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Abstract: For square contingency tables with nominal categories, the quasi-symmetry model (Caussinus, 1965) was characterized in

terms of the symmetry of odds ratios. This study proposes new models that partially indicate the structure of the symmetry of odds

ratios. This study also decomposed the symmetry model using the proposed model. An analysis of the data representing changes in

membership and attitudes toward the leading crowd was provided.
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1 Introduction

We consider an r×r square contingency table with the same row and column classifications. Let pi j denote the probability
that an observation falls in the ith row and jth column of the table (i = 1, . . . ,r; j = 1, . . . ,r). The symmetry (S) model is
defined as

pi j = ψi j (i = 1, . . . ,r; j = 1, . . . ,r),

where ψi j = ψ ji; see Bowker [1] and Bishop et al. [2]. This model indicates a structure of probability symmetry with
respect to the main diagonal of the table. As an extension of the S model, Caussinus [3] proposed the quasi-symmetry
(QS) model defined by

pi j = αiβ jψi j (i = 1, . . . ,r; j = 1, . . . ,r),

where ψi j = ψ ji; see also Bradley and Terry [4] and Tahata et al. [5]. A special case of this model obtained by setting
{αi = βi} as the S model. Denote the odds ratio by

θ(i<s; j<t) =
pi j pst

ps j pit

(i < s : j < t).

The QS model is expressed as

θ(i<s; j<t) = θ( j<t;i<s) (i < s : j < t). (1)

Therefore, the QS model is characterized in terms of the symmetry of odds ratios (although the S model indicates the
symmetry of cell probabilities). From Equation (1), the QS model is further expressed as

pi j p jk pki = p ji pk j pik (1 ≤ i < j < k ≤ r).

The marginal homogeneity (MH) model is defined as follows:

pi· = p·i (i = 1, . . . ,r),

∗ Corresponding author e-mail: iki.kiyotaka@nihon-u.ac.jp

c© 2024 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsapl/110104


28 K. Iki, S. Tomizawa: Partial Quasi-Symmetry Model for Square Contingency Tables

where pi· = ∑r
t=1 pit and p·i = ∑r

s=1 psi (Stuart [6]). This model indicates that the row marginal distribution is identical to
the column marginal distribution. Caussinus [3] provided the theorem that the S model holds if and only if both the QS
and MH models hold.

Tomizawa et al. [7] proposed a conditional difference asymmetry (CDAS) model defined as

pi j =

{

e∆i j ψi j (i < j),
ψi j (i ≥ j),

where |∆i j|= ∆ and ψi j = ψ ji. This model indicates that the odds pi j/p ji (i < j) are equal to e∆ for some i < j and e−∆

for some i < j. Note that a special case of CDAS model obtained by setting ∆ = 0 is the S model. The CDAS model also
indicates that |pc

i j − pc
ji| for i < j is constant, where pc

i j = pi j/(pi j + p ji).
Under the QS model, the structure pi j p jk pki = p ji pk j pik holds for any 1 ≤ i < j < k ≤ r. We then proposed a model

in which the structure holds for some i < j < k. Furthermore, if the S model holds, the CDAS model holds; however,
the converse does not necessarily hold. In addition to the structure of the CDAS model, we are interested in what kind of
structure the S model holds. We propose a model that satisfies these constraints.

Section 2 proposes the models and describes the properties of the new models, includes the decompositions using
the proposed models, and shows the maximum likelihood estimates of expected frequencies under the proposed models.
Section 3 applies the proposed model to the data in table representing changes in membership and attitude for the “Leading
Crowd”. Finally, Section 4 provides the conclusions.

2 Models

We consider an r× r square contingency table. We propose a model defined as

∏∏∏
1≤i< j<k≤r

(

pi j p jk pki − p jipk j pik

)

= 0.

