2, andT has canonical form ifRandSboth
have canonical form.

(c) Writing Annf (R) = R′
1 ⊞R2 and Annf (S) = S′1 ⊞S2

for some subgroupsR′
1 of R1, andS′1 of S1, we have

Annf (T) = R′
1⊞R2⊞S′1.

(d) f (T,T) can naturally be identified with
f (R,R) + f (S,S). If R has canonical form, thenT2

can be identified withR2.
(e) If φR : R → R′ and φS : S → S′ are split ring

isomorphisms between split-form ringsR,S, then
R ⊕µ S is isomorphic to R′ ⊕µ ′ S′, where
µ ′ = φR◦µ ◦ (φ−1

S )|S′2
andS′2 = ∆2(S′).

(f) If a ring R is an internal direct sum of split-form rings
R′ and R′′, and µ : S2 → ∆2(R′), then R⊕µ S is
isomorphic to(R′⊕µ S)⊕R′′.

(g) BothRandScan naturally be viewed as ideals inT.

The proofs of the above observations are all rather
obvious, and are left to the reader. As we will see, the
choice of µ can affect the isomorphism type of an
augmentation, so the definition of µ ′ in
Observation3.9(e) is essential.

We now discuss the relationship between Prf (R⊕µ S),
and Prf (R),Prf (S), concentrating mostly on the case
where∆2(S) is cyclic of orderp, andR is a p-group for
some primep; even here, the choice ofµ is important. We
begin with a preparatory lemma.

Lemma 3.10. If S is a p-ring with | f (S,S)| = p, then
Prf (S) = α(m; p), where m= dimS/ l-Ann f (S)> 0.

Proof. Since| f (S,S)| = p, S/ l-Ann f (S) is necessarily a
vector space overZp of positive dimensionm. It follows
from (2.2) that

Prf (S) =
1

|S/ l-Ann f (S)|

(

pm−1
p

+1

)

=
pm+ p−1

pm+1 = α(m; p) ,

as required.�

Remark 3.11. Given a ring S, it is clear that
Prf (S) = Prf (Sop), whereSop is the opposite ring with
multiplication x∗ y = yx, and yx is an S-product. Since
dimS/ l-Ann f (S) determines Prf (S) in the above lemma,
we see that|S/ l-Ann f (S)| = |S/ r-Annf (S)| under the
assumption that| f (S,S)| = p. This equation can fail if
| f (S,S)|> p. For instance, letf (X,Y) = XY, and letSbe
the four-dimensionalZp-algebra with basis{u,v,w,z}
where the only nonzero products of basis elements are
u2 = uv= w andv2 = vu= z. We see thatShas split form
with data (S1,S2), where S1 := span{u,v} and
S2 := span{w,z}, Moreover l-Annf (S) = S2 has
dimension 2, while r-Annf (S) = span{u − v,w,z} has
dimension 3.
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We write Prf (R) = Pr+f (R)+Pr−f (R), where

Pr+f (R) =
1
|R| ∑

x∈R
µ(S2)⊆ f (x,R)

1
| f (x,R)|

,

Pr−f (R) =
1
|R| ∑

x∈R
µ(S2) 6⊆ f (x,R)

1
| f (x,R)|

.

If R has split form with data(R1,R2), we could
equivalently write

Pr+f (R) =
1

|R1|
∑

x∈R1
µ(S2)⊆ f (x,R)

1
| f (x,R)|

,

Pr−f (R) =
1

|R1|
∑

x∈R1
µ(S2) 6⊆ f (x,R)

1
| f (x,R)|

.

Lemma 3.12. Suppose R,S are split-form p-rings with
data (R1,R2) and (S1,S2), respectively, for some prime p.
Suppose also that|S2|= p anddimS/ l-Ann f (S) = m∈N.
With the notation of the previous paragraph, we have

Prf (R⊕µ S) = Pr+f (R)+Pr−f (R)Prf (S)

= Pr+f (R)+α(m; p)Pr−f (R) .
(3.3)

In particular, Prf (R)Prf (S)≤ Prf (R⊕µ S)< Prf (R).

Proof. Let T := R⊕µ S. As before, we write a general
elementx∈ T asx= x1+x2+x3, wherex1 ∈ R1, x2 ∈ R2,
and x3 ∈ S1. We say that x ∈ T is of Type A if
µ(S2) ⊆ f (x1,R), and ofType Botherwise. Sincem> 0,
we have 1< | f (S,S)| ≤ |S2| = p, and so necessarily
| f (S,S)|= p.

It is clear that f (x,T) is the sum of the subgroups
f (x1,R) and f (x3,S). Thus if x is Type A, then
f (x,T) = f (x1,R), and the total contribution to Prf (T) of
all Type A elements is precisely Pr+

f (R).
Suppose instead thatx is of Type B. Now| f (x3,S)| is

eitherp or 1, depending on whether or notx3 ∈ l-Ann f (S).
In either case, we see that

| f (x,T)|= | f (x1,R)| · | f (x3,S)| . (3.4)

It follows that

1
|T| ∑

x3∈S3

1
| f (x1+x2+x3,T)|

=

=
1

|R| · | f (x1,R)|

(

1
|S3|

∑
x3∈S3

1
| f (x3,S)|

)

=
Prf (S)

|R| · | f (x1,R)|
=

α(m; p)
|R| · | f (x1,R)|

,

where the last equation follows from Lemma3.10.
Summing these terms over allx ∈ R of Type B, we get

α(m; p)Pr−f (R). Adding this to the Type A contribution,
we deduce (3.3). Finally, the inequalities

Prf (R)Prf (S)≤ Prf (R⊕µ S)< Prf (R)

follow immediately from (3.3) because Pr−f (R)> 0.�
We now prove a variation of Lemma3.12dealing with

repeated augmentations using the same homomorphismµ ,
under the natural embedding ofR in R⊕µ S. We denote the
n-fold repeated augmentation asR⊕n

µ S, i.e. R⊕0
µ S= R,

andR⊕n
µ S= (R⊕n−1

µ S)⊕µ S for all n∈ N.

