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Abstract: We investigate the set of values attained by:fR), the probability that a random ordered pair of elements in a finiteRing
has zero Jordan product. In particular, we find all possible valuegg(f in [15/32,1].
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1 Introduction annihilating probability and annihilating spectrum
Prann(R) andSann( %), correspond td (X,Y) := XY.
There has been much written on the possible values Tpq commuting spectrum was investigated B, [
attained by the probability that a random pair of elementshere all sufficiently large spectral values were given
in a finite group commute: see for instan&}, [9], [7],  explicitly, both for the clas&, of all finite rings and for
[10], [12], [4], [6], [3], and [B]. The corresponding the classs, of all rings of order a power of a given prime
question for finite rings was examined il and [2]. In ;14 11}, some relationships between the various spectra
this paper, we examine the probability that a random pairgyere discussed: in particular, it was shown that the
of elements in a finite ring anticommute. annihilating spectrum of various classes of finite rings
Let f(X,Y) = aXY + bYX be a formal c4niains thef-spectrum of the same class for eatfas
noncommutative polynomial in the unknowdsandY,  apove. Howeverl] does not discuss any particular values
wherea,b € Z. We usef as a symbol of the function nat jie in any of these spectra, so in this paper we carry
f*: Rx R — R, defined byf"(x,y) 1= axy+byx onan 4yt such an investigation for anticommuting spectra (and
arbitrary ringR. For such a symbof, and a ringR of  anninilating spectra for commutative rings), although

finite cardinality, let some of our results apply equally well fospectra for a
general symbof.
x,y) € RxR: fR(x,y) =0
Pri(R) == () RE () }|7 (1.1) We use three parametrized proportions in our main
results:
where|§ denotes the cardinality of a setWhenevefs is
a class of finite rings, we define the associaftespectrum pK+p—1
&1(¢) CQN (0,1 by alkp) = —pT—
&1(¢) = {Pri(R) |RE ¢} 3(p) i 3'°pg2,
We give Pr(R) and &+(%) special terminology and 2p3+p?—3p+1
notation in three important cases: theommuting e(p) = o5 ,

probability and commuting spectrunPr;(R) and &¢(%),
correspond tof (X,Y) := XY — Y X; the anticommuting
probability and anticommuting spectrumPry(R) and  wherep is a prime andk € N. For comparison with the
Gac(%), correspond tof(X,Y) := XY +YX; and the results of ], we also defing/(p) := (p>+ p?—1)/p°. We
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will see in Sectior® that for all primesp andk € N, 2 Preliminaries

Rings and algebras are always assumed to be associative,
but are not necessarily unital. The clasggs and), are
as defined in the introduction; we call a ring ¥}, a
with all inequalities being strict fop > 2. p-ring. We also defineg; to be the class of all finite

Let 4tin and ¢}, be as above. In2], all elements of commutative rings, an,c to be the class of all finite
Sc(%p) N [y(p), 1] and &¢(%in) N [y(2),1] are explicity ~ anticommutative rings. IR is a ring, therR? will always
listed for all primesp. In the following theorem, we denotes the additive subgroup generated by all products
explicitly list all elements ofSa(%p) N [e(p),1] and Xy, rather than the cartesian product which will be

V(p) < £(p) < 8(p) < —; <alk+Lip) <akp), (1.2)

Gac(Giin) N [€(2),1]; note thate(2) = 15/32. denotedR x R. A null ring is a ringR with RZ = 0.
Zn denotes the ring of integers mogdZ;; is the set of
Theorem 1.1. For all primes p, units inZ,, andC, denotes a cyclic group of order The
p-adic valuationvp : Z\ {0} — {0,1,2,...} is defined by
Sac(%p) N[e(p), 1] ={a(k p) |ke N}U vp(n) = kwheneven = ipK, i,k € Z, andi is not divisible
u{La(1; p)275(p)’g(p)} ] by the primep. If Sis a subset of a vector spave we

write sparsfor the subspace spanned SyusuallyV will
The above values are all distinct except for the equationP® the additive group of p-algebra.

a(1:2)2 = a(3;2). Moreover, ~f(X,Y) == aXY +bYXis a symbo} with a,b € Z.
Given a symbolf and a ringR, fR: Rx R— Ris defined
R . i ;
SaclGin) N[E(2),1] = {a(k:2) | ke N} U by f7(x,y) := axy+ byx SupposeRis a ring. Forx € R,
%) N[£(2), 1] {1(5 9)1| ) 15}32 we write f(x,R) for the additive subgroup
U{1,5/9,1/2,15/32} . {fRx.y) | y € R} of (R,+), and f(RR) is the additive

, . subgroup generated byR(x,y), x,y € R The right
Comparing the above result wit,[Theorem 1], we  f_gnnihilator of xe Ris

see that
r-Ann; r(X) = {y € R| fR(xy) = 0},
&c(%p) N[e(p), 1) = {a(2k:p) | ke N} C , N _
C Gac(€p)Ne(p), 1], and theright f-annihilator of Ris
Sc(%hin) N[e(2),1] ={a(2k2) [ke N} C r-Ann¢(R) := {ze R| fR(x,2) = 0 for all x € R}.
C Sac(Gin) N[E(2), 1.
The left-handed variants I-Anik(x) and I-Anry(R) are
Not only are there more large anticommuting values thandefined analogously. THévo-sided) f-annihilator of Rs
large commuting values, but the isomorphism typesAnn;(R) := r-Ann:{(R) N I-Ann¢(R). These various
associated with large anticommuting values areannihilators are not in general ideals, Bgr-Anns (R),
considerably more diverse than those associated withR/I-Ann;(R), R/Ann¢(R) always refer to factor groups
large commuting values; see Theordrf. It is because of  of (R +). If f(X,Y) = XY, we drop references tbin the
this extra complexity that we chose a larger cutoff valueabove terminology and notation, so r-At{®) is theright
than that employed in2]; note thaty(2) = 11/32 but  annihilator of xe R, Ann(R) is theannihilator of R etc.
£(2) =15/32. We will need to deal with direct sums of rings, but
After some preliminaries in Sectid) we characterize also direct sums of abelian groups, and sometimes the
all values of Py(R) for p-rings R (meaning rings ir6p)  groups involved in the latter are additive groups of
satisfying|f (R,R)| = p in Section3; here f(R R) is the  associated rings. To distinguish between the two concepts,
additive subgroup oR generated by all elements of the we write A@ B for a direct sum of rings, andH B for a
form f(x,y), X,y € R There are two key ideas introduced direct sum of abelian groups.
in that section to accomplish this characterization: If a ring R equals Ry @ Ry, then P¢(R) =
reductions to rings of a simpler form (split and canonical Prs (Ry) Prs (Ry): this follows easily from the fact that the
forms), and an augmentation process that produces Rernel of fR is precisely the cartesian product of the
sequence of values of Rr) once we find a single value kernels of f® and fR2. Thus&(%) is a monoid under
Pr¢(R) < 1. Split form also allows us to prove that the muiltiplication, with 0 as an accumulation point, whenever
anticommuting spectrum for all finite rings, or gHrings, ¥ is a class of finite rings closed under direct sums that
equals the annihilating spectrum for all finite contains at least one commutative ring and at least one
commutative rings, or all commutativep-rings, noncommutative ring.
respectively. Since a finite ring is a direct sum of rings of prime
Finally in Section4, we prove Theorenl.1 We also  power order, it follows that the numbers @& (%5,) are
list there all possible isomorphism types of canonicairfor precisely the set of all productf ;ti, wheren € N,
commutativep-rings R with the property Pihn(R) > £(p).  t € &¢(%)p ), and eachp; is prime. To understand the
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structure of&+(%sn) N [a,1] for any given 0< a < 1, it
therefore suffices to understar® (%)) N [a,1] for all

primes p. For this reason, we mostly concentrate on

investigating the specti@: ().

property that a sum of the forf™ , nju;, nj € N, equals 0
only if each terrmu; equals 0.

