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Abstract: In this paper, we study an implicit resolvent equation peablvith its corresponding implicit variational inclusioroplem
in Hilbert spaces. We establish that the implicit variasibimclusion problem is equivalent to a fixed point problend arrelationship
between implicit variational inclusion problem with an il resolvent equation problem is shown. This equivateis used to
suggest an iterative algorithm for solving implicit resatw equation problem. Finally, an existence and convergessult is proved.
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1 Introduction d is the metric induced by the norjn ||, 2% (respectively,
CB(X)) is the family of all nonempty (respectively, closed

Variational inequalities (inclusions) can be viewed asand bounded) subsets ¥f and D(-,-) is the Hausdorff

innovative and novel extension of the variational metric onCB(X) defined by

problems. The study of variational inequalities

(inclusions) and their systems occupies a central and

significant role in the interdisciplinary research between D(PQ) = max{supd(x, Q),supd(P,y)},

analysis, geometry, biology, elasticity, optimization, xep yeQ

image processing, biomedical science and mathematical ) ,

physics, etc., see e.g.1,[2, 46, 8-11, 13-20]. The Whered(x,Q):ylrg(gd(x,y) a”dd(Ry):)'(Q,‘;d(va)-

resolvent operator techniques for solving variational

inequalities (inclusions) are important and of much  Letus recall the required definitions.

importance for recent research going on. The resolven

operator technique is used to establish an equivalenc

between variational inclusions and resolvent equations. (i) Lipschitz continuous if, there exist a constagt> 0

The resolvent operator technique is used to develop such that

powerful and efficient numerical techniques for solving

variational inclusions and other related problems. [l9(x) —a(y) || < Agl[x—VYl,¥x,y € X.

fgefinition 1. Amapping g X — X is said to be

In this paper, we study an implicit variational (ji) monotone,if
inclusion problem with its corresponding implicit
resolvent equation problem. We define an iterative (g(x) —g(y),x—y) > 0,¥x,y € X.
algorithm to approximate the solution of implicit
resolvent equation problem. Finally, an existence andiii) strongly monotone if, there exists a constgnt- 0
convergence result is proved for implicit resolvent  such that
equation problem in Hilbert space.

(90 —g(y),x—y) > &[[x—y|% vxy € X.

2 Formulation and Preliminaries (iv) relaxed Lipschitz continuous if, there exists a constant
r > 0 such that

Throughout this paper, we suppose tKas a real Hilbert )

space endowed with a notim|| and an inner product, -), (9(¥) —g(y).x—y) < —r|x=y[|%Vxy € X.

* Corresponding author e-marhisain123@rediffmail.com

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/msl/060205

142 %N S\ I. Ahmad et al.: Implicit resolvent equation...

Definition 2. A mapping N X x X x X — X is saidto be  Theorem 2. Let H : X — X be a r-relaxed Lipschitz
Lipschitz continuous with respect to first argument if, gher continuous mapping, 1X — X be an identity mapping
exists a constamty, such that for all x,y;,%2,X3 € X, and M: X — 2% be a set-valued(l — H)-monotone
mapping Then the resolvent operato'/(fﬁk X = X is

[[N(X1,%2,%3) — N(y1,X2,X3) | < Any[|X1 — Yal|-
] -Lipschitz continuous. i.e.,

Similarly, we can define the Lipschitz continuity of N in
rest of the arguments.

[1+r

_ . - IRy () =Ry ) <
Definition 3. A set-valued mapping AX — CB(X) is said ’ [1+1] ]

to be D-Lipschitz continuous if, there exists a constant
such that

D(A(X),A(y)) < Oallx—YIl,¥xy € X.

[X—yll,vxy € X.