Lemma 3.13. Suppose R,S are p-rings of split form with
data (R1,R2) and (S1,S2), respectively, for some prime p.
Suppose also that|S2|= p and thatdimS/ l-Ann f (S) = m
for some m∈N. With the same notation as in Lemma3.12,
we have

Pr(R⊕n
µ S) = Pr+f (R)+α(mn; p)Pr−f (R) , n∈ N . (3.5)

Proof. Let Tn := R⊕n
µ S. We view (Tn,+) as an internal

direct sum ofR1, R2, andn distinct copies ofS1, and write
a general element ofT in the formx = x1+ x2+∑n+2

i=3 xi ,
wherexi+2 lies in the ith copy of S1. Arguing as in the
proof of Lemma3.12, we see that ifµ(S2) ⊆ f (x1,R),
then f (x,T) = f (x1,R), and so the total contribution to
Prf (T) of all such points is Pr+f (R). For all other points,
we see that ifxi+2 ∈ l-Ann f (S) for all i > 2 (a condition
that corresponds to∑n+2

i=3 xi representing the zero element

of ⊞n+2
i=3 S/ l-Ann f (S)), then | f (x,T)| = | f (x1,R)|, and

otherwise| f (x,T)| = p| f (x1,R)|. Consequently, we see
that

1
|Tn|

∑
(x3,...,xn+2)∈⊞

n+2
i=3 S

1

| f
(

∑n+2
i=1 xi ,Tn

)

|
=

=
1

|R| · | f (x1,R)|

(

1
pmn +

1
p
·

pmn−1
pmn

)

=
α(mn; p)

|R| · | f (x1,R)|
,

and the lemma follows as before.�

Remark 3.14. TakingR= S in Lemma3.13, it is readily
verified that

Pr(S⊕n−1
Id S) = α(mn; p) , n∈ N ,

where Id :S2 → S2 is the identity map. Thus, once we find
a single number in the spectrumS f (Cp) corresponding to
a ring S as in the above lemmas, we immediately get an
infinite sequence of elements ofS f (Cp). For future
reference, we write Aug(S,n) = S⊕n−1

Id S.

Theorem 3.15. Suppose f(X,Y) = aXY+ bYX is a
symbol for some a,b ∈ Z, and that at least one of a,b is
nonzero. Suppose also that p is a prime. Then the
elements ofS f (Cp) obtained by rings R∈ Cp for which
| f (R,R)|= p are precisely:
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(a) all numbers of the formα(n; p), n∈ N, if a+b 6= 0;
(b) all numbers of the formα(2n; p), n∈ N, if a+b= 0.

Furthermore to achieve these values, it suffices to use
commutative rings in (a), and anticommutative rings in
(b).

Proof. Suppose first thata+b 6= 0, and letk = νp(a+b).
It is readily verified thatR := Zpk+1 satisfies| f (R,R)|= p
and dimR/ l-Ann f (R) = 1. This is not a split-form ring
but we can apply the split construction to get the
commutative ringS such that(S,+) is isomorphic to
Cpk+1 ⊞Cpk+1 and has basis{u,v}, with multiplication
being defined byu2 = v and uv = v2 = 0. Then
| f (S,S)| = p and dimS/ l-Ann f (S) = 1. By Lemma3.10
and Remark3.14, we have Prf (Aug(S,n)) = α(n; p) for
all n ∈ N, and no other values of Prf (R) can occur for
p-rings R satisfying | f (R,R)| = p. Since S is
commutative, so is Aug(S,n).

It remains to considerf (X,Y) := a(XY−YX), a∈ N;
in this case, we have l-Annf (S) = r-Annf (S). Let
k = νp(a) and assumep > 2. As an abelian group, we

take (S,+) to be⊞3
i=1Cpk+1, with basisB := {u,v,w}.

Multiplication is defined by takinguv = −vu = w, and
xy = 0 for all other pairs(x,y) of basis elements. It is
readily verified thatS is an anticommutative split-form
Zp-algebra with data(S1,S2), where S1 is the additive
group generated byu and v, and S2 the additive group
generated byw. Also f (S,S) is generated bypkw, so
| f (S,S)| = p. Since Annf (S) is generated bypku, pkv,
andw, we have|S/Annf (S)| = p2. Thus by Lemma3.10,
we have Prf (S) = α(2;p), and so S f (Cp) contains
α(2n; p) for all n ∈ N. SinceS is anticommutative, so is
the augmented ring Aug(S,n) that gives rise toα(2n; p)
for all n∈ N.