Finally in this section, we justifyl(.2). The inequalities
1/p< a(k+1;p) < a(k;p) are obvious, once we write

By considering the surjective group homomorphism a(k;p) = p~*+ p % 1(p—1). Next,5(2) = 1/2, and the

fR:R— f(x,R), fx(y) = f(x,y), we make the following
observation; note that kéf = r-Ann¢ g(x).

Observation 2.1. For eachx in a ring R, the additive
groupsR/r-Anns r(x) and f (x, R) are isomorphic.

inequality 5(p) < 1/p is clear forp > 3. The inequality
£(p) < 6(p) holds because

p°(8(p) — £(p)) = (3p> — 2p?) — (2p> + p*— 3p+ 1)

—(n_1)3
It thus follows easily from the definition of Pf-) that =(p-17>0.

1 Finally, the inequalityy(p) < £(p) holds because
Pri(R) = RE 2R|r-Annf.R(x)| : A .
X p°(e(p) —y(p)) = (2p°+p°—3p+1) - (p°+p°—1)

1 = (p+2)(p—1)?>0.

1
IR ng IR/r-Ann¢ g(X)|

1 1
=R 2 TR

Since r-Ann r(X) = r-Annt r(x+2), z € I-Ann¢(R), we
can alternatively write

2.1)

Itis noteworthy also that(p) = a(1;p)a(2;p).

3 Split form, canonical form, and
augmentation

1 1

PR = RIA 2 TR

(2.2)  In this section, we discuss the concept of split- (and
canonical-) form rings. Split-form rings are easier to
handle than general rings for Rrand provide a useful
reduction because for every finite ring, there is a
split-form ring Swith Pr¢ (R) = Pr; (S). This concept is an
outgrowth of the concept of canonical form developed as
part of the theory of isoclinism and isologism for certain
universal algebras irl], but here we develop the concept
without reference to that theory.

We then define a process of augmentation that allows
us to use existing values @+ (%)) to find new ones. In
particular, we use this process for a general synfbtd

help us characterize the set of values of (Ry for rings

wheneverA is a subgroup of(I-Ann¢(R),+); the sum
above involves one term for each copétof A.
If Ris ap-ring, it follows from 2.2) that

PRI =5 % =(p-1)y %

k=0 k=0

(2.3)

where g¢ is the proportion of cosetg + I-Ann¢(R) in
R/I-Ann¢ (R) such that f (x,R)| = p, andQy := 5¥_4q;.
Note that the series involving is really a finite sum, but
the one involvingQ is always an infinite series: in fact satisfying |f (R R)| = p. Our augmentation process is
Q« = 1 for all sufficiently largek. related to that discussed ir2,[ Section 4]: in fact the
Related to the above discussion, we make theearlier process roughly corresponds to the case where
following useful observation. fX,Y) == XY =YX and S is a split-form
Observation 22. If abdll € R with noncommutative ring of ordemp® in the following

a—a,b—b € Anng(R), thenfR(a,b) — fR(a, 1), sofR  definition.
induces a bilinear map
fR: (R/Ann¢(R)) x (R/Ann¢(R)) — R. 3.1 Split form and canonical form

By the fundamental theorem of finite abelian groups,pefinition 3.1. A ring (or algebra)R hassplit form (with

3_ fini;[e abelianp-group (A, +) can be decomposed as a data(Ry, Ry)) if it satisfies the following conditions:
irect sum
m (@) (R,+) is an internal direct sum of two abelian groups
Bﬂizlc ' R, and Ry, and we write elements € S as x; + Xo,
wherex; € R, i =1,2.
(b) Ry has an associated multiplication that makes it into
a ring, and such that multiplication R is then given

by the equation

ki>ko>...kp>0,m>0,

We callk; thei-th invariant of A these invariants ant are
uniquely determined. Aasis of As aset{us,...,un} CA,
where eachy; is a generator of theh summand ; (when
we view A as an internal direct sum of such summands).

Equivalently, a basis o is a spanning set ok with the (x1+%2) (Y1 +Y2) = 0+X1y1 € Ry.
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Part (b) above can be rewritten as (d) Shas canonical form, with dat&;, S).
(e) The firstinvariant ofS,+) equals the first invariant of
R? C R, CANN(R) = -Ann(R)Nr-Ann(R).  (3.1) bothS; and$,. In particular,Sis aZp-algebra if and

. . . only if § is an elementarp-group.
It is sometimes useful to replace these containments by yirs ¥-grotip

equations, if possible. Split form is of interest for all rings and all symbots
o , ) ) while canonical form will mostly be of interest for
Definition 3.2. A split-form ring (or algebra]r with data f(X,Y) = XY in the case of commutative and
(Ri,Re) is ;%'d to havecanonical formif I-Ann(R) = apticommutative rings. However we will see that it will
r-AnN(R) = R* = Ro. be useful by extension when working with symbols of the

Given a split-form ringR, there may be more than one form f(X,Y) =a(XY+YX),acN.
choice of data(Ry,Ry), although the split-form data are Given a split-form ringR, we can always define a new
uniquely defined iR has canonical form, as is clear from split-form ring with the same dat& := (R +,0), where
(3.2). xoy = fR(x,y); associativity follows from the split-form

We now describe theplit constructionwhich defines ~ assumption. Itis clear that Rr(R') = Pr¢(R). Since split-
a split-type ringS associated with a given ring. First, ~ form rings give all possible values of /), we deduce
(S,+) equals the internal direct sum of the abelian groupsthat&(€’) C Sann(€) if € = %iin or if ¢ = €}, for some
S and S, whereS; ;= (R+) and S, = R2. Writing a prime p; these containments were originally proved1h [
general element dBasx = x; + X2, X € Aj, i = 1,2, we The containmen&(¢') € Gann(¢) might not be an
define multiplication on S by the equation equality: for instance, R#n(Z2) = 3/4 ¢ &c(%fin)
(X1 +%2)(y1 +y2) = 0+ x1y1 € S, wherexyy; is an  according to the results o] or [11]. However we do
R-product. have the following result.