Proof. Let anyx andy be any given point irK. If follow
from (1) that

_ . Ry (00 = [(1 =H) +AM] (%),
Definition 4. Let H: X — X be a mapping and oy . (2)
| : X — X be an identity mapping. Then, a set-valued Rym W) =[(I=H)+AM](y).
mapping M: X — 2% is a said to bgl — H)-monotone if,
M is monotone, H is relaxed Lipschitz continuous and It follows that

_ 1
[(1 =H)+AM](X) = X, N x=1=H) (R f00) | em (R ),

whereA > Ois a constant. 1 )

Zly—(—H)(R-H M (R (y)).
Definition 5. Let H : X — X be relaxed Lipschitz A [y ( )( AM (y))] < ( AM (y))

continuous mapping and 1 X — X be an identity

mapping. Suppose that MX — 2X is a set-valued,

(I — H)-monotone mapping. The relaxed resolvent 1 I_H I_H
< Zix—(] = _ — (] —

operator Fﬁ",wa) : X — X associated with I,H and M is —A <X (1=H) (R (X)) (y (I=H) (R (y))),

defined by Ry (0 — Ry ( >

R'AjMH(x)z[(l—H)+AM]—1(X),Vxex, (1) :)\1< {( )( ()) (I—H)(R' H(y))}

whereA > Ois a constant.
_ ' RI H RI H > )
Theorem 1. Let H: X — X be a r-relaxed Lipschitz
continuous mapping, 1X — X be an identity mapping |t follows that
and M: X — 2% be a set-valued(l — H)-monotone
mapping. Then the operatof(l — H) + AM]~! is <X—y,RIATMH(X)—RIATMH(Y)>
single-valued, whera > Ois a constant. ' o ' o
> ((I-H) (R, —(I—=H) (R}, ,

Proof. For anyz < X and a constam > 0, letx,y € [(I — - <( ) ( AM (X)) (1=H) ( AM (y))
H)+AM]~%(2). Then, R|)\_|\|;I| (X) — RI/\_MH (Y)> (5)

A7 Hz— (1 =H)(X)] € M(x);

SinceM is (I —H)-monotonei.e.M is monotone, we have

By Cauchy-Schwartz inequality, 5\ and r-relaxed

A —1[2_ (I = H)(y)] € M(y). Lipschitz continuity ofH, we have
SinceM is monotone, we have Hx yHHR' H R' H(y)H
—(I=H)(X)+z+ (1 —H)(y) —2 > 0; -
e ey o > (R 00— RWW
~(X=H() —y+H(y).x=y) > 0; > (R 00 —H (R 00) ~Riiim) +H (R ).
(x=H(X) =y+H(y),x=y) <0; . o
(x—H(X) Y +H(y) x-y) <O R 00 -R)
(X=¥,x=y) = (H(X) —H(y),x—y) < 0. :<R'Ajh';(x)—R'AjH(y) R H()—R'Aj;;(y)>—

SinceH is r-relaxed Lipschitz continuous, we have

02 (x—yx—Y) ~ (H(X —H(y) X—) (H (R"”<X>) ~H(Riv). R"H<X>—R'Afn7 )

2
> x=yl2+rx—y|?> 0. HR' 00— R H R0 -R )|

it follows that (1 +r)||x — y||> = 0, which implies thak = o

y. Thus[(l —H) +AM]~1is single-valued. (1+r) HR jM(y)H . (6)
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Thus, we have equivalence relation between implicit variational
1 inequality problem and implicit resolvent equation
R-Hx) —R-H H < |Ix— problem.
R0 R w| < i Ix-: |
Let X be the real Hilbert space ard,g: X — X,
i.e., the relaxed resolvent operaf,; is -Lipschitz N: X xXxX — X be the single-valued mappings,

continuous.

In support of Theorem and Theoren2, we have the
following example.

Example 1Let X = R3 with usual inner product. Let :
X — X be a mapping defined by

H(X) = (—X1, —2%2, —4%3), VX = (X1, %2, X3) € X,

and the mappini! : X — 2X is defined by
M(X) = (4xq1,3X%2,X3), VX = (X1,X2,X3) € X.