When p = 2, this construction needs to be tweaked.
We instead take(S,+) to be⊕3

i=1C2k+2. Then the rest of
the proof is as before, except thatf (S,S) is generated by
2k+1w, and Annf (S) is generated by 2k+1u, 2k+1v, andw.

Suppose conversely that| f (R,R)|= p for somep-ring
R. Without loss of generality,R has split form with data
(R1,R2). We first define a new ringR′, where
(R′,+) = (R,+) and the multiplication◦ of R′ is defined
by x◦ y = f (x,y). ThenR′ is also a split-form ring with
data (R1,R2), and by construction Prann(R′) = Prf (R).
Because of the form off , R′ is anticommutative and
r-Ann(R′) = l-Ann(R′). We now carry out the canonical
construction to get an anticommutative canonical-form
Zp-algebraSwith data(S1,S2), whereS1 = R1/Ann(R1),
S2 = (R′)2, and Prann(S) = Prann(R′).

To finish the proof of (b), it suffices by Lemma3.10to
prove that dimS1 is even. This amounts to the claim that if
S is a finite-dimensional anticommutative canonical-form
Zp-algebra with data(S1,S2) such that dimS2 = 1, then
S1 has even dimension. For the sake of contradiction, we
assume that this is false, and that dimS1 is minimal for
such a counterexample.

BecauseS2 is nontrivial, we can select nonzero
u,v ∈ S1 such thatuv 6= 0. SinceS is anticommutative,u
and v are non-collinear. Moreover,uS= vS= S2 is a
vector space of dimension 1, so AnnS(u) and AnnS(v)
both have codimension 1 in S. Since
v∈ AnnS(v) \AnnS(u), we see that AnnS(u) and AnnS(v)
are distinct, and U := AnnS(u) ∩ AnnS(v) has
codimension 2. It is also clear thatU is of the form
U1⊞S2 for some subspaceU1 of S1. Neitheru nor v lie in
U1 since each fails to annihilate the other. It follows thatu
andU generate AnnS(u), thatv andU generate AnnS(v),
and thatu, v, andU generateS. Thus dimU = dimS−2.

We are done if dimS= 2, so suppose dimS> 2, and
thusU is a nontrivial split-formZp-algebra. SinceU1 ⊂S1,
wS1 is nontrivial for all nonzerow∈U1. ButU annihilates
u andv, so in factwU must be nontrivial. It follows that
U2 = S2, and that Ann(U) = S2. ThusU has canonical
form and it satisfies the same assumptions asS, with data
(U1,S2). Since dimU < dimS, dimU1 must be even. Now
dimS1 = dimU1+2, and the claim follows.�

As previously claimed, the choice ofµ can affect the
isomorphism type ofR⊕µ Seven if |∆2(S)| = p. We now
verify this fact by giving an example where the choice ofµ
affects the annihilating probability of the augmented ring.
Proposition 3.16. For each prime p, there exist canonical-
typeZp-algebras R and S, withdimR= 5, dimS= 2, and
dim∆2(S) = 1 such thatPrann(R⊕µ S) can take on two
distinct values depending on the choice ofµ .

Proof. Let R be the Zp-algebra with basis
{u1,u2,u3,z1,z2}, whereu2

1 = u2
2 = z1, u2

3 = z2, and all
other products of basis elements are zero, and letSbe the
subalgebra ofR with basis{u1,z1}. It is readily verified
that R andS both have canonical type with data(R1,R2)
and (S1,S2), respectively, whereR1 := span{u1,u2,u3},
R2 := span{z1,z2}, S1 := span{u1}, andS2 := span{z1}.
Moreover it is clear that span{u1,u2,z1} is isomorphic to
Aug(S,2), and soR is isomorphic to Aug(S,2)⊕S. Also
let S′2 := span{z1} andS′′2 := span{z2}.

We now augmentRby (another copy of)Sin two ways,
namely via isomorphismsµ ′ : S→ S′2 andµ ′′ : S→ S′′2. By
Observation3.9(f), R⊕µ ′ S is isomorphic to Aug(S,3)⊕
S andR⊕µ ′′ S is isomorphic to Aug(S,2)⊕Aug(S,2). In
view of Lemma3.10, we see that

P1 : = Prann(R⊕µ ′ S)

= Prann(Aug(S,3)) ·Prann(S)

= α(3;p) ·α(1;p)

while

P2 := Prann(R⊕µ ′′ S) = (Prann(Aug(S,2)))2 = α(2;p)2 .

Now P1 > P2 for all primesp since

p6(P1−P2) = (p3+ p−1)(2p−1)− (p2+ p−1)2

= p(p−1)3 .

Thus we have obtained two distinct values of Pr(R⊕µ S)
by varyingµ . �
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4 Large probability values

In this section, we find all possible values ofSac(Cp) in
the interval[ε(p),1]. However we begin by obtaining an
upper bound on Prf (R) dependent on the largest order of
elements inR/r-Annf (R); for this result, f can be any
symbol.

Theorem 4.1.Suppose f(X,Y) := aXY+bYX is a symbol,
where a,b∈Z are not both zero. Let R be a finite p-ring for
some prime p. Suppose the first invariant of R/r-Annf (R)
is k∈ N.

(a) Prf (R)≤ M(k; p) := (k(p−1)+ p)/pk+1.
(b) Equality in (a) is attained if and only if R/r-Annf (R)

is isomorphic to Cpk, and this is possible for a given
symbol f if and only if a+b is nonzero.

