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Abstract: How to detect computer malicious executables is an important research direction of computer security, especially, unknown
malicious executables and new variants. Inspired by biological immune systems, a based on real-valued negative selection algorithm
approach to detect malicious executables is proposed in this paper, which is referred to MEDRNS. In order to avoid detectors covering
self space, some of benign executables are used to build the profile of the system, and then based on the built profile of the system,
the detectors are generated. At the same time, using the variable-sized self radius to represent the self space, detectors have the more
quality. The approach can increase true-positive rate and decrease false-positive rate, and experimental results show that MEDRNS has
better detecting ability than that of the previous techniques.
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1 Introduction

The computer malicious executable codes have a long
history and can be categorized into three kinds based on
their transport mechanism. The first is called viruses that
always infect other benign programs, which become
infected, and in turn, propagate the virus to other
programs when executed. The second is called Trojans
that always masquerade its malicious executable code
inside a useful utility or freeware program, but perform
malicious functions. And the last but not the least is
called worms that can replicate and distribute itself
automatically around the network, usually by exploiting
vulnerabilities in the software running on the networked
computers. With the fast development of Internet, security
threats of malicious executable code are getting more
serious. Staniford introduces a worm that can spend the
whole Internet within 30 seconds [1]. How to detect
malicious executables, specially unknown malicious
executables, has become one of the prime research
interests in the field of computer security [1,2,3,4].

Current anti-virus systems with a large number of
virus signatures can only detect known viruses and cannot
detect unknown viruses and the variants of known viruses
[5]. Although these anti-virus systems use the word virus
in their names, they also detect worms and Trojans. In

order to avoid to be detected by anti-virus systems, the
authors of virus make viruses change their structures
when the viruses copy themselves [6]. Some researchers
have found that the method can succeed in escaping from
anti-virus systems [7]. At the same time, eight to ten
malicious programs are created every day and most
cannot be detected until signatures have been generated
for them [8]. During this time period, systems protected
by signature-based anti-virus systems are vulnerable to
attacks. These challenges have prompted some
researchers to investigate learning methods for detecting
new or unknown viruses, and more generally, malicious
codes.

In order to detect new or unknown malicious
executables, some researchers begin to investigate
learning methods. Early, Lo et al [9] proposed the filter
for the viruses that can escape from signature-based
methods; however, no experiment was conducted to
validate the method. Tesauro et al [10] investigated the
neural network for detecting boot-sector viruses and
incorporated it into IBM’s Anti-virus software. This
method can efficiently detect boot-sector viruses,
however, not other viruses. Mihai and Somesh[11]
presented a static analyzer for executables; however, the
machine instruction sequence in the executables has to be
known and it costs very much time. Some researchers
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used data mining methods to detect malicious
executables, but the false-positive rate is high [7,11,12,
13].

Biological immune systems (BIS) have many
characteristics such as uniqueness, autonomous,
recognition of foreigners, distributed detection, and noise
tolerance [14]. Inspired by BISs, Artificial Immune
Systems (AIS) have become one of the relatively new
areas of soft computing [15,16,17,18,23,29] and AISs
generally include clonal selection based algorithms,
negative selection based algorithms and artificial immune
network models [19,20,21,22]. One of the major
algorithms developed within AISs is the negative
selection algorighm (NSA), proposed by Forrest et al.
[24]. The NSA can only use self samples to train
detectors for classifying unseen data as self or non-self
and its typical applications include anomaly detection,
fault detection, especially, network security. Early works
in NSAs used the problem in binary representation [24].
However, many applications are natural to be described in
real-valued space and cannot be processed by NSAs in
binary representation [25]. Recently, more concerns
focused on real-valued negative selection algorithm
(RNS) [25,26]. The algorithms use a real-valued
representation of the self/non-self space and can speed up
the detector generation process [27].

AIS [15] is considered as a new way to defeat
fast-proliferating malicious executables. In order to detect
malicious executables, especially, new or unknown
malicious executables, a based on real-valued negative
selection algorithm to detect malicious executables is
proposed in this paper, which is referred to MEDRNS.
Quantitative description of the model is given.
Experimental results show that MEDRNS has better
detecting ability.

2 Model Theories

In BIS, antibodies play an important role in protecting the
host from external antigens. In order to cover the external
antigens, the repertoire in BIS is huge [30] and the
antibody is made up of multi-gene segments to attain the
diversity [28]. In computer systems, the executables are
made up of the binary strings, and the string of the
binaries decides the function of the executables and
makes the executables behave benign or malicious.
Inspired by the principles of the antibody diversity in BIS,
the variable-length instructions is extracted from benign
executables and makes up of the benign instruction
library (BIL), and the BIL is used to extract the characters
of the executables in MEDRNS, including benign and
malicious executables. Furthermore, the profile of the
benign executables can be built by using the characters of
the benign executables and then detectors are generated to
cover the space of the malicious executables.

