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Abstract: In this paper, we study an implicit resolvent equation problem with its corresponding implicit variational inclusion problem
in Hilbert spaces. We establish that the implicit variational inclusion problem is equivalent to a fixed point problem and a relationship
between implicit variational inclusion problem with an implicit resolvent equation problem is shown. This equivalence is used to
suggest an iterative algorithm for solving implicit resolvent equation problem. Finally, an existence and convergence result is proved.
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1 Introduction

Variational inequalities (inclusions) can be viewed as
innovative and novel extension of the variational
problems. The study of variational inequalities
(inclusions) and their systems occupies a central and
significant role in the interdisciplinary research between
analysis, geometry, biology, elasticity, optimization,
image processing, biomedical science and mathematical
physics, etc., see e.g., [1, 2, 4–6, 8–11, 13–20]. The
resolvent operator techniques for solving variational
inequalities (inclusions) are important and of much
importance for recent research going on. The resolvent
operator technique is used to establish an equivalence
between variational inclusions and resolvent equations.
The resolvent operator technique is used to develop
powerful and efficient numerical techniques for solving
variational inclusions and other related problems.

In this paper, we study an implicit variational
inclusion problem with its corresponding implicit
resolvent equation problem. We define an iterative
algorithm to approximate the solution of implicit
resolvent equation problem. Finally, an existence and
convergence result is proved for implicit resolvent
equation problem in Hilbert space.

2 Formulation and Preliminaries

Throughout this paper, we suppose thatX is a real Hilbert
space endowed with a norm‖·‖ and an inner product〈·, ·〉,

d is the metric induced by the norm‖ · ‖, 2X (respectively,
CB(X)) is the family of all nonempty (respectively, closed
and bounded) subsets ofX, and D(·, ·) is the Hausdörff
metric onCB(X) defined by

D(P,Q) = max

{

sup
x∈P

d(x,Q),sup
y∈Q

d(P,y)

}

,

whered(x,Q) = inf
y∈Q

d(x,y) andd(P,y) = inf
x∈P

d(x,y).

Let us recall the required definitions.

Definition 1. A mapping g: X → X is said to be

(i) Lipschitz continuous if, there exist a constantλg > 0
such that

‖g(x)−g(y)‖ ≤ λg‖x− y‖,∀x,y∈ X.

(ii) monotone,if

〈g(x)−g(y),x− y〉 ≥ 0,∀x,y∈ X.

(iii ) strongly monotone if, there exists a constantξ > 0
such that

〈g(x)−g(y),x− y〉 ≥ ξ‖x− y‖2
,∀x,y∈ X.

(iv) relaxed Lipschitz continuous if, there exists a constant
r > 0 such that

〈g(x)−g(y),x− y〉 ≤ −r‖x− y‖2
,∀x,y∈ X.
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Definition 2. A mapping N: X×X×X → X is said to be
Lipschitz continuous with respect to first argument if, there
exists a constantλN1 such that for all x1,y1,x2,x3 ∈ X,

‖N(x1,x2,x3)−N(y1,x2,x3)‖ ≤ λN1‖x1− y1‖.

Similarly, we can define the Lipschitz continuity of N in
rest of the arguments.

Definition 3. A set-valued mapping A: X →CB(X) is said
to be D-Lipschitz continuous if, there exists a constantδA
such that

D(A(x),A(y))≤ δA‖x− y‖,∀x,y∈ X.

Definition 4. Let H : X → X be a mapping and
I : X → X be an identity mapping. Then, a set-valued
mapping M: X → 2X is a said to be(I −H)-monotone if,
M is monotone, H is relaxed Lipschitz continuous and

[(I −H)+λM](X) = X,

whereλ > 0 is a constant.

Definition 5. Let H : X → X be relaxed Lipschitz
continuous mapping and I: X → X be an identity
mapping. Suppose that M: X → 2X is a set-valued,
(I − H)-monotone mapping. The relaxed resolvent

operator R(I−H)
λ ,M : X → X associated with I,H and M is

defined by

RI−H
λ ,M (x) = [(I −H)+λM]−1(x),∀x∈ X, (1)

whereλ > 0 is a constant.