(c) M(k; p) is strictly decreasing as a function of k, with
M(1;p) = α(1;p), M(2;p) = δ (p), and M(3;p) <
ε(p).

(d) In the case k= 2, if R/r-Annf (R) is not isomorphic to
Cp2, thenPrf (R)< ε(p).

Proof. Let us fix ap-ring R, and writeA := R/r-Annf (R).
We also write[x] for the A-coset containingx ∈ R, and
of (x) for the order of[x] in A. We assume thatk is the first
invariant ofA, i.e. pk is the maximal value ofof (x).

Let A j be the set of elements inA of order at mostp j ,
j ≥ 0. Then|A j/A j−1| ≥ p for each 1≤ j ≤ k. Thus if we
defineRj := |A j |/|A| andr j :=Rj −Rj−1 for all 0≤ j, then
Rj = 1 for j ≥ k andr j ≥ (p−1)Rj/p for all 1 ≤ j ≤ k.
Iterating downwards fromj = k, we see thatRj ≤ p j−k for
all 0≤ j ≤ k.

Since| f (x,R)| ≥ p j whenever[x] ∈ A has orderp j , it
follows from (2.3) that

Prf (R)≤ (p−1)
∞

∑
j=0

Rj

p j+1 .

Thus to maximize Prf (R) we should maximize everyRj .
Equivalently, we should taker j = (p−1)/pk+1− j for 1≤

j ≤ k andr0 = 1/pk. With these proportions, theqk-form
of the bound in (2.3) gives

Prf (R)≤
k

∑
j=0

r j

p j =
1
pk +

k

∑
j=1

p−1
pk+1− j+ j = M(k; p) , (4.1)

thus finishing the proof of (a).
It is clear that equality in (4.1) can occur only if

R/r-Annf (R) is a cyclic group (of orderpk): in fact in this
case we see that| f (x,R)|= p j whenever[x] ∈ A has order
p j , so we get equality if and only ifR/r-Annf (R) is
cyclic.

Supposea+ b is nonzero, and letm = νp(a+ b).
Givenk ∈ N, it is readily verified thatR := Zpk+m is such

that R/r-Annf (R) has elements of orderpk and
Prf (R) = M(k; p).

Suppose instead thata + b = 0 and that the first
invariant ofR/r-Annf (R) is k ∈ N. Now a 6= 0 andR is
non-commutative. Note also that r-Annf (R) = Annf (R).
Since f (x,x) = 0 for all x ∈ R, and since there are
elementsx,y with axy 6= ayx, R/Annf (R) cannot be
cyclic: in fact its first two invariants must be equal. Thus
we cannot have Prf (R) = M(k; p), and we have finished
the proof of (b).

Part (c) is rather easily proved. First, the proof that
M(k; p) is a strictly decreasing function ofk is
straightforward (or alternatively can be deduced from the
discussion of the upper bound on Prf (R) above). The
equationsM(1;p) = α(1;p) and M(2;p) = δ (p) are
trivial. The inequalityM(3;p)< ε(p) holds because

p5(ε(p)−M(3;p)) = (2p3+ p2−3p+1)− (4p2−3p)

= (2p+1)(p−1)2 > 0.

Lastly we prove (d). Arguing as in (a), we see that we
still haveQ1 ≤ p−1. However we now have|A| ≥ p3, so
Q0 ≤ p−3, and to maximize the upper bound on Prf (R),
we takeQ1 = p−1 andQ0 = p−3, or equivalentlyq2 = (p−
1)/p, q1 = (p2−1)/p3, andq0 = 1/p3. With these values
of qi , we get

Prf (R)≤
p−1
p1+2 +

p2−1
p3+1 +

1
p3 =

2p2−1
p4 ,

and this upper boundβ (p) is less thanε(p) because

p5(ε(p)−β (p)) = (2p3+ p2−3p+1)− (2p3− p)

= (p−1)2 .
(4.2)

�

If we want to find all elements of the set
S f (Cp)∩ [ε(p),1], then Theorem4.1says that ringsR for
whichR/r-Annf (R) fails to be ap-group are relevant only
for Prf (R) = δ (p), and it tells us when such examples
exist. Thus it remains only to investigate the case where
R/r-Annf (R) is an elementaryp-group.

Below, we carry out this analysis for the
anticommuting symbolf (X,Y) := XY+YX. As a first
step, we appeal to Theorem3.5(a) to transform the
problem into an investigation ofSann(Cc∩Cp)∩ [ε(p),1].
Since the rings of interest are commutative, it suffices to
consider canonical-form ringsR with data(R1,R2). Now
R1 is isomorphic to the elementaryp-group R/Ann(R)
and so, by Observation3.4(e),R is aZp-algebra.

Thus the task at hand is to compute all annihilating
probabilities no less thanε(p) for commutative
canonical-formZp-algebras. Initially we will assume that
R is atomic: by this we mean thatR is bothunaugmented
(meaning that it is not the augmentationU ⊕µ V for a
canonical-form Zp-algebra V with dimV2 = 1) and
indecomposable(i.e. it is not a direct sum of two
nontrivial Zp-algebras). The following result will be
useful.
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Lemma 4.2. Suppose R is an atomic canonical-form
commutativeZp-algebra for some prime p, with data
(R1,R2) wheredimR1 > 1. Then u2 = 0 whenever u∈ R
is such thatdimuR= 1. More generally, we have uv= 0
for all pairs u,v ∈ R for which dimuR = dimvR = 1
under either of the following additional assumptions:

(a) dimR1 > 2;
(b) p> 2.