The utility of the split construction is tied to the fact Theorem 3.5. Suppose p is a prime.
that it preserves several features of a riRy as
summarized below. These features imply that if we wish (&) Sac(%fin) = Sann(6c) and Sac(€p) = Sann(6cN %p).
to investigate&(¢) for some class¢ of finite rings,  (?) Sc(%fin) = Sann(ac) andSe(Cp) = Sann(Gac €p)-

then it often suﬁlqes to consider split-form rings. In the Proof. We prove only (a) since the proof of (b) is similar.
foIIowmg_observatmngf can be any symbol, and we use gjnce finjte rings are direct sums of rings of prime power
the notation of the split construction above. order, it suffices to prove th@ad%p) = Sann(Ce N ).
Observations 3.3. Whenf (X,y) = xy+yx the new multiplication foxoy :=
fRi NG, or is commutai i tati fR(x,y) considered above is commutative (and associative
@ Sap-ing, oris commutative, oranticommutative, ¢ long ask has split form, as mentioned above). Thus
thenShas the s_ame_propelrty. Gad @) C SanCeNCy).
(b) (S S) can be |dent|f|r?d withf (R, R)'d ; Conversely, ifRis a commutative-ring for some odd
(C)I %r?%j )AE)T)AH?“%( ;N ereA(-) stands for r-Ana(), prime p, theangnn(R) = Pr(R), whereR := (R +,%)
(d) Shas split form, with datés;, S»). ";‘)”f’;* Y= 27xy. ThuSGann( %N %p) = Gac(p) for all
O ng is finite, then Pr(R) = Pr:(S) (as follows from This argument can be modified to work also foe 2.
(f)(sé )—).O First, we assume as we may that the commutative Rng
- has split form with datdR;,Ry). Write Ry as an internal
We now give thecanonical constructiowhich defines  direct sum of groupd);, 1 <i < m, where eachy; is a
a canonical-type rin@associated with a split-form ring  cyclic group of order 2 with generaton;. Let S be the
with data(Ry, Ry) that satisfies I-An(R) = r-Ann(R). Let  abelian group which is an internal direct sum of cyclic
(S +) be the internal direct sum & := R;/Ann(Ry) and  groupsV; of order +1 with generators;, 1 <i <m. We
S = R?, and we write a generad € Sasx; +Xp, where  define an injective homomorphisg, : R, — S by the
X1 € S andxy € . Multiplication onSis defined by the  equations pix(ui)) = 2v;, 1 <i < m. Let S be the
rule (X +X2)(y1 +Y2) = 0+ uvi € S, whereupvy is an commutative split-form ring with datdR;,S) whose
R-product, andi;, v; € Ry are such that; = u; +Ann(Ry) multiplicationxs is defined byxxsy = L (xy) € S for all
andy; = vi +Ann(Ry). X,y € R1, wherexy is an R-product. Givenx,y € R; we
We now state some readily verified properties of thehave xy = 0 in R if and only if xxsy = 0, and so
canonical construction @from a given split-form ringR,  Prann(R) = Prann(S).
with notation as in the previous paragraph. We choose a basi® := {uj,...,un} of Ry. Since
Ui xsuj € 2& for all uj,u; € B, we can define a function
F: 3B x%B — S with the properties that
(a) Observation8.3 all hold (since canonical formis a F(uj,uj) = F(uj,u) and F(u,u;) = u *su; for all

Observations 3.4.

special type of split form). 1 <i,j < m. Using bilinearity, we then define a new
bSF==R. multiplication 5 on S such thatS := (S+,%) is a
(c) Ann(S) = S. split-form commutative ring with datéR;,S) satisfying
@© 2014 NSP
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u « uj = F(u,u;). By bilinearity, we deduce that (b)T has splitform with dat&T;, T>), whereT; ;=R HS;
2x+'y = xxgy for all xy € S It follows that andT, := Ry, andT has canonical form iR andSboth
Prae(S) = Prann(S), as required] have canonical form.

(c) Writing Ann¢(R) = Rj R, and Anny(S) = S HS,
for some subgroup®) of Ry, andS; of S;, we have
Ann¢(T) =R BRHES,.

(d) f(T,T) can naturally be identfied with
f(RR) + f(S,9). If R has canonical form, thefi?
can be identified withr?.

e) f g:R— R and ¢ : S— S are split ring
isomorphisms between split-form ringR, S, then

Remark 3.7. For the benefit of someone who has read R @, S is isomorphic to R @, S, where

[1], we mention that replacing a rinQ by a related H'Zflhouo(%_lﬂgz ands, = A,(S).

canonlcal-form ring when investigating @ror Plac (f) If aring Ris an internal direct sum of split-form rings

corresponds in the language df [to replacingR by a R and R’ du - A(R). then Ra. S i

canonical-form ring for isologism with respect to the ~oandix, anc i S = M(R), then R©, S is
isomorphic toR @, S) ®R’.

variety of commutative or anticommutative - rings, (g) BothRandScan naturally be viewed as idealsTn
respectively. Furthermore two rings are isologic in this
sense if and only if the associated canonical-form rings  The proofs of the above observations are all rather
are isomorphic; see 1] Theorem 4.16(b)l. Thus qpyious, and are left to the reader. As we will see, the

subsequent  statements in this paper concemingpgsice of i can affect the isomorphism type of an
isomorphism types of canonical-form rings with certain augmentation, so the definiton of g’ in

properties can be reworded as statements about th@bservatiors.g(e) is essential.

isologism types of rings with those properties. : . .
g P 9 _ _ prop _ We now discuss the relationship between(Rrb, S),
We have the following variant of2(2) for split-form  and Pg(R),Pr:;(S), concentrating mostly on the case

Remark 3.6. The above theorem makes canonical form
useful for studying Rrand Pgc we first transform the
study of Pg(R) or Pi(R) for p-rings R to the study of
Prann(S) for anticommutative or commutativp-rings S
respectively. By applying the canonical construction if
necessary, we can then assume fhas canonical form
(bearing in mind Observatiorg4).

rings R with data(Ry, Ry): whereAy(S) is cyclic of orderp, andR is a p-group for
some primep; even here, the choice pfis important. We
Pri(R) 1 1 (3.2)  begin with a preparatory lemma.

Rl 2, TR S
Lemma 3.10. If S is a p-ring with|f(S S)| = p, then
A split ring homomorphism his a ring Pr(S) =a(m;p), where m=dimS/I-Ann¢(S) > 0.
homomorphism between split-form ring® S such that
h(R) € §, 1 =12, where(R;,Rp) and (S,S) are the  proof. Since|f(SS)| = p, S/I-Ann;(S) is necessarily a
data ofR andS respectivelySplit ring isomorphismare  vector space ovef, of positive dimensiorm. It follows

then defined in the natural way. from (2.2) that

. 1 pr-1
3.2 Augmentation P = granm g U p L
Definition 3.8. Supposeér andSare split-form rings with — Pr+p-1 =a(m;p)
data(Ry,Rp) and (S, S), respectively. Given an injective pm+1 T

homomorphismu : $ — Ry, we defineR®, S the _
augmentation of R by S (via), to be the unique ring@ as required.]

with the following properties: ) ) o
Remark 3.11. Given a ring S it is clear that

(a) (T, +) equals the internal direct SURy B R 5 S;. Pr(S) = Pri(S), where P is the opposite ring with

(b) Write a general elementc T asx=x1+X +X3,  multiplication x*y = yx, andyx is an S-product. Since
wherex, € Ry, Xp € Ry, andxs € S, multiplicationinT — gims/|-Ann; (S) determines Ri(S) in the above lemma,
is defined by(xi +x2 +X3) (Y1 +Yy2+Y3) =0+ [Xy1+ e see that|S/I-Ann(S)| = |S/r-Ann¢(S)| under the
P(xay3))] +0€Ry. assumption thatf(S S)| = p. This equation can fail if
It is convenient below to have an alternative notation | f(S S)| > p. For instance, let (X,Y) = XY, and letSbe

for split-form data: if R has data(Ry,Ry), we write  the four-dimensionalZ,-algebra with basis{u,v,w,z}

A1(R) := Ry and 43(R) := R,. In the following  Where the only nonzero products of basis elements are
observations, we use the notation of DefinitR8. u? = uv=w andv? = vu= z. We see thaBhas split form

. with data (S,S), where S := spadu,v} and
Observations 3.9. S = spadw,z}, Moreover |-Ann(S) = S has

(@ If RS are both p-rings, or commutative, or dimension 2, while r-Anp(S) = spafu— v,w,z} has
anticommutative, theR®, Shas the same property.  dimension 3.
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1
Prf(R) == :
R=R 2 xR
H(S)<f(xR)
1 1
Pri (R) = —=
R=m 2 xR

XE
M(SR)ZF(xR)

If R has split form with data(R;,Rz), we could
equivalently write

1
Pr{(R) = —— ,
PRl & TR
(S)CHXR)
1 1
Pr: (R)
(PRl & xR

Lemma 3.12. Suppose RS are split-form p-rings with
data (R, Rp) and (S1,S), respectively, for some prime p.
Suppose also thas| = p anddimS/I-Ann¢ (S) =me N.
With the notation of the previous paragraph, we have

Pri (R, S) = Pr{ (R) +Pr; (R)Pr¢ (S)

Pri (R)+a(m p)Pr; (R). (3.3)

In particular, Pr¢ (R) Pr¢ (S) < Prs(R®, S) < Pri(R).