Theorem 1. Let H : X → X be a r-relaxed Lipschitz
continuous mapping, I: X → X be an identity mapping
and M : X → 2X be a set-valued(I − H)-monotone
mapping. Then the operator[(I − H) + λM]−1 is
single-valued, whereλ > 0 is a constant.

Proof.For anyz∈ X and a constantλ > 0, let x,y∈ [(I −
H)+λM]−1(z). Then,

λ−1[z− (I −H)(x)] ∈ M(x);

λ−1[z− (I −H)(y)] ∈ M(y).

SinceM is monotone, we have

〈−(I −H)(x)+ z+(I −H)(y)− z,x− y〉 ≥ 0;

−〈(I −H)(x)− (I −H)(y),x− y〉 ≥ 0;

−〈x−H(x)− y+H(y),x− y〉 ≥ 0;

〈x−H(x)− y+H(y),x− y〉 ≤ 0;

〈x−H(x)− y+H(y),x− y〉 ≤ 0;

〈x− y,x− y〉− 〈H(x)−H(y),x− y〉 ≤ 0.

SinceH is r-relaxed Lipschitz continuous, we have

0 ≥ 〈x− y,x− y〉− 〈H(x)−H(y),x− y〉

≥ ‖x− y‖2+ r‖x− y‖2 ≥ 0,

it follows that(1+ r)‖x− y‖2 = 0, which implies thatx=
y. Thus[(I −H)+λM]−1 is single-valued.

Theorem 2. Let H : X → X be a r-relaxed Lipschitz
continuous mapping, I: X → X be an identity mapping
and M : X → 2X be a set-valued,(I − H)-monotone
mapping. Then the resolvent operator RI−H

λ ,M : X → X is
1

[1+r] -Lipschitz continuous. i.e.,

‖RI−H
λ ,M (x)−RI−H

λ ,M (y)‖ ≤
1

[1+ r]
‖x− y‖,∀x,y∈ X.

Proof. Let anyx andy be any given point inX. If follow
from (1) that

RI−H
λ ,M (x) = [(I −H)+λM]−1(x),

RI−H
λ ,M (y) = [(I −H)+λM]−1(y).

(2)

It follows that

1
λ

[

x− (I −H)
(

RI−H
λ ,M (x)

)]

∈ M
(

RI−H
λ ,M (x)

)

,

1
λ

[

y− (I −H)
(

RI−H
λ ,M (y)

)]

∈ M
(

RI−H
λ ,M (y)

)

.

(3)

SinceM is (I −H)-monotone i.e.,M is monotone, we have

0 ≤
1
λ

〈

x− (I −H)
(

RI−H
λ ,M (x)

)

−
(

y− (I −H)
(

RI−H
λ ,M (y)

))

,

RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

=
1
λ

〈

x− y−
{

(I −H)
(

RI−H
λ ,M (x)

)

− (I −H)
(

RI−H
λ ,M (y)

)}

,

RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

. (4)

It follows that
〈

x− y,RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

≥
〈

(I −H)
(

RI−H
λ ,M (x)

)

− (I −H)
(

RI−H
λ ,M (y)

)

,

RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

. (5)

By Cauchy-Schwartz inequality, (5) and r-relaxed
Lipschitz continuity ofH, we have

∥

∥

∥
x− y

∥

∥

∥

∥

∥

∥
RI−H

λ ,M (x)−RI−H
λ ,M (y)

∥

∥

∥

≥
〈

x− y,RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

≥
〈

RI−H
λ ,M (x)−H

(

RI−H
λ ,M (x)

)

−RI−H
λ ,M (y)+H

(

RI−H
λ ,M (y)

)

,

RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

=
〈

RI−H
λ ,M (x)−RI−H

λ ,M (y),RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

−
〈

H
(

RI−H
λ ,M (x)

)

−H
(

RI−H
λ ,M (y)