Proof. Suppose for the sake of contradiction thatu2 6= 0
even though dimuR= 1. We may assume thatu∈R1, since
R2 =Ann(R). NowA′ :=AnnR(u) has codimension 1, and
it has the formA1⊞R2 for someA1 ⊂ R1. Sinceu /∈ A′, we
see thatR1 is the direct sum ofU1 := span{u} andA1. Both
U2 := span{u2} andA2 :=A2

1 are subspaces ofR2, and both
of the subspacesU :=U1⊞U2 andA := A1⊞A2 of R are
canonical-form subrings ofR. EitherU2 is a subset ofA2,
in which caseR is an augmentation ofA by U , or it is not
a subset, in which caseR is an internal direct sum ofA and
U . In either case, we get a contradiction to the atomicity
hypothesis.

The proof thatuv= 0 when dimuR= dimvR= 1 and
dimR1 > 2 is similar. From (a), we already know that
u2 = v2 = 0. Suppose for the sake of contradiction that
uv 6= 0, and without loss of generality we assume that
u,v∈ R1. Now A′ := AnnR(u)∩AnnR(v) has codimension
2, and it has the formA1 ⊞ R2. The codimension-1
subspace AnnR(u) is spanned byA′ and u (since
u /∈ AnnR(v)), and R is spanned byu, v, and A′ (since
v /∈ AnnR(u)). LettingU1 := span{u,v}, U2 := span{uv},
andA2 := A2

1, we can then finish the proof as before.
Finally, suppose that dimR1 = 2, p> 2, and dimuR=

dimvR= 1. We know thatu2 = v2 = 0, so suppose for the
sake of contradiction thatuv= z is nonzero. Thenu′ :=
u+ v andv′ := u− v spanR1, (u′)2 = 2z 6= 0, andu′v′ =
0. Thus dimu′R= 1, and the fact that(u′)2 6= 0 gives a
contradiction.�

The condition dimuR= dimvR= 1 does not imply that
uv= 0 whenR is an atomic canonical-form commutative
Z2-algebra, with data(R1,R2) where dimR1 = 2, as the
following example shows.

Example 4.3. Consider the commutativeZ2-algebraR
with basis{u,v,z}, whereuv= vu= z and u2 = v2 = 0.
Then R has canonical form with data(R1,R2), where
R1 := span{u,v} andR2 := span{z}, and dimxR= 1 for
all nonzerox ∈ R1, since (u+ v)u = z. However R is
indecomposable because it has only four nontrivial proper
ideals—one isR2, while the other three are spanned byR2
and a single nonzero element ofR1—and all containR2. It
is also unaugmented because all of these ideals are null
algebras so if we use them for augmentation we can only
get other null algebras.

We now separately examine the cases where
R/Ann(R) has dimension 2, or dimension at least 3. For
dimension 2, we examine all possibilities regardless of
whether or not Prann(R)≥ ε(p).

Theorem 4.4. Suppose p is a prime, and R is a
commutative atomic canonical-formZp-algebra with
data (R1,R2) such thatdimR1 = 2. Writing m= dimR2,
one of the following situations must occur:

(a) m= 1, p= 2, andPrann(R) = α(2;2).
(b) m= 2 andPrann(R) = δ (p).
(c) m∈ {2,3} andPrann(R) = (2p2−1)/p4 < ε(p).

Furthermore (a) is possible only for p= 2, in which case
there is a unique isomorphism type, while for each prime p
there is a unique isomorphism type giving (b). Finally for
each prime p, there is a unique isomorphism type giving
the m= 3 subcase of (c), and at least one isomorphism
type giving the subcase m= 2 of (c), with uniqueness at
least when p= 2.

Proof. The only possible values of dimxR, for a nonzero
elementx of R1 are 1 and 2.

Case 1:dimxR= 1 for all nonzero x∈ R1.

Lemma4.2 tells us thatx2 = 0 for all x ∈ R. Thus if
{u,v} is any basis ofR1, thenz := uv must be nonzero
(lest R be a null ring, contradicting the canonical-form
assumption), and it is clear thatR2 = span{z}, som= 1.
Applying Lemma4.2 again, we must havep = 2. The
equation Prann(R) = α(2;2) now follows from
Lemma3.10. This possibility does occur, as we saw in
Example4.3. Since multiplication is fully specified, this
case corresponds to a unique isomorphism type.

Case 2: dimxR takes on both the values1 and 2 for
different choices of x∈ R1.

We select u,v ∈ R1 such that dimuR = 1 and
dimvR = 2. By Lemma 4.2, u2 = 0. The equation
dimvR= 2 forces the productsz1 := uv andz2 := v2 to be
non-collinear. Given thatR2 = span{z1,z2}, this fully
specifies multiplication onR, so we have shown that there
is exactly one isomorphism type for each primep. It is
readily verified that ifx = au+ bv for a,b ∈ Zp, then
dimxR= 2 wheneverb 6= 0, and dimxR= 1 whenever
b= 0 anda 6= 0. We therefore deduce from (3.2) that

Prann(R) =
1
p2

(

p2− p
p2 +

p−1
p

+1

)

= δ (p) .