2.1 BIL

In this paper, Define instructions as the binary strings
extracted from benign executables and the variable-length
instructions set consists of the BIL. LetBIl devote the
benign instructions set given by:

AIl = {bs |bs ∈ Bl , |bs|= l, l ∈ N } (1)

wherel is the instruction length (the number of bytes),N
is the natural number andBl is the instructions extracted
from the benign executables.

The benign instruction library (BIL) is given by:

BIL = BIl1 ∪BIl2∪, · · · ,∪BIln (2)

whereli ∈ N, i = 1, · · · ,n is the instruction length, andN
is the natural number. The equation (2) shows that the
BIL is made up of variable-length antibody genes, and the
antibody gene library is used to extract the characteristics
of the executables.

2.2 Antigen Presenting

Antigens are defined as the executables, including benign
and malicious executables. Simulating the antigen
presenting cells in BIS, and the characteristics of an
executable are extracted from the BIL. Letc devote the
characteristics of an executable, described by the equation
(3). Where 0≤ xli ≤ 1, i = 1, . . . ,n, xli is the executable
characteristics extracted from the benign instructions set
BIl1, n is the dimension, and the extracting method is
described by the equation (4). Where the function
fe(e, j, li) extracts the binary string from the benign
executablee, j is the extracted position andl is the
number of extracted bytes, respectively.

c =< xl1,xl2, · · · ,xln > (3)

The equation (3) shows that the state vector of the
executable is made up of the characteristics extracted
from the whole benign instructions setBIli , i = 1, · · · ,n.
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The executables include malicious executables and
benign executables. The malicious executables set is
denoted asCn ⊂ C and let Cs ⊂ C be the benign
executables, such that:

Cs ∩Cn = Φ,Cs ∪Cn =C (5)
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2.3 Benign Executable Space

Let S the benign executables set given by:

S = {〈c,r〉 |c ∈Cs,r ∈ R} (6)

wherec is the characteristics of the benign executables,
Cs is the set of the characteristics of the benign
executables,r is the self radius of benign executables, and
R is the real number, respectively. The characteristics
extracted from the benign executables are used to build
the profile of the benign executables.

How to build the profile of the benign executables is
very important work in NSAs. In facts, we cannot collect
all of benign executables, and so we have to use some of
benign executables to express the space of benign
executables. In order to carry out the aim, the self-radius
is introduced. The traditional self radius[31] is
constant-sized and cannot build an appropriate profile of
benign executables. Comparing with the version of
constant-sized self radius, a variable-sized self radius is
introduced in this paper. We count the distance among the
set of benign executables and assign a variable-sized self
radius based on the total distance of every benign
executable to other benign executables. Now that we let
each benign executable in the training set has its own self
radius in addition to the distance to other benign
executables. Big distance means that the benign
executable is far from other benign executable, and so the
number of benign executables near the benign executable
is little and low self radius is assigned to the benign
executable. If the distance is little, it shows that the
number of the benign executables near the benign
executables is high and so the big self sample is assigned
to the benign executable. The self radius of the benign
executables is given by:

s.r = ∑
c∈Cs

fd(s,c)

/

(|Cs|−1) (7)

Where the functionfd(s,c) is the Euclidean distance
betweens andc.

2.4 Malicious Executable Detectors

A NSA consists of two phases, training and detecting
phase. In training phase, the detectors are generated
randomly and those that match any benign executable
using Euclidean distance matching rule are eliminated.
Let D denote the detector set given by:

D = {d |d.c ∈U,d.r ∈ R,∃s ∈Cs,∀s′ ∈Cs,

fd(d,s′)> fd(d,s),d.r = fd(c,s)− s.r} (8)

where d =< c,r >, c is the characteristics of the
detectors,U = [0,1]n, is a n-dimensional space,r is the
detection radius of the detectors, andR is the real number,
respectively.

2.5 The Evolution of Model

In an actual application, the benign executables often vary,
for example, the user installs or uninstalls application soft,
and the evolution of the benign executables is given by:

B(t) =

{

B(0), t= 0
B(t −1)∪Bnew(t)−Bdelete(t), t > 0 (9)

where B(t), B(t − 1) are, respectively, the benign
executables at timet andt −1. B(0) is the initial benign
executables.Bnew(t) is the new benign executables added
into B at time t. Bdelete(t) are the mutated benign
executables deleted at timet, which includes three parts:
1) the unloaded software; 2) the elements recognized by
new detectors; 3) the benign executables infected by
malicious executables. Because of the evolution of the
benign executable, the instructions extracted from the
benign executables also evolves and responses these
variations, and the evolution of the BIL is given by:

BI(t) =

{

BI(0), t= 0
BI(t −1)∪BInew(t)−BIdelete(t), t > 0 (10)

where BI(t),BI(t − 1) ⊂ BIL are, respectively, the
instructions at timet and t − 1. BI(0) is the initial
instructions.BInew(t) is the new instructions added into
the BIL, which are extracted fromBnew(t). BIdelete(t) is
the instructions deleted from the BIL, which are extracted
from Bdelete(t).