)

,RI−H
λ ,M (x)−RI−H

λ ,M (y)
〉

≥
∥

∥

∥
RI−H

λ ,M (x)−RI−H
λ ,M (y)

∥

∥

∥

2
+ r

∥

∥

∥
RI−H

λ ,M (x)−RI−H
λ ,M (y)

∥

∥

∥

2

= (1+ r)
∥

∥

∥
RI−H

λ ,M (x)−RI−H
λ ,M (y)

∥

∥

∥

2
. (6)
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Thus, we have

∥

∥

∥
RI−H

λ ,M (x)−RI−H
λ ,M (y)

∥

∥

∥
≤

1
[1+ r]

‖x− y‖,

i.e., the relaxed resolvent operatorRI−H
λ ,M is 1

[1+r] -Lipschitz
continuous.

In support of Theorem1 and Theorem2, we have the
following example.

Example 1.Let X = R
3 with usual inner product. LetH :

X → X be a mapping defined by

H(x) = (−x1,−2x2,−4x3),∀x= (x1,x2,x3) ∈ X,

and the mappingM : X → 2X is defined by

M(x) = (4x1,3x2,x3),∀x= (x1,x2,x3) ∈ X.

Then, it easy to check thatH is 1-relaxed Lipschitz
continuous andM is monotone. In addition, it is easy to
verify that for λ = 1, [(I − H) + λM](X) = X, which
shows thatM is (I −H)-monotone mapping. Hence, the
relaxed resolvent operatorRI−H

λ ,M : X → X associated with
I , H andM is of the form:

RI−H
λ ,M (x) =

(x1

6
,
x2

6
,
x3

6

)

,∀x= (x1,x2,x3) ∈ X.

It is easy to see that the relaxed resolvent operator defined
above is single-valued.
Now, we prove thatRI−H

λ ,M is Lipschitz continuous.
∥

∥

∥
RI−H

λ ,M (x)−RI−H
λ ,M (y)

∥

∥

∥

=
∥

∥

∥

(x1

6
,
x2

6
,
x3

6

)

−
(y1

6
,
y2

6
,
y3

6

)
∥

∥

∥

=

∥

∥

∥

∥

(

x1− y1

6
,
x2− y2

6
,
x3− y3

6

)
∥

∥

∥

∥

=

[

(x1− y1)
2

36
+

(x2− y2)
2

36
+

(x3− y3)
2

36

]

1
2

=
1
6

[

(x1− y1)
2+(x2− y2)

2+(x3− y3)
2]

1
2

≤
1
2
‖x− y‖.

Hence, the resolvent operatorRI−H
λ ,M is 1

2-Lipschitz
continuous.

3 Resolvent equation problem and
convergence result

In this section, we consider an implicit variational
inclusion problem and an implicit resolvent equation
problem. Based on fixed point formulation of implicit
variational inequality problem, we establish an

equivalence relation between implicit variational
inequality problem and implicit resolvent equation
problem.

Let X be the real Hilbert space andH,g : X → X,

N : X × X × X → X be the single-valued mappings,
I : X → X be an identity mapping. Suppose that
A,S,T : X → CB(X) and M : X × X → 2X are the
set-valued mappings such thatM is (I − H)-monotone.
Then we consider the problem of findingx∈ X, u∈ A(x),
v∈ S(x), w∈ T(x) andg(x)

⋂

domM(·,x) 6= /0 such that

0∈ N(u,v,w)+M(g(x),x). (7)

Problem (7) is called implicit variational inclusion
problem.

Below are some special cases of implicit variational
inclusion problem (7).

(i) If T ≡ 0, g = I , N(u,v,w) = N(u,v) and
M(g(x),x) = M(x), then problem (7) reduces to the
problem of findingx∈ X, u∈ A(x), v∈ S(x) such that

0∈ N(u,v)+M(x). (8)

A problem similar to (8) was considered and studied
by Chang et al. [3] in the setting of Banach spaces.