It remains to verify thatR is atomic. Suppose for the
sake of contradiction thatR is of the formU ⊕µ V, where
V is a canonical-formZp-algebraV with dimV2 = 1. Let
(U1,U2) and(V1,V2) be the data ofU andV, respectively,
and soV2 = V2. Since µ : V2 → U2, dimU2 ≥ 1. Thus
dimU1 ≥ dimU/Ann(U) ≥ 1 and
dimV1 = dimV/Ann(V) ≥ 1. But it follows from
Observation 3.9(c) with f (X,Y) := XY that
2 = dimR1 = dimU/Ann(U) + dimV/Ann(V), so we
must have dimU1 = 1 and so dimU2 = 1. But now by
Observation3.9(d), dimR2 = 1, contradicting the fact that
dimR2 = 2.

Suppose instead thatR is a direct sum of nontrivial
algebras U and V. It is clear that
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Ann(R) = Ann(U)⊞Ann(V) and R2 = U2
⊞V2, so we

have Ann(U) =U2 and Ann(V) =V2. Also

R/Ann(R) = (U/Ann(U))⊞ (V/Ann(V))

so
dimU/Ann(U)+dimV/Ann(V) = 2.

If one of these factor spaces has dimension 2, say
dimU/Ann(U) = 2, then dimV/Ann(V) = 0. But thenV
would be a null ring, soV = Ann(V) and also
AnnV = V2 = 0, soV would be trivial, contradicting our
hypotheses. Thus dimU/Ann(U) = dimV/Ann(V) = 1,
and so dimU2 = dimV2 = 1. By Lemma 3.10,
Prann(U) = Prann(V) = α(1;p), forcing the equation
δ (p) = α(1;p)2. But this equation fails for all primesp
since

p4(α(1;p)2−δ (p)) = (2p−1)2− (3p2−2p)

= (p−1)2 > 0.
(4.3)

This concludes the proof thatR is atomic.

Case 3:dimxR= 2 for all nonzero x∈ R1.

It readily follows from (3.2) that
Prann(R) = (2p2 − 1)/p4, and this is less thanε(p) by
(4.2). It is readily verified that this occurs ifm= 3, {u,v}
is a basis ofR1, {z1,z2,z3} is a basis ofR2, andu2 = z1,
v2 = z2, anduv= vu= z3.

Conversely, the condition dimuR = dimvR = 2
requires thatz1 := u2 andz3 := uv are non-collinear, and
that z2 := v2 and z3 are non-collinear. If{z1,z2,z3} is a
linearly independent set, then we are in them = 3
situation above, and the isomorphism type ofR is
uniquely specified. However we claim that even in the
absence of independence, it is possible that dimxR may
equal 2 for allx∈ R1.

For p= 2, we takez3 = z1+z2. Then(u+v)2 = z1+z2
and(u+ v)u = z1+ z3 = z2, giving dim(u+ v)R= 2 and
so dimxR= 2 for all nonzerox∈ R1. It is readily verified
that if we instead chosez3 ∈ {z1,z2}, then we would get
dim(u+ v)R= 1, so there is a unique isomorphism type
giving m= 2 whenp= 2.

Suppose instead thatp> 2. Let s∈ Zp be a quadratic
nonresidue modp, and let c ∈ Zp be defined by
c := 4−1(1− s). Then 1− 4c = s, so it follows that the
quadraticg(a) := a2+a+ c has no roots inZp. Let R be
the canonical-typeZp-algebra with data(R1,R2) where
{u,v} is a basis ofR1, {z1,z2} is a basis ofR2, and
u2 = z1, v2 = z2, and uv = vu = cz1 + z2. Certainly
dimuR= 2, so to prove that dimxR= 2 for all x ∈ R1, it
suffices to prove this whenx = au+ v for somea ∈ Zp.
For such an elementx, we havexu= (a+ c)z1 + z2 and
xv= acz1+(1+a)z2. Thus dimxR= 2 if (and only if) the
associated matrix

M :=

(

a+c 1
ac 1+a

)

is nonsingular. But detM = (a+c)(1+a)−ac= g(a) has
no roots, so our claim is proved.

We have shown that this case yields exactly two
isomorphism types whenp = 2, and at least two when
p > 2. We will not investigate whether or not there are
more than one isomorphism type corresponding tom= 2
for p> 2.

It remains to show that these rings are atomic. The
proof that they are unaugmented is exactly as in Case 2,
as is the proof that them= 2 ring is indecomposable. The
proof for them= 3 ring starts in a similar fashion, but we
get a contradiction from the fact that
dimS/Ann(S) = dimT/Ann(T) = 1, whereas one ofS2

andT2 must have dimension 2.�
We now consider atomic algebrasR with

dimR/Ann(R)≥ 3.

Theorem 4.5. If R is a commutative atomic
canonical-form Zp-algebra with data (R1,R2) and
dimR1 ≥ 3, thenPrann(R)< ε(p).

Proof. Suppose first that dimxR≤ 1 for at mostp of the
elements ofR1. By (3.2),

Prann(R)≤
1
p3

(

p3− p
p2 +

p−1
p

+1

)

=
p2+2p−2

p4 .