Then, it easy to check that is 1l-relaxed Lipschitz
continuous andv is monotone. In addition, it is easy to
verify that for A = 1, [(I — H) + AM](X) = X, which
shows thatM is (I — H)-monotone mapping. Hence, the
relaxed resolvent operat&, ' : X — X associated with

I, H andM is of the form:

_ X1 X2 X3
Rn=(5 %%

AM )7VX=(X1,X2,X3)€X.

I : X - X be an identity mapping. Suppose that
AST: X = CBX) and M : X x X — 2% are the
set-valued mappings such thielt is (I — H)-monotone.
Then we consider the problem of findimg: X, u € A(x),
ve §(x), we T(x) andg(x)(NdomM-,x) # 0 such that

0 € N(u,v,w) +M(g(x),X). 7

Problem {) is called implicit variational inclusion
problem.

Below are some special cases of implicit variational
inclusion problem?).

iy f T =0 g9g=1, N(uv,w) N(u,v) and
M(g(x),X) = M(x), then problem T) reduces to the
problem of findingx € X, u € A(x), v € S(x) such that

(8)

A problem similar to 8) was considered and studied
by Chang et al.3] in the setting of Banach spaces.
(i) If ST=0,g=1, Ais a single-valued identity
mapping andN(x,-,-) = N(x), M(g(x),x) = M(x)

then problem ) reduces to the problem of finding

0 N(u,v) + M(x).

It is easy to see that the relaxed resolvent operator defined x c X such that

above is single-valued.
Now, we prove thaR, /! is Lipschitz continuous.

IR0 -R)|

=[G 5%) - (655l

_ H(Xl—)’1 X2—Y2 X3—Y3>H
= 5

6 ' 6
:|:(Xl_YI)2

(X2 — YZ)2
36

-+ -+

36

1
(X3 — Y3)2 2
36

% (%1 —y1)?+ (%2 — y2)? + (X3 — ¥3)?] ?

Lyl
=5 Yil-

A

Hence, the resolvent operath'AfMH is 3-Lipschitz
continuous.

3 Resolvent equation problem and
convergence result

In this section, we consider an implicit variational

0 € N(X) +M(x). 9

Problem @) was considered and studied by Fang and
Huag [7] in the setting ofg-uniformly smooth Banach
spaces wittH-accretive operatadvl.

It is easy to see that implicit variational inclusion
problem {) includes many more known variational
inclusions considered and studied in the literature in
different settings.

In connection with the implicit variational inclusion
problem {7), we consider the following implicit resolvent
equation problem:

Findz x € X, ue A(x), ve S(x) andw € T(x) such that
—191-H
N(u,v,w) + A ‘]/\,M(~7x)(z)

=0, (10)

constant and
)} (2), where | is

where A > 0 is a
I—H |—H
0@ {l —(1—H) (R/\’W_!X)
identity operator, Ry i ., is the resolvent
operator ' and

-0-m (R )] @=[-0-rmR{ @]

We mention the following equivalence between

(%) relaxed

inclusion problem and an implicit resolvent equation implicit variational inclusion problem7) and a fixed

problem. Based on fixed point formulation of implicit
variational

point problem which can be easily proved by using the

inequality problem, we establish an definition of relaxed resolvent operator.
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Lemma 1.Let xe X, ue A(x), ve S(x) and we T(X) is
a solution of implicit variational inclusion probleny) if
and only if(x,u,v,w) satisfies the following equation:

00 = R [0~ H)g) ~ ANuvw)l, (1)

where

R =1 =H) +AM( )],

andA > 0is a constant.

Now, we show that the implicit variational problefd (
is equivalent to implicit resolvent equation probleh);

Lemma 2. The variational inclusion problem7} has a
solution (x,u,v,w) with x € X, u e A(x), v e S(x) and
w e T(x) if and only if the implicit resolvent equation
problem @0) has a solution(z x,u,v,w) with zx € X,
ue A(x), ve S(x) and we T(x), where

(12)
and
z=[(I —H)g(x) = AN(u,v,w)].