(ii) If S,T ≡ 0, g = I , A is a single-valued identity
mapping andN(x, ·, ·) = N(x), M(g(x),x) = M(x)
then problem (7) reduces to the problem of finding
x∈ X such that

0∈ N(x)+M(x). (9)

Problem (9) was considered and studied by Fang and
Huag [7] in the setting ofq-uniformly smooth Banach
spaces withH-accretive operatorM.

It is easy to see that implicit variational inclusion
problem (7) includes many more known variational
inclusions considered and studied in the literature in
different settings.

In connection with the implicit variational inclusion
problem (7), we consider the following implicit resolvent
equation problem:
Findz,x∈ X, u∈ A(x), v∈ S(x) andw∈ T(x) such that

N(u,v,w)+λ−1JI−H
λ ,M(·,x)(z) = 0, (10)

where λ > 0 is a constant and
JI−H

λ ,M(·,x)(z) =
[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

(z), where I is

identity operator, RI−H
λ ,M(·,x) is the relaxed resolvent

operator and
[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

(z) =
[

z− (I −H)RI−H
λ ,M(·,x)(z)

]

.

We mention the following equivalence between
implicit variational inclusion problem (7) and a fixed
point problem which can be easily proved by using the
definition of relaxed resolvent operator.
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Lemma 1. Let x∈ X, u∈ A(x), v ∈ S(x) and w∈ T(x) is
a solution of implicit variational inclusion problem (7) if
and only if(x,u,v,w) satisfies the following equation:

g(x) = RI−H
λ ,M(·,x)[(I −H)g(x)−λN(u,v,w)], (11)

where
RI−H

λ ,M(·,x) = [(I −H)+λM(·,x)]−1
,

andλ > 0 is a constant.

Now, we show that the implicit variational problem (7)
is equivalent to implicit resolvent equation problem (10).

Lemma 2. The variational inclusion problem (7) has a
solution (x,u,v,w) with x ∈ X, u ∈ A(x), v ∈ S(x) and
w ∈ T(x) if and only if the implicit resolvent equation
problem (10) has a solution(z,x,u,v,w) with z,x ∈ X,

u∈ A(x), v∈ S(x) and w∈ T(x), where

g(x) = RI−H
λ ,M(·,x)(z), (12)

and
z= [(I −H)g(x)−λN(u,v,w)].

Proof. Let (x,u,v,w) be a solution of implicit variational
inclusion problem (7). Then by Lemma1, it satisfies the
following equation:

g(x) = RI−H
λ ,M(·,x)[(I −H)g(x)−λN(u,v,w)].

Using the fact that

JI−H
λ ,M(·,x)(z) =

[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

(z) and above

equation (11), we obtain

JI−H
λ ,M(·,x)(z)

= JI−H
λ ,M(·,x)[(I −H)g(x)−λN(u,v,w)]

=
[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

((I −H)g(x)−λN(u,v,w))

= ((I −H)g(x)−λN(u,v,w))−
[

(I −H)
(

RI−H
λ ,M(·,x)

)]

((I −H)g(x)−λN(u,v,w))

= ((I −H)g(x)−λN(u,v,w))−

(I −H)
[

RI−H
λ ,M(·,x)((I −H)g(x)−λN(u,v,w))

]

= ((I −H)g(x)−λN(u,v,w))− (I −H)g(x)

= −λN(u,v,w).

It follows that

N(u,v,w)+λ−1JI−H
λ ,M(·,x)(z) = 0

with
z= [(I −H)g(x)−λN(u,v,w)],

i.e., (z,x,u,v,w) is a solution of the implicit resolvent
equation problem (10).

Conversely, let(z,x,u,v,w) is a solution of the implicit
resolvent equation problem (10). i.e.,

N(u,v,w)+λ−1JI−H
λ ,M(·,x)(z) = 0.