This bound is less thanε(p) because

p5ε(p)− p(p2+2p−2) = (p+1)(p−1)2 .

Thus we may assume that dimxR≤ 1 for more thanp
elements ofR1, and so there exists a two-dimensional
subspaceT of R1 spanned by elementsu1,u2 such that
dimu1R= dimu2R= 1. By Lemma4.2 and distributivity,
xy= 0 for all x,y∈ T. Lettingw∈ R1 \T, we deduce that
u1w andu2w must both be nonzero, since otherwiseu1 or
u2 would be an element of Ann(R), contradicting the
canonical-form assumption. Furthermoreu1w and u2w
must be non-collinear, since otherwise some linear
combination ofu1 andu2 would similarly contradict the
canonical-form assumption. We deduce that ifx is a linear
combination ofu1, u2, andw, with thew-coefficient being
nonzero (inZp), then dimxR≥ 2. Thus

Prann(R)≤
1
p3

(

p3− p2

p2 +
p2−1

p
+1

)

=
2p2−1

p4 ,

which is less thanε(p) according to (4.2). �
Proof of Theorem 1.1. As discussed above, the task of
finding all possible values inSac(Cp)∩ [ε(p),1] is reduced
to finding all possible values of Prann(R)≥ ε(p) whenR is
a commutative canonical-formp-ring. The data ofR will
be denoted(R1,R2) as usual, and we writemi := dimRi ,
i = 1,2.

Based on our work above, it is straightforward to
calculate the values that occur whenR is an atomic
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canonical-formZp-algebra; we call theseatomic values.
If m1 = 0, then necessarilym2 = 0, soR is the trivial ring
and Prann(R) = 1. If m1 = 1, then necessarilym2 = 1, and
Prann(R) = α(1;p) now follows from Lemma3.10. Both
of these rings are clearly atomic. Theorems4.4 and
Theorem4.5tell us that the only possible atomic values in
[ε(p),1] corresponding tom1 ≥ 2 areα(2;2) andδ (p).

The valueδ (p) also occurs for commutativep-ringsR
that are notZp-algebras according to Theorem4.1, but
such rings give no other values in[ε(p),1]. Since
R/Ann(R) is cyclic andRhas canonical form, we see that
R can only have one isomorphism type: fori = 1,2, Ri is
isomorphic toCp2 and has generatorui , with u2

1 = u2 and
uiu j = 0 for all other choices ofi, j.

It remains to investigate what can be found by
augmentation of the (nontrivial) atomicZp-algebras
above by a canonical-formZp-algebraV with dimV2 = 1,
or by direct sums of non-null algebras (since a null ring
direct summand leaves the annihilating probability
unchanged). Both of these processes strictly decrease the
annihilating probability—in the case of augmentation
because of (3.3)—so it suffices to apply these processes
iteratively to the atomic algebrasR above for which
Prann(R) = α(1;p), Prann(R) = α(2;2), or Prann(R) =
δ (p).

The algebras with Prann(R) = α(1;p) or
Prann(R) = α(2;2) both satisfy|R2|= p, so augmentation
yields only algebrasR′ with Prann(R′) = α(k; p) for some
k ∈ N. Repeated augmentation of the algebraR with
Prann(R) = α(1;p) yields all numbersα(k; p), k ∈ N by
Remark3.14.

Next we consider augmenting the algebraR in
Theorem4.4(b) for which Prann(R) = δ (p). Since the
contribution to Pr−ann(R) always includes the contributions
of all elements ofR2, we see that Pr−ann(R)≥ 1/p2, and so
Pr+ann(R) ≤ δ (p)− 1/p2. If R⊕µ V is any augmentation
with |V2|= p, then (3.3) and (4.2) together imply that

Prann(R⊕µ V)≤
2p−2

p3 +
2p−1

p2 ·
1
p2 =

2p2−1
p4 < ε(p) ,

so these algebras give no new values.
For direct sums applied to the above atomic algebras

and their augmentations, we must consider products of
values that we already have. We first recall that
α(1;p)α(2;p) = ε(p), so this gives us one new value. In
view of (1.2), it follows that it remains only to consider
powers ofα(1;p). But

p4(α(2;p)−α(1;p)2) = (p−1)3 > 0,

soα(1;p)3 < ε(p). Thus we need only considerα(1;p)2,
a number that by (4.3) exceedsδ (p). Now α(k; p) > 1/p
for all k ∈ N, whereasα(1;3)2 < 1/3 and for p ≥ 5,
α(1;p)2 ≤ (2/p)2 < 1/p. Thusα(1;p)2 is a new value
for all p> 2, butα(1;2)2 = α(3;2).

The next step is to augment the one new
canonical-form algebraR with Prann(R) > ε(p) that we

obtained by a direct sum. This is aZp-algebra with
Prann(R) = α(1;p)2, with basis {u1,u2,z1,z2}, where
u2

i = zi , i = 1,2, and all other products of basis elements
are zero. We write R1 := span{u1,u2} and
R2 := span{z1,z2} as usual, and write a general element
x ∈ R in the form x = a1u1 + a2u2 + b1z1 + b2z2 for
ai ,bi ∈ Zp. We also denote by{v,w} the basis of the
Zp-algebraS that we use for augmentation; herev2 = w
and vw = wv = w2 = 0, and the data ofS is (S1,S2),
whereS1 := span{v} andS2 := span{w}.

