
Appl. Math. Inf. Sci.8, No. 4, 2025-2032 (2014) 2025

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080461

Real-Time Service Composition Algorithm based on
Semantic Web
Hu Jingjing1,∗, Ma Siying1, Zhao Xing2 and Cao Yinyin1

1 School of Software, Beijing Institute of Technology, Beijing 100081, P. R. China
2 School of Mathematics, Capital Normal University, Beijing 100037, P. R. China

Received: 30 Aug. 2013, Revised: 2 Dec. 2013, Accepted: 3 Dec. 2013
Published online: 1 Jul. 2014

Abstract: Real-time service composition needs to meet the time constraints precisely and enhanced the speed of combination
computing quickly. To improve the accuracy of service selection, we establish a time ontology model and a set of inference rules,
the search strategies through logic reasoning combined with the extended UDDI improve the search efficiency by 129% and accuracy
by 161%. In the process of service composition, the improved simulated annealing algorithm (WSC-ISA) is proposed to implement
the NP-hard problem of web service composition with QoS properties, which optimizes the solution by time priority and accepting
deterioration solution in probability. Experiment results show that the efficiency of WSC-ISA is improved by more than 6% and the
time is reduced by more than 12.3%, which shows the algorithm reduces thecomputation time while maintains the high efficiency.

Keywords: Service composition, Semantic Web, QoS, real-time

1 Introduction

With the widely used of web services and the technology
becoming increasingly mature, a growing number of web
services have been published on the Internet, and it arose
the web service composition (WSC) [1,2]. Semantic web
has been developed to make WSC not only limited to the
data type and keyword matching, but also raised to the
ontologies’ relations and kinship degree reasoning, which
makes WSC more accurate and reliable than normal way
[3,4]. The semantic extension of web service is mainly
implemented in non-functional property of web service−
QoS, which involves time, cost, reputation and others.
The temporal information is an important factor for a user
to invoke web service [5]. But now the vast majority of
the methods are focusing on the functions of semantic
web services or on automatic QoS discovery, searching
and matching, real-time demand for services is ignored
[6]. Therefore, a real-time web service composition
planning is presented in this paper. In the framework, a
semantic searching strategy is used to complete the
automatic discovery of services, and in the service
composition process, the improved simulated annealing
algorithm is used to optimize the service composition

based on QoS properties. The algorithm achieves higher
timeliness and efficiency in WSC.

The paper is organized as follows: The next section
proposes the search strategies based on semantic
reasoning to improve the accuracy of candidate services
selection. The third section puts forward to the WSC-ISA
algorithm with QoS-aware to improve the efficiency of
WSC. The fourth section explains the performance
evaluation for experiments, and the last section presents
our conclusions.

2 Search strategies

Before searching for the temporal condition of semantic
web services, a temporal hierarchical ontology should be
established firstly, which is used to divide time periods
into different types. When a web service is registered, the
publisher will record the time information to an extended
‘tModel’ according to its position in the temporal
hierarchy. In the searching process, we can first make sure
the position of the time type of the current service in the
hierarchy, and then get all the keywords of the types
which contain the current type. The inferred keywords
will be sent to UDDI for searching, and the returning

∗ Corresponding author e-mail:hujingjing@bit.edu.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080461


2026 H.Jingjing et. al. : Real-time Service Composition Algorithm based...

services are further referred by Jena engine and the time
ontology to make sure their availability.

2.1 Temporal hierarchy and UDDI extension

Ontology is an official, accurate and formalized norm for
describing the knowledge of a specific field, and also a
concept model and modeling language in the semantic
knowledge level [7,8]. Our system uses the standard web
ontology language (OWL-S) to establish the domain
ontology repository, especially build the concept of time
as well as the relationship between the time units.

The major part of searching strategy is inference of
searching candidate services. The inference promotes the
keywords matching to semantic level, in order to make
sure the information is not only literally matched but also
has the same meaning. During the inference, the time
structure is used is in the time hierarchy, which divides
time into different types depending on the time unit and
creates a tree structure. The temporal hierarchy is
depicted as Figure 1.

Fig. 1: Temporal hierarchy

In order to coordinate the semantic inference with the
search strategy, we extend the UDDI by creating a tModel
for time property. When the publisher registers a web
service, a tModel needs to create additionally. The tModel
includes the URL of time description, and the temporal
hierarchy keyword of the service. The tModel completes
the reflection of time property from OWL-S to UDDI. Its
structure is depicted as Table 1.