Adding or deleting the instructions can response the
variants of the benign executables in a computer system.
Furthermore, according to the new executables and BIL,
the profile of the benign executables is also updated given
by:

Cb(t) =

{

Cb(0), t= 0
{

cb =
〈

xl1,xl2, · · · ,xln

〉
∣

∣0≤ xli ≤ 1,eb ∈ B(t)
, i = 1, · · · ,n} ,t > 0

(11)
whereB(t) is the benign executables.Cb(0) is the initial
profile of the benign executables, andCb(t) is the profile of
the benign executables at timet. Based on the new profile
of the benign executables, the detectors setD also update
given by:

D(t) =

{

D(0), t= 0
D(t −1)reserve ∪D(t)update ∪Dnew(t)

−Ddelete(t), t > 0
(12)

Dreserve(t −1) = {x |x ∈ Dreserve(t −1),∀s ∈ S(t),
fd(x,s) ≥ x.r+ s.r} (13)

Dupdate(t) = {x |x ∈ D(t −1), ∃s ∈ S(t),
fd(x,s) < x.r+ s.r, x.r = fd(s,x)− s.r} (14)

Ddelete(t) = {x| x ∈ D(t −1),∃s ∈ S(t),
fd(x,s)≤ s.r} (15)
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whereD(t),D(t − 1) ⊂ D, are, respectively, the detectors
at time t and t − 1. D(0) is the initial detectors.
Dreserve(t −1) is the reserved detectors att −1, which do
not cover the space of the benign executables and are the
valid detectors.Dupdate(t) is the updated detectors, which
cover partly the space of the benign executables and
decrease their detection radius.Dnew(t) is the new
detectors added into the detectors set, which are tolerant
to Cs. Ddelete(t) is the detectors eliminated from the
detectors set, which lie within the benign executables set
Cs. Reserving the valid detectors decreases the cost of
training detectors, updating and eliminating detectors can
efficiently decrease the false position rate, and adding the
new detectors can increase the true-positive rate.

The traditional techniques only can build a static
profile of the system and cannot adapt the varieties of
benign/malicious executables space, and so they produce
the high false position rate and low true position rate. In
MEDRNS, the evolution of model is efficient and active
learning mechanism, and increases its self-adaptation and
self-learning capability in a variable self/nonself
surrounding.

2.6 Suspicious Executable Detection

After the characteristicsc(c ∈ C) of an executablee is
extracted, its characteristics are presented to the detectors
for detecting and the detecting process is given by:

fdetect (c) =

{

0, iff ∀d ∈ D∧ fd(c,d)> d.r
1, iff ∃d ∈ D∧ fd(c,d)≤ d.r (16)

if the executable lies within the detection radius of a
detector, the functionfdetect (c) returns 1 and then the
executable is malicious. Otherwise, the functionfdetect (c)
returns 0 and then the executable is benign, the function
fd(x,y) is the Euclidean distance between x and y.

3 Simulations and Experimental Results

In order to test the proposed method, we need benign and
malicious executables. We gathered 992 benign
executables and 4192 malicious executables. The benign
executables were gathered from a freshly installed
Windows XP installed MSOffice 2000 and Visual C++
and the malicious executables were downloaded from
some FTP sites, composed of Trojans, viruses and worms.
There were no duplicate programs in the data set and
every example was labeled either malicious or benign by
the commercial virus scanner.

Table 1 is the comparison of the experimental data set
between Schultz [12] and MEDRNS (the dataset in [32] is
same to [12]). Table 1 shows that the number and the
types of malicious executables in MEDRNS are bigger
than that of Schultz [12], and the number of benign
executables is almost equal. We use more malicious

executables to test the performance of our proposed
approach and then confirm the detection capability of
MEDRNS.

To evaluate our method, we compared MEDRNS with
the methods used by Schultz [12] and Peng [32],
including signature method, RIPPER, Naive Bayes,
Multi-Naive Bayes and Support Vector Machine. Table 2
shows the comparison for detection performance, where
the vector dimensions were four in MEDRNS. From the
table 2, we can see that the signature-based method has
the worst true-positive rate, but the lowest false-positive
rate, and the learning-based methods have better detection
performance than that of signature-based methods. It also
shows that the learning-based methods can detect
unknown malicious executables. At the same time, the
table 2 shows that MEDRNS is a good method to detect
unknown malicious executables and has higher detection
performance than that of Naive Bayes, Multi-Naive Bayes
and SVM, for example, the true-positive and
false-positive rates of Multi-Naive Bayes are 97.76% and
6.01%, however, the true-positive and false-positive rates
of MEDRNS are 98.21% and 2.22%.

4 Conclusion

Detecting unknown malicious executables is a
challenging task. In this paper, a based on real-valued
negative selection algorithm to detect malicious
executables is proposed, which is referred to MEDRNS.
Using the variable-sized self radius to represent the self
space, it can construct the appropriate profile of the
system, and then generates the more quality detectors,
which can increase the true positive rate and decrease the
false positive rate. The experiment results show that
MEDRNS is an efficient method to detect malicious
executables.
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