If a1 and a2 are both nonzero, then it is readily
verified thatxR= R2, sox contributes to Pr+ann(R) in (3.3)
regardless of the augmentation functionµ . By contrast, if
a1 = a2 = 0, then x contributes to Pr−ann(R) in (3.3).
However elementsx with one but not both ofa1 anda2
nonzero satisfy dimxR= 1, and so the choice ofµ affects
whether such elementsx contribute towards Pr+ann(R) or
Pr−ann(R). As is clear from (3.3), maximizing
Prann(R⊕µ S) for a givenS is equivalent to maximizing
the number of such elements that contribute to Pr+

ann(R).
Since for such elements,xR is either span{z1} or
span{z2}, Prann(R⊕µ S) is maximized whenµ : S2 → R2
is the homomorphism with the propertyµ(w) = z1. By
construction,R is a direct sum of two isomorphic copies
of S, and the condition µ(w) = z1 means that
Observation 3.9(f) is applicable. Thus R ⊕µ S is
isomorphic to Aug(S,2)⊕Sand

Prann(R⊕µ S) = α(1;p)α(2;p) = ε(p) .

This is a value that we already have, and in fact
Aug(S,2)⊕ S is the same canonical-form isomorphism
type that gave that value in the previous direct sum stage
of this proof. We have now completed the proof that
Sac(Cp)∩ [ε(p),1] is as stated.

Finally to computeSac(Cfin)∩ [ε(2),1], we need to
take products of elements inSac(Cp) for distinct primes
p. First we have all the values inSac(C2) ∩ [ε(2),1].
These give 1, α(k;2) for all k ∈ N,
9/16 = α(1;2)2 = α(3;2), 1/2 = δ (2), and
15/32 = ε(2). We get nothing additional from primes
p > 5 because in this case(2p− 1)/p2 < 2/p < 15/32.
Taking p = 3 does give one additional value, namely
α(1;3) = 5/9, but it gives no other new values because
α(2;3) = 11/27 andα(1;2)α(1;3) = 5/12 are both less
than 15/32.�

Although we did not explicitly state it in Theorem1.1,
we can read off all isomorphism types of canonical-form
commutativep-rings R satisfying Prann(R) ≥ ε(p) from
the above proofs. These types consist of the trivial ring, a
one-parameter of algebras giving Pr(R) = α(k; p) for all
k ∈ N, and either six (forp= 2) or four (for p> 2) other
types, as detailed in the following theorem.

Theorem 4.6. The following list gives all possible
isomorphism types of canonical-form commutative
p-rings R withPrann(R)≥ ε(p) for a given prime p.

(a) Prann(R) = 1 for the trivial algebra R.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


24 S. M. Buckley et al: Finite Rings with Large Anticommuting Probability

(b) Prann(R) =α(k; p), k∈N, for the algebra R with basis
{u1, . . . ,uk,z}, where u2i = z for all 1 ≤ i ≤ k, and all
other products of basis elements are zero.

(c) Prann(R) = α(2;2) for the atomic algebra R of
Theorem4.4(a).

(d) Prann(R) = α(1;p)2 for a direct sum algebra R
constructed in the proof of Theorem1.1.

(e)Prann(R) = δ (p) for the algebra R of Theorem4.4(b).
(f) Prann(R) = δ (p) for the canonical construction

applied to a ring R given by Theorem4.1(b) for k= 2.
(g) Prann(R) = ε(p) for the algebra R:= Aug(S,2)⊕S,

where S is the unique canonical-form commutativeZp-
algebra withPrann(S) = α(1;p).

(h) Prann(R) = ε(2) for the algebra R:= T ⊕S, where S
is as in (g) for p= 2, and T is the algebra in (c).

All rings listed above give distinct isomorphism types, but
note that (c) and (h) are for p= 2 only.

We omit most of the proof of Theorem4.6, since it is
contained in our earlier proofs. The fact that the
isomorphism type in (f) is unique follows from the fact
that R/Ann(R) is cyclic, as discussed in the proof of
Theorem1.1. The one other aspect of the proof upon
which we should comment is the fact that the various
isomorphism types listed are distinct. Forp > 2, this
follows from the fact that there is only one isomorphism
type for each value of Prann(R), with the exception of
δ (p) which is associated with both an algebra and a
non-algebra.

For p = 2, there are three other duplicate sets of
Prann(R) values. First,α(2;2) is given by an augmented
algebra in (b) and an atomic algebra in (c), so these are
necessarily distinct. Also,α(3;2) = α(1;2)2 is associated
with an augmented algebraR in (b) and a direct product
algebra in (d), and these are distinguished by the
dimension of R2. The algebras in (g) and (h) are
distinguished by the number of elementsx with x2 6= 0:
there are two such elements in (g) and none in (h).

The set of types given in Theorem4.6 is considerably
more diverse than the set of types of canonical-form
p-rings with Prc(R) ≥ ε(p), which can be deduced from
[2, Theorem 1.2]. For the latter problem and any given
prime p, we get a null algebra for Prc(R) = 1, one algebra
for Prc(R) = α(2k; p), k ∈ N, and nothing else. The extra
complexity is a direct result of the fact thatx2 can be
nonzero in a commutative ring, in contrast to the fact that
it must equal zero in an anticommutative ring.
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