For the example of ‘Hour’, when using the search
strategy, we firstly look for the position of ‘Hour’ in the

temporal hierarchy, and find out that the type of ‘Day’,
‘Week’, ‘Month’, ‘Season’ and ‘Year’ also includes hour.
So during the search for tModel, we can find type of
‘Hour’ and the types include it, and ignore the types
which are included by it, such as the type of ‘Second’ and
‘Minute’. The returning services are mostly available
when searching by this way. Experimental results show
that the search efficiency is kept higher than 70% when
using the strategy in searching for 100, 400, 700, 1000,
1400 and 1700 services. The rate is slightly decreased
when the number of services rises. Compared with it, the
search efficiency by using random strategy is more
depending on the number of the searching information. If
the searching information has a large amount in UDDI,
the efficiency is higher. If there is less, the efficiency will
become very low, which is usually lower than 50% in
average. The comparison of the two strategies is shown as
Figure 2.

Fig. 2: Search efficiency of two strategies

The experiment results show that the efficiency is
improved by an average of 129%.

2.2 Ontology Reasoning

The search strategy combines the ontology structure with
the application of the inference engine. In the returned
service lists from UDDI, we should verify each service of
them whether its conditions match the requests of users’.

Table 1: tModel for time
tModel for Time
Category Bag
KeyName Time
KeyValue Second/Minute/Hour/Day/.
tModelKey UUID of OWL-S Time tModel
overviewDoc
description: Time Description
overviewURL Time Ontology URI

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 2025-2032 (2014) /www.naturalspublishing.com/Journals.asp 2027

To implement it, the time ontology is built as the
inference schema in the engine, the service information as
binding data and the matching inference rules.

2.2.1 Time Ontology

To verify whether the details of the current service meet
the user’s needs about real-time conditions, it establishes
the structure of time ontology-time.owl in this section,
and the matching inference rules are also constructed.
This structure of time ontology is shown as Figure 3.

Fig. 3: Structure of time ontology

There are two subclasses of Temporal Entity: ‘Instant’
and ‘Interval’. Instants are point-like concept in which
have no interior points while Intervals are things with
extent. It is generally safe to think of an instant as the
interval with zero length, where the beginning and end are
the same. ‘ProperIntervals’ are those time intervals whose
beginnings and endings are different, and ‘ProperInterval’
is the subclass of Interval. It is disjoint with ‘Instant’.

An interval can be described by CalendarYear in
different time interval, like 2010-09-20, or described by
the length of time, like 2 hours and 34 minutes.
CalendarYear type is described by ‘DateTimeDescription’
class, and the length of time is described by
‘DurationDescription’ class.

DateTimeDescription with DurationDescription has
different temporal unit, so they cannot be compared
directly. Here we create a ‘TemporalUnit’ class including
Year, Month, Day, Hour, Minute and Second. The upper
unit can contain the units which are lower than it. For
example, if a service is available in Year 2011, it must be
available in June of 2011.

2.2.2 Inference rules

When using the inference engine, appropriate inference
rules need to be constructed after the modeling of time
ontology. The file of time.owl only defines different
temporal classes and their relations, while inference rules
are needed to make it work in the inference engine.

Fig. 4: Property relations analysis

Before constructing the rules, we can do formal analysis
to the logic of these relations, which is shown as Figure 4.

According to the analysis, we can simplify the
relations between intervals, and express them with
formula expression. Intervals can be described by their
beginning time and end time, so their relations can also be
described by relations between their beginning time and
ending time, namely the relation ‘=,>,<’ between these
instants. In the rules, ‘i’ represents interval, ‘e’ represents
end and ‘b’ represents beginning in formula (1)–(7).

i1 beforei2 ≡ e1 < b2 (1)

i1 meetsi2 ≡ e1 = b2 (2)

i1 overlapsi2 ≡ (b1 < b2)∧ (e1 < e2)∧ (e1 > b2) (3)

i1 startsi2 ≡ (b1 = b2)∧ (e1 < e2) (4)

i1 duringi2 ≡ (b1 > b2)∧ (e1 < e2) (5)

i1 finishesi2 ≡ (b1 > b2)∧ (e1 < e2) (6)

i1 equalsi2 ≡ (b1 = b2)∧ (e1 = e2) (7)

Inference rules are constructed according to the
formulas, and they have specific format which is provided
by Jena [9]. For example, formula 1 can be translated into
a rule like this : [ruleiconceptintervalBefore: (?x time:
hasEnd ? b) (?y time: hasBeginning ?e) (?b time: before
?e)−>(?x time: intervalBefore ?y) ].