Using the Definition ofJI−H
λ ,M(·,x), we have

[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

(z) = −λN(u,v,w)

z− (I −H)
(

RI−H
λ ,M(·,x)

)

(z) = −λN(u,v,w)

z− (I −H)
(

RI−H
λ ,M(·,x)(z)

)

= −λN(u,v,w)

z= (I −H)
(

RI−H
λ ,M(·,x)(z)

)

−λN(u,v,w)

z= [(I −H)g(x)−λN(u,v,w)]

RI−H
λ ,M(·,x)(z) = RI−H

λ ,M(·,x)[(I −H)g(x)−λN(u,v,w)]

g(x) = RI−H
λ ,M(·,x)[(I −H)g(x)−λN(u,v,w)].

Thus, by Lemma1, (x,u,v,w) is a solution of the implicit
variational inclusion problem (7).

Alternative Proof.Let

z= [(I −H)g(x)−λN(u,v,w)],

then from (12), we have

g(x) = RI−H
λ ,M(·,x)(z).

Then,

z=
[

(I −H)
(

RI−H
λ ,M(·,x)(z)

)

−λN(u,v,w)
]

z− (I −H)(RI−H
λ ,M(·,x)(z)) =−λN(u,v,w),

which implies that
[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

(z) =−λN(u,v,w).

Using the fact that

JI−H
λ ,M(·,x)(z) =

[

I − (I −H)
(

RI−H
λ ,M(·,x)

)]

(z),

it follows that

JI−H
λ ,M(·,x)(z) =−λN(u,v,w),

and thus

N(u,v,w)+λ−1JI−H
λ ,M(·,x)(z) = 0,

the required implicit resolvent equation problem (10). �

Based on above discussion, we now define the
following iterative Algorithm for solving implicit
resolvent equation problem (10).

Now, we prove an existence and convergence result for
implicit resolvent equation problem (10).
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Algorithm 1
For any initial pointsz0,x0 ∈X, u0 ∈ A(x0), v0 ∈S(x0) andw0 ∈
T(x0), let

z1 = [(I −H)g(x0)−λN(u0,v0,w0)].

Takez1,x1 ∈ X such that

g(x1) = RI−H
λ ,M(·,x1)

(z1).

Since u0 ∈ A(x0), v0 ∈ S(x0) and w0 ∈ T(x0), by Nadler’s
Theorem [12], there existsu1 ∈A(x1), v1 ∈S(x1) andw1 ∈T(x1)
such that

‖u0−u1‖ ≤ D(A(x0),A(x1)) ,

‖v0−v1‖ ≤ D(S(x0),S(x1)),

‖w0−w1‖ ≤ D(T(x0),T(x1)),

whereD(·, .) is the Hausdörff metric onCB(X).
Let

z2 = [(I −H)g(x1)−λN(u1,v1,w1)]

and take anyz2,x2 ∈ X such that

g(x2) = RI−H
λ ,M(·,x2)

(z2).

Continuing the above process inductively, we can compute the
sequences{zn}, {xn}, {un}, {vn} and {wn} by the following
iterative scheme:

g(xn) = RI−H
λ ,M(·,xn)

(zn), (13)

un ∈ A(xn),‖un−un+1‖ ≤ D(A(xn),A(xn+1)), (14)

vn ∈ B(xn),‖vn−vn+1‖ ≤ D(S(xn),S(xn+1)), (15)

wn ∈ C(xn),‖wn−wn+1‖ ≤ D(T(xn),T(xn+1)), (16)

zn+1 = [(I −H)g(xn)−λN(un,vn,wn)], (17)

whereλ > 0 is a constant andn= 0,1,2· · · .