Proof. Let T := R®y, S As before, we write a general
elementx € T asx = X1 + X2 + X3, wherex; € Ry, X2 € Ry,
and x3 € §. We say thatx € T is of Type A'if
H(S) C f(x1,R), and of Type Botherwise. Sincen > 0,
we have 1< |f(S9)| < || = p, and so necessarily
[f(SS[=p.

It is clear thatf(x,T) is the sum of the subgroups
f(x1,R) and f(x3,S). Thus if x is Type A, then
f(x,T) = f(x1,R), and the total contribution to IP(T) of
all Type A elements is precisely P(R).

Suppose instead thatis of Type B. Now|f(x3,9)| is
eitherp or 1, depending on whether or nate I-Ann¢ (S).
In either case, we see that

F T =[x, R)[- [f(x3, ) (3:4)

It follows that

1 1 _
|T| o |f(X1+X2+X3,T)|

B 1 1 1

R-f(x.R) (|ss f(x3,5)|)

__Pr(S  a(mp)
RO R) RO, R)

where the last equation follows from Lemma.1Q
Summing these terms over alle R of Type B, we get

a(m; p) Pr; (R). Adding this to the Type A contribution,
we deduced.3). Finally, the inequalities

Pri(R) Pre(S) < Pri(R®, S) < Pre(R)

follow immediately from 8.3) because Rr(R) > 0.

We now prove a variation of Lemnl2dealing with
repeated augmentations using the same homomorghism
under the natural embeddingRin R®, S. We denote the
n-fold repeated augmentation Rsp}; S, i.e. R@f, S=R,
andR&), S= (Ref 1S @, Sforallne N.

Lemma 3.13. Suppose RS are p-rings of split form with
data(R1,Rz) and (S, S,), respectively, for some prime p.
Suppose also thas,| = p and thatdimS/I-Ann; (S) = m
for some ne N. With the same notation as in Lemi®4d.2
we have

Pr(R&f, S) = Prf (R)+ a(mn p)Pr; (R), neN. (3.5)

Proof. Let T,, := R@ﬂ S We view (T,,+) as an internal
direct sum ofRy, Ry, andn distinct copies of5, and write
a general element df in the formx = x; + X2 + Zini32Xi,
wherex;.» lies in theith copy of S;. Arguing as in the
proof of Lemma3.12 we see that ifu(S) C f(x1,R),
then f(x,T) = f(x1,R), and so the total contribution to
Pr¢(T) of all such points is Pr(R). For all other points,
we see that ik » € I-Ann¢(S) for all i > 2 (a condition
that corresponds tg{‘;’fxi representing the zero element
of BMZs/I1-Ann(S)), then |f(x,T)| = |f(x,R)|, and
otherwise|f(x,T)| = p|f(x1,R)|. Consequently, we see
that

1 1

1Ta| N2
L ENUL O L

B 1 1 1 p™m-1
R [f (R (pm"+p' pmn )
__a(mnp)

R (xa,R)

and the lemma follows as befor@.
Remark 3.14. TakingR = Sin Lemma3.13 it is readily
verified that

PrSel S =a(mnp), neN,

where Id .S, — $ is the identity map. Thus, once we find
a single number in the spectru (¢) corresponding to

a ring S as in the above lemmas, we immediately get an
infinite sequence of elements @+ (%)p). For future

reference, we write AU, n) = S@ﬂfl S

Theorem 3.15. Suppose (X,Y) = aXY + bYX is a
symbol for some & € Z, and that at least one of,h is
nonzero. Suppose also that p is a prime. Then the
elements of5¢ (%)) obtained by rings Re ¢}, for which
|f(R,R)| = p are precisely:
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(a) all numbers of the formr (n; p), ne N, ifa+b #0;
(b) all numbers of the formr (2n; p), ne N, ifa+b=0.

BecauseS is nontrivial, we can select nonzero
u,v € § such thatuv # 0. SinceSis anticommutativey
and v are non-collinear. MoreovelyS=vS= S is a

Furthermore to achieve these values, it suffices t0 Us§ector space of dimension 1, so Ayin) and Anry(v)

commutative rings in (a), and anticommutative rings in poth

(b).

Proof. Suppose first thaa+ b ## 0, and letk = vp(a+b).
Itis readily verified thaR := Z 1 satisfieq f(R,R)| = p
and dimR/I-Ann¢(R) = 1. This is not a split-form ring

have  codimension 1 in S Since
v € Anns(Vv) \ Anng(u), we see that Ang(u) and Anrg(v)
are distinct, and U := Anng(u) N Anng(v) has
codimension 2. It is also clear that is of the form
Uy 'S for some subspadé; of S;. Neitheru norv lie in
U since each fails to annihilate the other. It follows that

but we can apply the split construction to get the andU generate Ang(u), thatv andU generate Ang(v),

commutative ringS such that(S +) is isomorphic to
Cperr BCia and has basiqu,v}, with multiplication
being defined byu? = v and uv = v = 0. Then
[f(S,S)| = pand dimS/I-Ann¢(S) = 1. By Lemma3.10
and Remark3.14, we have Pr(Aug(Sn)) = a(n; p) for
all n € N, and no other values of RiR) can occur for
p-rings R satisfying |f(RR)| = p. Since S is
commutative, so is AU, n).

It remains to considef(X,Y) :=a(XY—-YX),acN;
in this case, we have |-AnfS) = r-Ann¢(S). Let
k = vp(a) and assume > 2. As an abelian group, we
take (S,+) to be Eﬂ?zlc ki1, With basis®B = {u,v,w}.
Multiplication is definecf by takingiv = —vu = w, and
xy = 0 for all other pairs(x,y) of basis elements. It is
readily verified thatS is an anticommutative split-form
Zp-algebra with dataS;,Sp), where S is the additive
group generated by andv, and S the additive group
generated byw. Also f(S,S) is generated bypkw, so
|(S,S)| = p. Since Ann(S) is generated byp*u, ptv,
andw, we have|S/ Anng (S)| = p?. Thus by Lemmé8.1Q
we have Pf(S) = a(2;p), and so &¢(%p) contains
a(2n; p) for all n € N. SinceSis anticommutative, so is
the augmented ring Ay n) that gives rise tax(2n; p)
forallneN.

and that, v, andU generates. Thus dimlJ = dimS— 2.