2.2.3 The process of reasoning

In order to implement the querying and reasoning
process, a reasoner with ModelFactory needs to create.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2028 H.Jingjing et. al. : Real-time Service Composition Algorithm based...

The resoner will read in the file of time.owl as the basic
model schema, bind the inference rules, and read in the
OWL-S of services returning from UDDI as data. Then it
calls the createInfModel method of ModelFactory, and
acquires the inference result InfModel. The InfModel is a
basic model, so we can call the general method of
ModelFactory to read the inference result from InfModel.
Figure 5 depicts the flow of reasoning.

Fig. 5: the flow of inference engine

When the inference engine binds the schema and
reads in the data, it can infer new information which
contains the original instance data and is not included in
the read-in data according to the inference rules. The
method InfModel.Difference (data) is used to acquire the
information which is different from data.

It is more accurate by using the ontology reasoning
method to verify the temporal data in service selection
than the way of keyword matching. Because it solves the
problem of ‘one word with two meanings’ in the level of
semantic matching, it gets relatively higher search
efficiency than keyword matching. Figure 6 depicts the
comparison of search efficiency between ontology
reasoning and keyword matching.

The experiment results show that the accuracy of
candidate services’ selection is improved by an average of
161%.

3 The algorithm of WSC

3.1 Pretreatment of web service information

After the services returned from UDDI by using the search
strategy, the value of QoS need be optimized, especially
the time information should satisfy the real-time properties

Fig. 6: Comparison of search efficiency between ontology
reasoning and keyword matching

of service composition. In the paper, the properties of time,
cost, availability and reputation are taken into account.

Property of the QoS has a wide and floating range, so
it need to normalize the value in order to calculate and
compare the property with weight, which is provided by
users. In the normalization, count the range of the
parameterx firstly to get its maximum as ‘a’ and
minimum as ‘b’. Then parameterx is in the interval of
[a,b]. The value of properties range in[0,1], the formula 8
represents the normalization.

X =
x−a
b−a

(8)

3.2 Composition algorithm based on QoS

3.2.1 Coding of service flow

There are four types of logical structure of service
composition, and they are ‘sequence’, ‘choice’, ‘parallel’
and ‘cycle’. Figure 7 shows the structures.

Fig. 7: Structure of service composition

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 2025-2032 (2014) /www.naturalspublishing.com/Journals.asp 2029

In the algorithm, the services in the candidate service
lists should be encoded, and each code identifies one
service uniquely. The length of code is not fixed, but it
depends on the composition structure and the number of
service lists according to users’ requisition instead. For
example, if there are n services in sequence structure, the
code can be ak-bit binary number. The relation betweenn
and k is expressed in formula 9. The code of cycle
structure is the same as the sequence.

k = ⌈log2 n⌉ (9)

In ‘choice’ structure, the value of former part depends
on the number of alternative paths, recording the path of
current service in. The latter represents every service in a
list. ‘n’ is the count of paths and‘m’is the maximal value
of the service number in all paths. The code of this service
in the structure is expressed in formula 10.

k = ⌈log2 n⌉+ ⌈log2 m⌉ (10)

In ‘parallel’ structure, if there aren paths, and in each
path there arexi services, the code of the service is shown
in formula 11.

k =
n

∑
i=1

⌈log2 xi⌉ (11)

For all the codes of the above structure, letk = k+1 to
reserve the extension of representation.

3.2.2 Improved Simulated Annealing Algorithm

It is known that the solution of WSC based on QoS is an
NP-hard problem [10,11]. In this paper, we consider to
use simulated annealing (SA) to solve the problem. SA is
an algorithm that simulating the metal annealing process
[12]. According to heat theory, when temperature isT ,
the probability of the appearance of energy difference is
P(∆E). The formula expression of it is shown as formula
12, in whichk is constant and∆E < 0, so we can assure
the value ofP(∆E) is in range(0,1), and it will decrease
whenT decreases.

P(∆E) = exp

(

∆E
kT

)

(12)

In the algorithm, a topical random transforming way
to generate a new solution is used, a few nodes to
generate new code are chosen randomly and others
remained unchanged. Each new solution will be verified
its legitimacy and existence, and then will be evaluated by
its value.

The function of Evaluate() will calculate each
solution’s value according to the weight which is assigned
to each property of QoS by users. The attributes of time,
cost, availability and reputation are considered, in which
V represents the value of QoS attributes,N is the number
of structural nodes of a path,si denotes the service

selected of a node. The formulas for them can be shown
in the following formula 13−16.