This model indicates that, for at least one triple l,m and n (1 ≤ l < m < n ≤ r), the structure plm pmn pnl − pml pnm pln = 0
holds. This model is referred to as the partial quasi-symmetry (PQS) model.

Additionally, for fixed i, j and k (1 ≤ i < j < k ≤ r), we propose a model defined by

pi j p jk pki − p jipk j pik = 0.

This model is denoted as PQS(i, j,k). When the number of categories in the square contingency table is r, the models can
be defined as r!/((r− 3)!3!) types.

We obtain the following theorem.

Theorem 2.1. The S model holds if and only if both the CDAS and PQS models hold.

Proof. If the S model holds, then the CDAS and PQS models hold. Assuming that the CDAS and PQS models hold, we
demonstrate that the S model holds. From the PQS model, for some i, j and k (1 ≤ i < j < k ≤ r), we observe that

pi j p jk pki

p ji pk j pik

= 1. (2)

Additionally, from the CDAS model, for any i, j and k (1 ≤ i < j < k ≤ r), we have

pi j p jk pki

p ji pk j pik

=
e∆i je∆ jk

e∆ik
. (3)

Since |∆i j|=∆ (i< j), the right-hand side of Equation (3) is expressed as e3∆ , e∆ , e−∆ or e−3∆ . Therefore, from Equations
(2) and (3), we obtain ∆ = 0. That is, the S model holds. The proof is completed.

Additionally, we obtain the following theorem.

Theorem 2.2. For fixed i, j and k (1 ≤ i < j < k ≤ r), the S model holds, if and only if both the CDAS and PQS(i, j,k)
models hold.

The proof of Theorem 2.2 is omitted because it is similar to Theorem 2.1.
For an r× r contingency table, let ni j denote the observed frequency in the ith row and jth column of the table, where

n = ∑∑ni j and let mi j denote the corresponding expected frequency (i = 1, . . . ,r; j = 1, . . . ,r). We assumed that the
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observed frequencies have a multinomial distribution. Let G2(M) denote the likelihood ratio chi-squared statistic, defined
by

G2(M) =
r

∑
i=1

r

∑
j=1

ni j log

(

ni j

m̂i j

)

,

where m̂i j is the maximum likelihood estimate of the expected frequency mi j in model M. Under model M, this statistics
has an asymptotically central chi-squared distribution with the corresponding degrees of freedom. The numbers of degrees
of freedom for the S, QS, MH, CDAS, and PQS models are r(r− 1)/2, (r− 1)(r− 2)/2, r− 1, (r− 2)(r+ 1)/2, and 1,
respectively. We considered the maximum likelihood estimates of the expected frequencies {mi j} under the PQS model
in the log-likelihood equation. For the PQS model, we must maximize the Lagrangian

L =
r

∑
i=1

r

∑
j=1

ni j log pi j −λ

(

r

∑
i=1

r

∑
j=1

pi j − 1

)

−ψ

(

∏∏∏
1≤i< j<k≤r

(

pi j p jk pki

p ji pk j pik

− 1

)

)

,

with respect to {pi j}, λ and ψ . By setting the partial derivations of L equal to zero using the Newton-Raphson method,
we can obtain the maximum likelihood estimates of {mi j} under the PQS model.

Table 1

Membership and attitude toward the Leading Crowd for a sample of schoolgirls: from Coleman [8]. The upper and lower
parenthesized values are the maximum likelihood estimates of the expected frequencies in the PQS and PQS(1,2,4)
models, respectively.