Theorem 3. Let X be a real Hilbert space and
H,g : X → X be the single-valued mappings such that g is
ξ -strongly monotone,λg-Lipschitz continuous, H is
r-relaxed Lipschitz continuous andλH -Lipschitz
continuous. Suppose that N: X × X × X → X is a
single-valued mapping such that N is Lipschitz
continuous in all the three arguments with constantsλN1,

λN2 andλN3, respectively and A,S,T : X →CB(X) be the
set-valued mappings such that A isδA-D-Lipschitz
continuous, S isδS-D-Lipschitz continuous and T is
δT -D-Lipschitz continuous. Suppose that set-valued
mapping M: X ×X → 2X is such that for a fixed x∈ X,

M(·,x) is (I −H)-monotone mapping. Let I: X → X be
an identity mapping and for each x∈ X. Suppose that
there exists constantsλ > 0 and h> 0 such that the
following conditions holds:

∥

∥

∥
RI−H

λ ,M(·,x)(z)−RI−H
λ ,M(·,y)(z)

∥

∥

∥
≤ h‖x− y‖, ∀x,y,z∈ X,

(18)

and

0 ≤ λg+λHλg+λ λN1δA+λ λN2δS+λ λN3δT

< [1+ r][ξ −h], ξ > h. (19)

Then, there exist z,x∈ X, u∈ A(x), v∈ S(x) and w∈ T(x)
satisfying (10) and iterative sequences{zn}, {xn}, {un},
{vn} and {wn} generated by Algorithm 1 converge
strongly to z, x, u, v and w, respectively.

Proof. Using Cauchy-Schwartz inequality andξ -strong
monotonicity ofg, we have

‖g(xn)−g(xn−1)‖‖xn− xn−1‖ ≥ 〈g(xn)−g(xn−1),xn− xn−1〉

≥ ξ‖xn− xn−1‖
2
,

which implies that

‖xn− xn−1‖ ≤
1
ξ
‖g(xn)−g(xn−1)‖. (20)

As g is λg-Lipschitz continuous,H is λH-Lipschitz
continuous, N is Lipschtiz continuous in all three
arguments with constantsλN1, λN2, λN3, respectively,A is
δA-D-Lipschitz continuous, S is δS-D-Lipschiz
continuous,T is δT -D-Lipschitz continuous, and using
Algorithm 1, we obtain

‖zn+1−zn‖

= ‖(I −H)g(xn)− (I −H)g(xn−1)−λ (N(un,vn,wn)

−N(un−1,vn−1,wn−1))‖

≤ ‖(I −H)g(xn)− (I −H)g(xn−1)‖+λ‖N(un,vn,wn)

−N(un−1,vn−1,wn−1)‖

≤ ‖g(xn)−g(xn−1)‖+‖H(g(xn))−H(g(xn−1))‖

+λ‖N(un,vn,wn)−N(un−1,vn,wn)

+N(un−1,vn,wn)−N(un−1,vn−1,wn)

+N(un−1,vn−1,wn)−N(un−1,vn−1,wn−1)‖

≤ ‖g(xn)−g(xn−1)‖+‖H(g(xn))−H(g(xn−1))‖

+λ‖N(un,vn,wn)−N(un−1,vn,wn)‖

+λ‖N(un−1,vn,wn)−N(un−1,vn−1,wn)‖

+λ‖N(un−1,vn−1,wn)−N(un−1,vn−1,wn−1)‖

≤ λg‖xn−xn−1‖+λH λg‖xn−xn−1‖+λλN1‖un−un−1‖

+λλN2‖vn−vn−1‖+λλN3‖wn−wn−1‖

≤ λg‖xn−xn−1‖+λH λg‖xn−xn−1‖+λλN1D(A(xn−1),A(xn))

+λλN2D(S(xn−1),S(xn))+λλN3D(T(xn−1),T(xn))

≤ λg‖xn−xn−1‖+λH λg‖xn−xn−1‖+λλN1δA‖xn−xn−1‖

+λλN2δS‖xn−xn−1‖+λλN3δT‖xn−xn−1‖

≤ [λg+λH λg+λλN1δA+λλN2δS+λλN3δT ]‖xn−xn−1‖. (21)
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By using Theoem2 and condition (18), we have

‖g(xn)−g(xn−1)‖

= ‖RI−H
λ ,M(·,xn)

(zn)−RI−H
λ ,M(·,xn−1)

(zn−1)‖

= ‖RI−H
λ ,M(·,xn)

(zn)−RI−H
λ ,M(·,xn)

(zn−1)+RI−H
λ ,M(·,xn)

(zn−1)

−RI−H
λ ,M(·,xn−1)

(zn−1)‖

= ‖RI−H
λ ,M(·,xn)

(zn)−RI−H
λ ,M(·,xn)

(zn−1)‖+ ‖RI−H
λ ,M(·,xn)

(zn−1)

−RI−H
λ ,M(·,xn−1)

(zn−1)‖

≤
1

[1+ r]
‖zn− zn−1‖+ ‖RI−H

λ ,M(·,xn)
(zn−1)

−RI−H
λ ,M(.,xn−1)

(zn−1)‖.