Proof. Let (x,u,v,w) be a solution of implicit variational
inclusion problemT). Then by Lemmadl, it satisfies the
following equation:

900 = Ry [0~ H)g() ~ AN(u.vw)]

Using the fact that
JA]\T(.,X)(Z) = {' —(I—H) (Rkj,\;'(,vx))} (z7 and above
equation 1), we obtain

= I w0l =H)gH) = AN(U, v W)

= =0 =H) (R ) | (0 =H)g00 = AN(uvww)
= (1= H)g0) = AN(uww) = [(1=H) (Rf )|
((F=H)g(x) =AN(u,v,w))
= (1 =H)g(x) =AN(u,v,w)) —
(1—H) [R'Ajh;'m(o “H)g(x) — A N(u,v,w))}
= (1 =H)g(x) = AN(u,v,w)) — (I = H)g(x)

= —AN(u,v,w).
It follows that
N(u,v,w) +A 713, 0 (2 =0

with

Z= [(I - H)g(X) —/\N(U,V,W)],
i.e., (zxu,v,w) is a solution of the implicit resolvent
equation problem1(0).

Conversely, let(z,x,u,v,w) is a solution of the implicit
resolvent equation probleri@). i.e.,

N(u,v,w) +A 713 00 (2) =0.

Using the Definition oﬂk’,\';(, 5 We have

0w (Rl @ =
z—(1-H) (RI/\TH(-,X)) (z2) = =AN(u,v,w)

z— (I —H) (R'Ajh'j(,%) (z)) = “AN(u,v,W)

—AN(u,v,w)

z= (l - H) (Rll\_,l\l;l|(-7x) (Z)) A N(U,V, W)
z=[(I —H)g(x) — AN(u,v,w)]
Ry 0@ = Rt o [(1=H)g() = AN(u,v,w)]

900 = Ry [0~ H)g(0 — AN(U.vw)]

Thus, by Lemmad, (x,u,v,w) is a solution of the implicit
variational inclusion probleniy.

Alternative ProofLet
z=[(1 =H)g(x) = AN(u,v,w)],
then from (2), we have
g =R (2
Then,

z— [(l —H) (R'Ajh;'m (z)) — AN(u,v,w)

z— (1= H) (R (2) = —AN(Uvw),
which implies that

[l —(1-H) (R'Ajg(,7x))} (2) = ~AN(U,v,W).
Using the fact that

It @=[1=0-H(RH )] @

it follows that

‘J}\_|\|/|-|(‘X) (Z) =-A N(U7V7 W)7

and thus

N(U, v, W) + A ‘1\];]';(,‘)() (20 =0,

the required implicit resolvent equation probleb@), O

Based on above discussion, we now define the

following iterative Algorithm for
resolvent equation problem.@).

solving implicit

Now, we prove an existence and convergence result for

implicit resolvent equation problen ).
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Algorithm 1

For any initial pointszg, Xg € X, Ug € A(Xg), Vo € S(Xg) andwg € and

T(Xp), let

21 =[(1 —H)g(x0) — AN(up, Vo, Wo)]- 0 < Ag+AnAg+ AAN, Op + AAN, O+ A AN, Or

Takez;,x; € X such that <[1+r][E—h], & >h. (19)
g(x1) = Rl)\j|\|/|-|(.7xl)(zl)~

Since up € A(Xg), Vo € S(Xp) and wp € T(xg), by Nadler’s
Theorem 2], there existsi; € A(Xy), v1 € S(x1) andwy € T (x1)
such that

[[uo — || < D(A(x0),Alx1)),

Vo —vi[l < D(S(x0), S(x1)),
—w[| < D(T(x0), T (x1)),

.) is the Hausdorff metric o€B(X).

o~

[Iwo

whereD(,
Let

z=[(1-H)g(x1) -
and take anyy,x, € X such that

g(XZ) = Rl):hlx(A_’XZ) (22)-

Continuing the above process inductively, we can compuge th

sequencegzn}, {Xn}, {un}, {vn} and {wn} by the following
iterative scheme:

AN(ug,vg,wy)]

90%) = Ry (., (Z0): (13)
Un € A(Xn), [[un — Uns1]] < D(AMXn),A(Xn+1)), (14)
Vn € B(Xn), [IVn = Vni1 /| < D(S(xn), S(Xn+1)), (15)
Wn € C(Xn), [[Wn —Wn1][ < D(T (%), T (Xn+1)), (16)

Znr1 = [(I =H)g(*n) — AN(Un, Vn, Wn)], (17)

whereA > 0 is a constant and=0,1,2--- .

Theorem 3. Let X be a real Hilbert space and

H,g: X — X be the single-valued mappings such that g is

&-strongly monotone,Ag-Lipschitz continuous, H is
r-relaxed Lipschitz continuous andAn-Lipschitz
continuous. Suppose that NX x X x X — X is a
single-valued mapping such that N is Lipschitz
continuous in all the three arguments with constakig,
An, andAng, respectively and /8, T : X — CB(X) be the
set-valued mappings such that A i8a-D-Lipschitz
continuous, S isds-D-Lipschitz continuous and T is

Or-D-Lipschitz continuous. Suppose that set-valued

mapping M: X x X — 2% is such that for a fixed x X,
M(-,x) is (I —H)-monotone mapping. Let:IX — X be
an identity mapping and for each & X. Suppose that
there exists constantd > 0 and h> 0 such that the
following conditions holds:

HR' ¥ R My

2)|| < hlx=yll, vxy.zeX,
(18)

Then, there exist x € X, u e A(X), v € S(x) and we T(X)
satisfying (0) and iterative sequence&}, {Xn}, {un},
{vn} and {w,} generated by Algorithm 1 converge
strongly to zx, u, v and w respectively.

Proof. Using Cauchy-Schwartz inequality arfdstrong
monotonicity ofg, we have

190%) = 900-2) [ X0 = Xn-1]| = (9(*n) — IXn-1), X0 — Xn-1)
2 EHXH_Xn—lev
which implies that
1
% = Xn-al < gl\g(xn) —9(*n-1)ll- (20)

As g is Ag-Lipschitz continuous,H is An-Lipschitz
continuous, N is Lipschtiz continuous in all three
arguments with constanisy,, An,, An,, respectivelyA is
oa-D-Lipschitz  continuous, S is ds-D-Lipschiz
continuous,T is dr-D-Lipschitz continuous, and using
Algorithm 1, we obtain

Zn1—2n|

= [|(1=H)g(%n) — (I =H)g(Xn-1) —
—N(Un-1,Vn—1,Wn—1))|

< [I(r=H)g(%n) — (I =H)g(Xn—1)[| + A [[N(Un, Vn, Wn)

—N(Un-1,Vn—1,Wn_1)|

[9(xn) —g(%n-2) [+ [IH

+A|IN(Un, Vn,Wn) — N(Un—1, Vn, Wn)

+N(Un—1,Vn,Wn) — N(Un_1,Vn—1,Wn)

+N(Un—1,Vn-1,Wn) = N(Un—1,Vn—1,Wn_1) |

9(xn) —9(xn—1) | + [IH(9(xn)) = H(g(Xn—-1)) |

+A|IN(Un, Vn, Wn) — N(Un_1, Vi, Wn) |

+A[IN(Un—1,Vn,Wn) — N(Un_1,Vn—1,Wn) |

+ANIN(Un-1,Vn—1,Wn) — N(Un-1,Vn—1,Wn_1) |

< Agll¥n —Xn—1]l + A Ag[Xn — X1/ + A AN [[Un — Un 1|
FAAN, [V = Vi1 || + A AN [[Wh —Wh 1|

< Agll¥n —Xn—1][ +An AglXn —Xn—1[| +A AN, D(A(Xn-1),A(¥n))
+AAND(S(Xn-1), S(%n)) + AAN; D(T (Xn-1), T (X))