We are done if din$ = 2, so suppose di®> 2, and
thusU is a nontrivial split-fornZ,-algebra. Sinc&l; C Sy,
w$S is nontrivial for all nonzerav € U,. ButU annihilates
u andyv, so in factwU must be nontrivial. It follows that
U? = S, and that AnU) = S. ThusU has canonical
form and it satisfies the same assumption§,asith data
(U1,S). Since dinU < dimS, dimU; must be even. Now
dim$S; = dimU; + 2, and the claim followd]

As previously claimed, the choice pf can affect the
isomorphism type oR&, Seven if|A2(S)| = p. We now
verify this fact by giving an example where the choicegiof
affects the annihilating probability of the augmented ring

Proposition 3.16. For each prime p, there exist canonical-
typeZp-algebras R and S, witimR =5, dimS= 2, and
dimA>(S) = 1 such thatPryny(R®y, S) can take on two
distinct values depending on the choiceuof

Proof. Let R be the Zp-algebra with basis
{u1,Up,U3,21,2}, whereu? = u3 = z;, U3 = 2, and all
other products of basis elements are zero, an8 ket the
subalgebra oR with basis{ui,z }. It is readily verified
that R and S both have canonical type with datR;, Ry)
and (S1,S), respectively, wherdR; := sparfuy, Uz, U3},

Ry :=spafz1,2}, S ;= spafui}, andS, := spafz }.

When p = 2, this construction needs to be tweaked.Moreover it is clear that spdn;, uy,z;} is isomorphic to

We instead takéS, +) to be @3 Cyi2. Then the rest of
the proof is as before, except thitS,S) is generated by
21w, and Anny (S) is generated by*21u, 2¢1v, andw.
Suppose conversely thit(R, R)| = p for somep-ring
R. Without loss of generalityR has split form with data
(R1,Rz). We first define a new ringR, where
(R,+) = (R +) and the multiplicatiorr of R is defined
by xoy = f(x,y). ThenR is also a split-form ring with
data (R;,Ry), and by construction Bg(R) = Pr¢(R).
Because of the form off, R is anticommutative and

r-Ann(R) = I-Ann(R). We now carry out the canonical
construction to get an anticommutative canonical-form

Zp-algebraSwith data(S;, S), whereS; = Ri/ Ann(Ry),
SZ - (W)Z’ and Pgnn(s) = Prann(R).
To finish the proof of (b), it suffices by Lemn&10to

prove that ding; is even. This amounts to the claim that if
Sis a finite-dimensional anticommutative canonical-form

Zp-algebra with datdS;, S) such that ding = 1, then

S, has even dimension. For the sake of contradiction, we

assume that this is false, and that @ms minimal for
such a counterexample.

Aug(S 2), and soR is isomorphic to Aug¢S,2) ¢ S Also
letS, :=spaf{z } andS, := spafz}.

We now augmerniR by (another copy ofin two ways,
namely via isomorphismg’ : S— S, andu” : S— S;. By
Observatior8.9f), R®,s Sis isomorphic to AugS 3) ©
SandR@» Sis isomorphic to AugS 2) © Aug(S 2). In
view of Lemma3.10 we see that

P = Pl’ann(R@“/ S)
= Prarm(Aug(S7 3)) . Prann(s)
=a(3;p)-a(l;p)
while
P2 := Plann(R® 7 S) = (Prann(Aug(S, 2)))? =a(2;p)*.
Now P; > P, for all primesp since
P°(PL—P) = (pP*+p—1)(2p—1) — (PP +p—1)°
=p(p-1)°.

Thus we have obtained two distinct values of®®, S)
by varyingu. O
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4 Large probability values

In this section, we find all possible values &(%p) in
the interval[e(p), 1]. However we begin by obtaining an
upper bound on R(R) dependent on the largest order of
elements inR/r-Ann¢ (R); for this result, f can be any
symbol.

Theorem 4.1. Suppose X,Y) :=aXY-+bY X is a symbol,
where ab € Z are not both zero. Let R be a finite p-ring for
some prime p. Suppose the first invariant gf-Rnn¢ (R)
iskeN.

(@) Pr(R) < M(k; p) := (k(p—1) + p) /L.

(b) Equality in (a) is attained if and only if R-Ann; (R)
is isomorphic to G, and this is possible for a given
symbol f if and only if a b is nonzero.

(c) M(k; p) is strictly decreasing as a function of k, with
'Vz(l):m = a(1;p), M(2;p) = d(p), and M(3;p) <
e(p).

(d) In the case k= 2, if R/r-Ann; (R) is not isomorphic to
Cpz, thenPr (R) < &(p).

Proof. Let us fix ap-ring R, and writeA := R/r-Ann¢ (R).
We also write[x] for the A-coset containing € R, and
o1 (x) for the order ofiX] in A. We assume thatis the first
invariant ofA, i.e. pX is the maximal value of (X).

Let Aj be the set of elements i of order at mosp/,
j > 0. Then|Aj/Aj_1| > pfor each 1< j <k. Thus if we
defineR; := |A;j|/|Al andrj :=Rj —Rj_1 forall0 < j, then
Rj=1forj>kandrj > (p—1)Rj/pforall 1< j <k
lterating downwards fronj = k, we see thaR; < p/~* for
alo<j<k _ '

Since|f(x,R)| > p! wheneverx] € A has ordemp!, it
follows from (2.3) that

Pri(R) < (p—1) pj%l-

J:

Thus to maximize R(R) we should maximize everR,;.
Equivalently, we should takg = (p—1)/p<1~1 for 1 <

j <kandro=1/ pX. With these proportions, the.-form
of the bound in2.3) gives
k i _ i k

j K
=LA

P— _
;l pk+i-i+i

PI’f(R) <

M(k;p), (4.1)

thus finishing the proof of (a).

It is clear that equality in4.1) can occur only if
R/r-Ann¢ (R) is a cyclic group (of ordep¥): in fact in this
case we see that(x,R)| = p! wheneverx] € A has order
p', so we get equality if and only iR/r-Ann¢(R) is
cyclic.

Supposea + b is nonzero, and lem = vp(a+b).
Givenk € N, it is readily verified thaR := Z ym is such

that R/r-Ann¢(R) has elements of orderp® and
Pr(R) = M(k; p).

Suppose instead tha+ b = 0 and that the first
invariant of R/r-Ann;(R) is k € N. Now a # 0 andR is
non-commutative. Note also that r-Af(ilR) = Ann; (R).
Since f(x,x) = 0 for all x € R, and since there are
elementsx,y with axy # ayx R/Ann:(R) cannot be
cyclic: in fact its first two invariants must be equal. Thus
we cannot have R(R) = M(k; p), and we have finished
the proof of (b).

Part (c) is rather easily proved. First, the proof that
M(k;p) is a strictly decreasing function ok is
straightforward (or alternatively can be deduced from the
discussion of the upper bound on{FR) above). The
equationsM(1;p) = a(1;p) and M(2;p) = o(p) are
trivial. The inequalityM(3;p) < &(p) holds because

p°(e(p) ~M(3;p)) = (2p°+ p* ~3p+1) — (4p” ~ 3p)
=(2p+1)(p—1)?>0.