(M,A) for (M,A) for second interview
first interview Yes, P Yes, N No, P No, N Total

Yes, P 484 93 107 32 716
(484.00) (91.35) (107.00) (33.65)
(484.00) (91.35) (107.00) (33.65)

Yes, N 112 110 30 46 298
(113.65) (110.00) (30.00) (44.35)
(113.65) (110.00) (30.00) (44.35)

No, P 129 40 768 321 1258
(129.00) (40.00) (768.00) (321.00)
(129.00) (40.00) (768.00) (321.00)

No, N 74 75 303 536 988
(72.35) (76.65) (303.00) (536.00)
(72.35) (76.65) (303.00) (536.00)

Total 799 318 1208 935 3260

M, membership; A, attitude; P, positive; N, negative

3 Example

We consider the data in Table 1, taken from Coleman [8]. A sample of schoolgirls was interviewed twice, several months
apart, and asked about their self-perceived membership in the “Leading Crowd” and whether they sometimes needed to
go against their principles to belong to that group. Thus, there are two binary response variables, which we refer to as
membership and attitude, measured at two interview for each subject. Table 1 labels the categories for attitude as (positive,
negative), where “positive” refers to disagreement with the statement that one must go against her principles. For details
of the data in Table 1, see Agresti [9].

We are interested in whether there is a structure of symmetry in membership and attitude between the first and second
interviews for the data in Table 1. As shown in Table 2, the S and QS models do not fit the data well. Therefore, in these
data, there is no structure for the symmetry of cell probabilities and odds ratios. Because the MH model does not fit these
data well, it is not possible to know whether the poor fit of the S model is due to the poor fit of the QS or MH model using
Caussinus’ [3] theorem.
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The PQS model fits these data well, whereas the CDAS model does not fit these data well. From Theorem 2.1, we
observe that the poor fit of the S model is caused by the lack of structure of the CDAS model rather than the PQS model.

The PQS(i, j,k) models for (i, j,k) = (1,2,3),(1,2,4),(2,3,4) fit these data well, whereas the PQS(1,3,4) model does
not fit the data well. Therefore, the probability that the students’ membership and attitude change from (yes, positive) to
(no, positive), from (no, positive) to (no, negative), and from (no, negative) to (yes, positive) is not equal to the probability
that it changes from (no, positive) to (yes, positive), from (no, negative) to (no, positive), and (yes, positive) to (no,
negative) between the first and second interviews.

Table 2

The likelihood ratio chi-squared values G2 for the models applied in Table 1.

Applied models Degrees of freedom G2 p-value

S 6 29.90* < 0.001
QS 3 8.81* 0.032
MH 3 21.09* < 0.001

CDAS 5 15.48* 0.008
PQS 1 0.27 0.604

PQS(1,2,3) 1 0.87 0.352
PQS(1,2,4) 1 0.27 0.604
PQS(1,3,4) 1 7.61* 0.006
PQS(2,3,4) 1 0.67 0.413

* means significant at 0.05 level.

4 Conclusions

In this study, we proposed the PQS and PQS(i, j,k) models for any fixed 1 ≤ i < j < k ≤ r for square contingency tables
with the same row and column classifications. For analyzing the data in square contingency table, we note that the PQS
model is always identical to the best fitting PQS(i, j,k) among the PQS(i, j,k) model all 1 ≤ i < j < k ≤ r. Namely,
under the PQS model, the maximum likelihood estimates of the expected frequency are equal to those of the best-fitting
PQS(i, j,k) model. For the data in Table 1, the best-fitting model based on the likelihood ratio chi-squared statistic was
the PQS(1,2,4) model. Indeed, the maximum likelihood estimates of expected frequency under the PQS and PQS(1,2,4)
are equal from the data in Table 1. The likelihood ratio chi-squared statistics for the two models ware also equal.

It is suitable to use the PQS and {PQS(i, j,k)} models for analyzing square tables with nominal categories; however,
it would not be suitable to use this model for tables with ordered categories when one wants to use information about
category ordering. This is because these models are invariant under the same arbitrary permutation of row and column
categories.

The decomposition of the S model into the CDAS and PQS models, given by Theorem 2.1, is useful for determining
the reason for its poor fit when the S model fits the data poorly. Indeed, for the data in Table 1, the poor fit of the S model
is caused by the poor fit of the CDAS model rather than that of the PQS model.
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