< Agl[%n —Xn—1[l + AHAg [ Xn — Xn—1 [ + A AN, Oa[[Xn — Xn—1]|
+AAN, Os|[Xn — Xn—1[| + A ANy O [[Xn — Xn—1 |

< [Ag+AHAG+AAN, Oa + AAN, Os+ A AN, Or ] [|%n — Xn—1]|. (21)

A (N(un, Vi, Wn)

<

(90xn)) —H(gxn-2))

<

(@© 2017 NSP
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By using Theoen2 and condition 18), we have

19(X) — g(Xn-1) |
= IR (20) — R',“MM)(zn Dl
= HR' H (@) =R @) HR(#o1)
R (7 ol
= HR' “ o) () = Ryl @D+ IR iy (20-1)
—R' H (@)l
| H
_RI,\TMH(,7XH71)(Zn—1)||-
Using (18), we have
1
9(%1) —9(Xa-1)[| < Lir ]||Zn Zo—1/| + hl[ X0 — Xn-a]-
(22)
By (20) and @2), we have
1
[[Xn = Xn-1[| < ml\zn—zn_lll- (23)
Using 21), (22) and 3), we have
[Za1—2n||
)\g+AH)\Q+A)\N16A+)\)\N26$+AAN36T

ie.,

Z0+1— 2l < 6() |20 — -],

where
6(*) _ )\g+/\H)\g+/\/\N15A+/\/\N265+/\/\N35T
a [1+r][&—h] '

From (19), we have 0< 6(*) < 1 and consequentlyz, } is

a cauchy sequence K. SinceX is a Hilbert space, there
exist some € X such thatz, — zasn — c. From 23) we
know that the sequendex} is also a cauchy sequence in
X. Therefore, there existsc X such thak, — x asn — o.
Since the mappings, SandT areD-Lipschitz continuous.
It follows from (14) — (16) that{un}, {vn} and{w,} are
also cauchy sequences, we can assumelthatu, v, — v
andw, — w. By Algorithm 1, it follows that

Zner = [(1 = H)g(%n) = AN(Un, Vi, Wn)] = z=[(I = H)g(x)

—AN(u,v,w)], as n— oo, (24)
and consequently
9(Xn) = Rl)\?ﬂ(.,xn)(zn) - RI)\_,G(.,X) (2) =9(x), as n— co.
(25)

By (24), (25 and Lemma, we have
N(U, v, W) + A —13;1;'@ (2 =0.

Finally, we prove thati € A(x), v € S(x) andw € T(x). In
fact, since{un} € A(x,) and
Xn)7Yl)}

< maX{ sup d(yz2,A(x)), sup d(A(Xn)7Y1)}
Y2€A(Xn) y1EA(X)

sup d(A(

d(un,A(X)) < max{d(umA(x)L
Y1€A(X)

= D(A(xn),A(x)),
we have

d(u,A(X)) < ||u—un|| + d(un,A(X))
< HU—Un” +D(A(Xn),A(X))
< |lu=un||+ 4l —X|| =0 as n— co.

Which implies thad(u, A(x)) = 0. SinceA(x) € CB(x), it
follows thatu € A(x). Similarly, we can prove thate S(x)
andw € T(x). This completes the proof.

4 Conclusion

Using the resolvent operator technique, one can prove
that the variational inclusions are equivalent to the fixed
point problems and resolvent equation problems. These
comparable formulations have played compelling aspect
in establishing useful methods for solving the variational
inclusions (inequalities) and related optimization
problems. The aim of this work is to study an implicit
resolvent equation problem with its equivalent implicit
variational inclusion problem and corresponding fixed
point problem by introducing a new type of relaxed
resolvent operator. We suggest an iterative algorithm for
solving implicit resolvent equation problem in Hilbert
spaces. Note that the relaxed resolvent operator technique
can be further applied for solving different kind of
variational inclusions in diverse structure.
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