Lastly we prove (d). Arguing as in (a), we see that we
still have Q; < p~1. However we now havéA| > p3, so
Qo < p3, and to maximize the upper bound or fR),
we takeQ; = p~tandQy = p~3, or equivalentlyy, = (p—
1)/p, aq1 = (p? —1)/p% andgo = 1/p°. With these values
of g;, we get

pP-1

1 2pP-1
P ot

P
and this upper bounfi(p) is less tharg(p) because
P°(e(p) — B(P)) = (2p°+ p* —3p+1) — (2p*— p)
=(p-1)>

p—1

p1+2 +

Y

PI’f(R) <

(4.2)
[

If we want to find all elements of the set
S+¢(¢p)N[e(p), 1], then Theorerd.1says that ring® for
which R/r-Ann; (R) fails to be ap-group are relevant only
for Pr;(R) = d(p), and it tells us when such examples
exist. Thus it remains only to investigate the case where
R/r-Ann¢ (R) is an elementarp-group.

Below, we carry out this analysis for the
anticommuting symbolf (X,Y) := XY +YX. As a first
step, we appeal to Theorei®.5a) to transform the
problem into an investigation @ann(¢:N¢p) N [€(P), 1.
Since the rings of interest are commutative, it suffices to
consider canonical-form ringR with data(R;, Rz). Now
Ry is isomorphic to the elementany-group R/ Ann(R)
and so, by Observatiaddi4(e), Ris aZy-algebra.

Thus the task at hand is to compute all annihilating
probabilites no less thane(p) for commutative
canonical-fornZp-algebras. Initially we will assume that
Ris atomic by this we mean thaR is bothunaugmented
(meaning that it is not the augmentatibhe®, V for a
canonical-form Zp-algebra V  with dimv? = 1) and
indecomposable(i.e. it is not a direct sum of two
nontrivial Zp-algebras). The following result will be
useful.
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Lemma 4.2. Suppose R is an atomic canonical-form Theorem 4.4. Suppose p is a prime, and R is a
commutativeZp-algebra for some prime p, with data commutative atomic canonical-fornZ,-algebra with
(R1,Rp) wheredimRy > 1. Then @ = 0 whenever e R data (Ry,Rp) such thatdimR, = 2. Writing m= dimR,

is such thadimuR= 1. More generally, we have uv 0 one of the following situations must occur:

for all pairs u,v € R for whichdimuR = dimvR=1 (@) m=1, p=2, andPrn(R) = a(2;2).

under either of the following additional assumptions: (b) m=2andPrann(R) = 5(p).
(a) dimRy > 2; (c) me {2,3} andPrann(R) = (2p? — 1)/p* < &(p).
(b) p> 2. Furthermore (a) is possible only for p 2, in which case

o there is a unique isomorphism type, while for each prime p
Proof. Suppose for the sake of contradiction tht# 0 there is a unique isomorphism type giving (b). Finally for
even though dimR= 1. We may assume that= Ry, since  gach prime p, there is a unique isomorphism type giving
Ro = Ann(R). Now A" := Anng(u) has codimension 1, and  the m= 3 subcase of (c), and at least one isomorphism

it has the formA; EIR; for someA; C Ry. Sinceu¢ A, we  ype giving the subcase 2 of (c), with uniqueness at
see thaRy is the direct sum dfl; ‘= spar{u} andA;. Both  |east when p= 2.

U, := spar{u?} andA, := A? are subspaces B, and both
of the subspacdd := U; HU, andA:= A; @A, of Rare  Proof. The only possible values of dixR for a nonzero
canonical-form subrings d®. EitherU, is a subset ofy, elementx of R are 1 and 2.

in which caseR is an augmentation & by U, or it is not
a subset, in which cagris an internal direct sum @f and

; S - 2 _ ;
U. In either case, we get a contradiction to the atomicity Lemmad4.2 tells us thax® = 0 for all x € R. Thus if
hypothesis. {u,v} is any basis ofR;, thenz:= uv must be nonzero

The proof thauv = 0 when dimuR= dimvR= 1 and (lest R be a null ring, contradicting the canonical-form
dimR; > 2 is similar. From (a), we already know that @Ssumption), and it is clear thef = spar{z}, som = 1.
W =2 = 0. Suppose for the sake of contradiction that APPIYing Lemma4.2 again, we must have = 2. The
uv # 0, and without loss of generality we assume that®duation Pan(R) = a(2;2) now follows from
u,v € Ry. Now A’ := Anng(u) NAnng(v) has codimension Lemma3.1Q This possibility does occur, as we saw in
2, and it has the formA; B R,. The codimension-1 Example4.3. Since muItlphcatl_on is fuIIy specified, this
subspace Angu) is spanned byA and u (since Case corresponds to a unique isomorphism type.
u¢ Anng(v)), andR is spanned by, v, andA’ (since  Case 2:dimxR takes on both the valuesand 2 for
v ¢ Anng(u)). Letting Uy := spar{u,v}, U := spar{uv},  different choices of x R.
andA, := A7, we can then finish the proof as before. We selectuv € R, such that dimiR = 1 and

Finally, suppose that diRy = 2, p > 2, and dinuR= dimvR = 2 By7 Lemma 4.2 W’ = 0. The equation
dimvR= 1. We know that® = v* = 0, S0 suppose f/or the  dimvR= 2 forces the produ;:usl = uv ahdzz :=V?to be
sakt\a/ o;g\?niadlfti?n thr?é": IS Qozr;zerg. T::"ﬂ‘ v _  non-collinear. Given thaR, = spar{zi, 2}, this fully
u+vandv :=u-—vspanRy, (U) 70, andu specifies multiplication oiR, so we have shown that there
0. Thus dim/R =1, and the fact thafu')” # 0 gives @ j5 eyactly one isomorphism type for each primelt is

contradictionl] . . readily verified that ifx = au+ bv for a,b € Zp, then

The condition dinuR=dimvR=1 does notimply that  §imxR = 2 wheneverb 40, and dimkR= 1 whenever
uv= 0 whenR s an atomic canonical-form commutative | _ o anda # 0. We therefore deduce fror8.Q) that
Zy-algebra, with datdR;,Ry) where dinR; = 2, as the

following example shows. 1 2 -1
Prann(R) = =2 <p 2 erperl) =90(p).

It remains to verify thaR is atomic. Suppose for the
sake of contradiction tha& is of the formU @V, where
V is a canonical-fornZy-algebrav with dimv2 = 1. Let
,(Ul,Uz) and(Vy,V,) be the data o) andV, respectively,
and soV, = V2. Sincepu : Vo — Uy, dimU, > 1. Thus

Case 1:.dimxR= 1 for all nonzero xc R;.

Example 4.3. Consider the commutativ&,-algebraR
with basis{u,v,z}, whereuv = vu=z andu? = v* = 0.
Then R has canonical form with datéR;,Rz), where
Ri1 := spafu,v} andR; := spa{z}, and dimkR= 1 for
all nonzerox € Ry, since (u+ v)u = z. HoweverR is
indecomposable because it has only four nontrivial prope
ideals—one iRy, while the other three are spannedry

; ; dimu > dimU/Ann(U) > 1 and
and a single nonzero element®f—and all contairR,. It Tl = =.
is also unaugmented because all of these ideals are n imVy = dimV/Ann(v) > 1. But it _fOHOWS from
algebras so if we use them for augmentation we can onl bservation 3.9c) with — f(X,Y) = XY that

2 = dimRy = dimU/Ann(U) + dimV/Ann(V), so we

must have dird; = 1 and so difU? = 1. But now by
We now separately examine the cases whereDbservatior8.9(d), dimR? = 1, contradicting the fact that

R/Ann(R) has dimension 2, or dimension at least 3. FordimR? = 2.

dimension 2, we examine all possibilities regardless of  Suppose instead th& is a direct sum of nontrivial

whether or not Rixn(R) > £(p). algebras U and V. It is clear that

get other null algebras.
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Ann(R) = Ann(U) B Ann(V) andR?> = U2EV?, so we
have AnfU) =U? and Anr(V) = V2. Also

R/ANN(R) = (U/Ann(U)) B (V/Ann(V))

o)
dimU/Ann(U)+dimV/Ann(V) = 2.

is nonsingular. But défl = (a+c)(1+a) —ac=g(a) has
no roots, so our claim is proved.