Using (18), we have

‖g(xn)−g(xn−1)‖ ≤
1

[1+ r]
‖zn− zn−1‖+h‖xn− xn−1‖.

(22)

By (20) and (22), we have

‖xn− xn−1‖ ≤
1

[1+ r][ξ −h]
‖zn− zn−1‖. (23)

Using (21), (22) and (23), we have

‖zn+1−zn‖

≤

[

λg+λHλg+λλN1δA+λλN2δS+λλN3δT

[1+ r][ξ −h]

]

‖zn−zn−1‖.

i.e.,

‖zn+1− zn‖ ≤ θ (∗)‖zn− zn−1‖,

where

θ (∗) =
[

λg+λHλg+λ λN1δA+λ λN2δS+λ λN3δT

[1+ r][ξ −h]

]

.

From (19), we have 0≤ θ (∗)< 1 and consequently{zn} is
a cauchy sequence inX. SinceX is a Hilbert space, there
exist somez∈ X such thatzn → zasn→ ∞. From (23) we
know that the sequence{xn} is also a cauchy sequence in
X. Therefore, there existsx∈X such thatxn → x asn→ ∞.

Since the mappingsA,SandT areD-Lipschitz continuous.
It follows from (14)− (16) that{un}, {vn} and{wn} are
also cauchy sequences, we can assume thatun → u, vn → v
andwn → w. By Algorithm 1, it follows that

zn+1 = [(I −H)g(xn)−λN(un,vn,wn)]→ z= [(I −H)g(x)

−λN(u,v,w)], as n→ ∞, (24)

and consequently

g(xn) = RI−H
λ ,M(·,xn)

(zn)→ RI−H
λ ,M(·,x)(z) = g(x), as n→ ∞.

(25)

By (24), (25) and Lemma2, we have

N(u,v,w)+λ−1JI−H
λ ,M(·,x)(z) = 0.

Finally, we prove thatu∈ A(x), v∈ S(x) andw∈ T(x). In
fact, since{un} ∈ A(xn) and

d(un,A(x)) ≤ max

{

d(un,A(x)), sup
y1∈A(x)

d(A(xn),y1)

}

≤ max

{

sup
y2∈A(xn)

d(y2,A(x)), sup
y1∈A(x)

d(A(xn),y1)

}

= D(A(xn),A(x)),

we have

d(u,A(x)) ≤ ‖u−un‖+d(un,A(x))

≤ ‖u−un‖+D(A(xn),A(x))

≤ ‖u−un‖+ δA‖xn− x‖→ 0 as n→ ∞.

Which implies thatd(u,A(x)) = 0. SinceA(x) ∈CB(x), it
follows thatu∈A(x). Similarly, we can prove thatv∈S(x)
andw∈ T(x). This completes the proof.

4 Conclusion

Using the resolvent operator technique, one can prove
that the variational inclusions are equivalent to the fixed
point problems and resolvent equation problems. These
comparable formulations have played compelling aspect
in establishing useful methods for solving the variational
inclusions (inequalities) and related optimization
problems. The aim of this work is to study an implicit
resolvent equation problem with its equivalent implicit
variational inclusion problem and corresponding fixed
point problem by introducing a new type of relaxed
resolvent operator. We suggest an iterative algorithm for
solving implicit resolvent equation problem in Hilbert
spaces. Note that the relaxed resolvent operator technique
can be further applied for solving different kind of
variational inclusions in diverse structure.
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