We have shown that this case yields exactly two
isomorphism types whep = 2, and at least two when
p > 2. We will not investigate whether or not there are
more than one isomorphism type correspondingite 2
for p> 2.

It remains to show that these rings are atomic. The

If one of these factor spaces has dimension 2, sayqof that they are unaugmented is exactly as in Case 2,

dimU /Ann(U) = 2, then dimV /Ann(V) = 0. But thenV
would be a null ring, soV = Ann(V) and also
AnnV =V? =0, soV would be trivial, contradicting our
hypotheses. Thus dith/ Ann(U) = dimV/Ann(V) = 1,
and so dinu? = dimv2 = 1. By Lemma 3.1Q
Prann(U) = Prann(V) = a(1;p), forcing the equation
&(p) = a(1;p)?. But this equation fails for all primep
since

p*(a(1;p)? - 6(p)) = (2p—1)* — (3p* — 2p)

(4.3)
= (p—1)?>0.
This concludes the proof th&is atomic.
Case 3:.dimxR= 2 for all nonzero xc Ry.
It readily follows from 8.2 that

Prann(R) = (2p? — 1)/p* and this is less thas(p) by
(4.2). It is readily verified that this occurs ih= 3, {u,v}
is a basis oRy, {z1,2,23} is a basis oR, andl? = 7,
V2 = 7, anduv = vu = z.

Conversely, the condition dioR = dimvR = 2
requires that; := u? andzs := uv are non-collinear, and
that z, := v and z; are non-collinear. I{z1,2,23} Is a
linearly independent set, then we are in the= 3
situation above, and the isomorphism type Rfis

as is the proof that then = 2 ring is indecomposable. The
proof for them = 3 ring starts in a similar fashion, but we
get a contradiction from the fact that
dimS/Ann(S) = dimT/Ann(T) = 1, whereas one of’
andT? must have dimension 2]

We now consider atomic
dimR/Ann(R) > 3.

Theorem 4.5. If R is a commutative atomic
canonical-form Zp-algebra with data (Ry,R») and
dimRy > 3, thenPrann(R) < £(p).

algebraR  with

Proof. Suppose first that dikcR < 1 for at mostp of the
elements oR;. By (3.2),
-1
+ P2 1)

P

1<p3—p
p p2

3
_ pP+2p-2
Y
This bound is less thas( p) because

p°e(p) — p(p*+2p—2) = (p+1)(p—1)°.

Thus we may assume that dkR < 1 for more tharp
elements ofRy, and so there exists a two-dimensional

F)rann( R) <

uniquely specified. However we claim that even in the subspacel of R; spanned by elementg,u; such that

absence of independence, it is possible thatxd@may
equal 2 for allx € Ry.

Forp=2, we takezz = 21 + 2. Then(u+v)2 =2+2
and (u+Vv)u = z1 + z3 = 2, giving dim(u+Vv)R= 2 and
so dimxR= 2 for all nonzerax € Ry. It is readily verified
that if we instead chose; € {z,2}, then we would get
dim(u+Vv)R = 1, so there is a unique isomorphism type
givingm= 2 whenp = 2.

Suppose instead that> 2. Lets € Zp be a quadratic
nonresidue modp, and let c € Z, be defined by
c:=471(1-s). Then 1-4c = s, so it follows that the
quadraticg(a) := a?+a- ¢ has no roots ifZy. Let R be
the canonical-typeZ,-algebra with dataR;,R>) where
{u,v} is a basis ofRy, {z,2} is a basis ofR,, and
u> =2z, V2 = 2, and uv = vu = cz + 2. Certainly
dimuR= 2, so to prove that dimR= 2 for all x € Ry, it
suffices to prove this wher = au+ v for somea € Zj,.
For such an element we havexu = (a+ c)z; + z and
xv=acz + (14 a)z. Thus dimkR= 2 if (and only if) the
associated matrix

3

. (a+c 1
M'_<ac 1+

dimuiR = dimuwR = 1. By Lemma4.2 and distributivity,
xy=0forallx,y € T. Lettingw € Ry \ T, we deduce that
uw andu,w must both be nonzero, since otherwigeor
Uz would be an element of ArR), contradicting the
canonical-form assumption. Furthermougw and u,w
must be non-collinear, since otherwise some linear
combination ofu; andu, would similarly contradict the
canonical-form assumption. We deduce thatig a linear
combination ofuz, up, andw, with thew-coefficient being
nonzero (inZp), then dinkR> 2. Thus

pP-p*  p*-1

+1
p? p )

which is less tharm(p) according t04.2). O

Proof of Theorem 1.1 As discussed above, the task of
finding all possible values i&ac(%p) N[€(p), 1] is reduced
to finding all possible values of Ri(R) > £(p) whenRis
a commutative canonical-formp-ring. The data oR will
be denoted Ry, Ry) as usual, and we writey := dimR;,
i=12.

Based on our work above, it is straightforward to
calculate the values that occur whéhis an atomic

2p°—1

)

1
Prann(R) < E (
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canonical-formZp-algebra; we call thesatomic values
If my = 0, then necessarilyy, = 0, soR s the trivial ring
and Pgnn(R) = 1. If mp = 1, then necessarily, = 1, and
Prann(R) = a(1; p) now follows from Lemma3.1Q Both

of these rings are clearly atomic. Theoremigt and
Theoremd.5tell us that the only possible atomic values in
[e(p), 1] corresponding tom > 2 area (2;2) andd(p).

The valued(p) also occurs for commutative-ringsR
that are notZp-algebras according to Theorednl, but
such rings give no other values ife(p),1]. Since
R/Ann(R) is cyclic andR has canonical form, we see that
R can only have one isomorphism type: for 1,2, R is
isomorphic toCp2 and has generatax, with uf = Uy and
uiuj = O for all other choices af, j.

It remains to investigate what can be found by
augmentation of the (nontrivial) atomi@,-algebras
above by a canonical-fortfip-algebrav with dimvZ2=1,
or by direct sums of non-null algebras (since a null ring
direct summand leaves the annihilating probability
unchanged). Both of these processes strictly decrease t
annihilating probability—in the case of augmentation
because of3.3—so it suffices to apply these processes
iteratively to the atomic algebraR above for which
gzan)n(R) = a(L;p), Pam(R) = a(2;2), or Pem(R) =

p).

The algebras with Ri(R) = oa(l;p) or
Prann(R) = a(2;2) both satisfy|R?| = p, so augmentation
yields only algebra® with Pryn(R) = a(k; p) for some
k € N. Repeated augmentation of the algelitawith
Prann(R) = a(1;p) yields all numbersx (k; p), k € N by
Remark3.14

Next we consider augmenting the algebRa in
Theorem4.4(b) for which Pgny(R) = d(p). Since the
contribution to PE,(R) always includes the contributions
of all elements oR,, we see that Rf,(R) > 1/p?, and so
Prin(R) < 8(p) — 1/p?. If R®,V is any augmentation
with |V?| = p, then 3.3) and @.2) together imply that

2p-2

2p—l.i:2p2—l
p3

p?  p? p

so these algebras give no new values.

+

Prann(R®, V) < <e&(p),

hR

obtained by a direct sum. This is Ap-algebra with
Prann(R) = a(1;p)?, with basis {u;,up, 21,2}, where
ui2 =1z,i=12, and all other products of basis elements
are zero. We write Ry spafug, Uz} and

Ry := spadz,z} as usual, and write a general element
X € R in the form x = aqu; + agup + b1y + byz, for
a,bi € Zp. We also denote byv,w} the basis of the
Zp-algebra$S that we use for augmentation; here=w
andvw = wv = w? = 0, and the data oB is (S,$),
whereS; := sparfv} andS, := spaq w}.

If a; and ap are both nonzero, then it is readily
verified thatxR= Ry, sox contributes to P, (R) in (3.3
regardless of the augmentation functijpnBy contrast, if
a; = ap = 0, then x contributes to Bj,,(R) in (3.3.
However elements with one but not both of; and ay
nonzero satisfy dimR= 1, and so the choice qf affects
whether such elements contribute towards B, (R) or
Poan(R). As is clear from 8.3, maximizing
Pran(R®y S) for a givenSis equivalent to maximizing
e number of such elements that contribute tg,PR).
Since for such elementsxR is either spafizy} or
spaf 2}, Prann(R®y S) is maximized wheru : S — Ry
is the homomorphism with the propergy(w) = z;. By
constructionR is a direct sum of two isomorphic copies
of S and the condition u(w) = zz means that
Observation 3.9(f) is applicable. ThusR @, S is
isomorphic to AugS, 2) ¢ Sand

Prann(R@u S =a(l;p)a(2;p) =&(p).

This is a value that we already have, and in fact
Aug(S 2) ¢ S is the same canonical-form isomorphism
type that gave that value in the previous direct sum stage
of this proof. We have now completed the proof that
Gac(6p) N [e(p),1] is as stated.

Finally to computeGac(éiin) N [€(2),1], we need to
take products of elements i#iac(¢p) for distinct primes
p. First we have all the values i®Bac(%2) N [£(2),1].
These give 1, a(k2) for al k € N,
9/16 = a(1;2? = a(3;2, 1/2 = 5(2), and
15/32 = ¢(2). We get nothing additional from primes
p > 5 because in this cag@p—1)/p? < 2/p < 15/32.

For direct sums applied to the above atomic algebrasaking p = 3 does give one additional value, namely
and their augmentations, we must consider products ofr(1;3) = 5/9, but it gives no other new values because

values that we already have. We first recall that
a(l;p)a(2;p) = €(p), so this gives us one new value. In
view of (1.2), it follows that it remains only to consider
powers ofa (1;p). But

p'(a(2;p)—a(L;p)?) = (p—1)*>0,

soa(1;p)® < &(p). Thus we need only consider(1; p)>?,
a number that by4.3) exceedd(p). Now a(k;p) > 1/p
for all k € N, whereasa(1;3)? < 1/3 and forp > 5,
a(1;p)? < (2/p)? < 1/p. Thusa(1;p)? is a new value
forall p> 2, buta(1;2)? = a(3;2).

The next step is to augment the one new
canonical-form algebr&® with Pryn(R) > £(p) that we

a(2;3) =11/27 anda(1;2)a(1;3) = 5/12 are both less
than 1532.0

Although we did not explicitly state it in Theorefn1,
we can read off all isomorphism types of canonical-form
commutativep-rings R satisfying Pgan(R) > €(p) from
the above proofs. These types consist of the trivial ring, a
one-parameter of algebras giving(Ry = a(k; p) for all
k € N, and either six (fop = 2) or four (for p > 2) other
types, as detailed in the following theorem.

Theorem 4.6. The following list gives all possible
isomorphism types of canonical-form commutative
p-rings R withPrann(R) > &(p) for a given prime p.

(a) Prann(R) = 1 for the trivial algebra R.
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(b) Prann(R) = a (k; p), ke N, for the algebra R with basis
{ug,..., U2z}, where § = z for all 1 < i <k, and all
other products of basis elements are zero.

() Prann(R) = a(2;2) for the atomic algebra R of
Theoremd.4(a).

(d) Prann(R) = a(1;p)? for a direct sum algebra R
constructed in the proof of Theoretril

(€) Prann(R) = &(p) for the algebra R of Theoresh4(b).

() Prann(R) = d(p) for the canonical construction
applied to a ring R given by Theorefl(b) for k= 2.

(9) Prann(R) = €(p) for the algebra R= Aug(S,2) @ S,
where S is the unique canonical-form commutafiye
algebra withPrann(S) = a(1; p).

(h) Prann(R) = €(2) for the algebra R=T @ S, where S
isasin (g) for p=2,and T is the algebra in (c).

All rings listed above give distinct isomorphism types, but

note that (c) and (h) are for g- 2 only.

We omit most of the proof of Theoreh6, since it is

[3] A. K. Das and R. K. Nath, A characterisation of certain finite
groups of odd order, Math. Proc. R. Ir. Acatl11A, 69-78
(2011).

[4] J. Dixon, Probabilistic group theory, C.R. Math. Rep. Acad.
Sci., Canada?4, 1-15 (2002).

[5] P. Erdds and P. Tuan, On some problems of a statistical
group-theory, 1V, Acta Math. Acad. Sci. Hung.9, 413-435
(1968).

[6] R. M. Guralnick and G. R. Robinson, On the commuting
probability in finite groups, J. Algebr&00, 509-528 (2006).

[71W. H. Gustafson, What is the probability that two group
elements commute?, Amer. Math. Month8g@, 1031-1034
(1973).

[8] P. Hegarty, Limit points in the range of the commuting
probability function on finite groups, J. Group Theory, to
appeatr.

[9]1 K. S. Joseph, Commutativity in non-abelian groups, PhD
thesis, University of California, Los Angeles, (1969).

[10] D. MacHale, How commutative can a non-commutative

group be? Math. GazLVIIl , 199-202 (1974).

contained in our earlier proofs. The fact that the [11] D. MacHale, Commutativity in finite rings, Amer. Math.

isomorphism type in (f) is unique follows from the fact

that R/Ann(R) is cyclic, as discussed in the proof of [12]

Theorem1.1 The one other aspect of the proof upon
which we should comment is the fact that the various
isomorphism types listed are distinct. Fpr> 2, this
follows from the fact that there is only one isomorphism
type for each value of Rky(R), with the exception of
d(p) which is associated with both an algebra and a
non-algebra.

For p = 2, there are three other duplicate sets of
Prann(R) values. Firsta(2;2) is given by an augmented
algebra in (b) and an atomic algebra in (c), so these are
necessarily distinct. Alsay (3;2) = a(1;2)? is associated
with an augmented algebRin (b) and a direct product
algebra in (d), and these are distinguished by the
dimension of R%. The algebras in (g) and (h) are
distinguished by the number of elementsvith x? # O:
there are two such elements in (g) and none in (h).

The set of types given in Theoref6is considerably
more diverse than the set of types of canonical-form
p-rings with Pg(R) > £(p), which can be deduced from
[2, Theorem 1.2]. For the latter problem and any given
prime p, we get a null algebra for RiR) = 1, one algebra
for Pre(R) = a(2k; p), k € N, and nothing else. The extra
complexity is a direct result of the fact that can be
nonzero in a commutative ring, in contrast to the fact that
it must equal zero in an anticommutative ring.
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