(1) Time

VTime =
m

∑
i=1

VTime(si) (13)

(2) Cost

VCost =
1
n

N

∑
i=1

VCost(si) (14)

(3) Availability

VAvail =
1
n

N

∑
i=1

VAvail(si) (15)

(4) Reputation

VRepu =
1
n

N

∑
i=1

VRepu(si) (16)

Since the algorithm aims at real-time WSC, the value
of ’time’ is the sum and the other parameters are average.
Therefore two cases should be considered. If user has
provided the maximal time durationVTimeMax, then the
time must be shorter thanVTimeMax; if user has not given
the VTimeMax but assigned the weight to time, we set the
VTimeMax as a negative number and calculate all the
parameters with their weights, in which ‘W ’ is for weight,
and evaluation function can be written as formula 17.

Evaluate(p)=



















−∞ VTime >VTimeMax
VAvailWAvail +VRepuWRepu

VCostWCost
VTime ≤VTimeMax

VAvailWAvail +VRepuWRepu

VCostWCost +VTimeWTime
VTimeMax < 0

(17)
The algorithm of improved SA for real-time service

composition (WSC-ISA) is described in Table 2.
In line 01,’SS’ is the service with logic structure and

the coding is according to the method of section 3.2.1. In
line 02, the initial solution must comply with the time
requirements. The simulated annealing process starts
form line 03. In line 06, each new solution should be
checked firstly if it has existed. The ‘r’ in line 07 is
cooling coefficient, which can control the rate of
annealing

Especially, in line 05 it accepts the deterioration
solution in probability ofP(∆E) in order to reduce the
concentration of solution and increase the probability to
get the optimal solution. The function ofEvaluate()
enlarges the utility of time.

4 The evaluation of performance

The instance shown in Figure 7 was adopted to verify the
validity of the algorithm. The running environment is

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2030 H.Jingjing et. al. : Real-time Service Composition Algorithm based...

CPU: Intel 2.20 GHZ, RAM: 2.0GB. Linear
Programming (LP) algorithm [13] to compare with
WSC-ISA algorithm in different number of candidate
services of each node and the structure of the service path
includes four type of logical flow.

The efficiency of the algorithm is measured by ‘e’,
which e = |s|/|C|. |C| is the times of service composition,
and |s| is the successful times denoted by formula 18.
There is|C| = 500,Wx = 0.25, the number of candidate
services for each node ranges from 200 to 1000.

s =







1, VTime(CS)≤ 0.6×VTimeMax,VTimeMax > 0
1, , VTime(CS)≤ 0.6×VTime,VTimeMax < 0
0, others

(18)

Fig. 8: Comparison of efficiency of WSC-ISA and LP

The processing time of simulated annealing can be
controlled by the simulated temperature and cooling
coefficient. The higherT,r andTmin we have, the longer

Table 2: Algorithm WSC-ISA
Input: SS
Output: CS
Begin
01: Code(SS) ;
02: Generate the initial solution pathP0 and createInitlist;
03: Set the current temperatureT = Tmax;
04: Select a solution fromInitlist as the current statePi
05: Pi+1=neighbor(Pi);

∆E = Evaluate(Pi+1)CEvaluate(Pi);
P(∆E) = exp(−∆E/kT );
If ∆E > 0 insertPi+1 into ResultList in order;
ELSE If (∆E <= 0 & P(∆E)> random) insert
Pi+1 into ResultList with the probability ofP(∆E);

06: Insert the generated new solution to the previous path list;
07: SetT = rT ;

If T > Tmin Initlist = ResultList ; go to (3);
ELSE exit the process.

08: CS<− DecodeOptimal (Evaluate(ResultList));
09: RETURNCS;
end

and more meticulous the simulating process will be.T
andr should be relatively raised if the number of services
of each node rises up, to ensure the simulating process is
enough. Table 3 and 4 denote the relations ofT,r and
number of services. Figure 8 shows the comparison of
efficiency for WSC by and WSC-ISA and LP.

It can be seen from the experiments that WSC-ISA
obtains the optimal solution or approximate optimal
solution for time priority in a high probability. LP
algorithm is usually used in sequence structure and it
cannot be applied to multiple branching paths, when
using in complex structures, the nodes must be
transformed into simple structures firstly. The efficiency
of WSC for the test by WSC-ISA is higher than LP’s in
average 14.4%.

Table 3: Relations betweenr and number of nodes
Number

< 5 6−9 10−13 13−15 > 16
of nodes

r 1−10−3 1−10−4 1−10−5 1−10−6 1−10−7

Table 4: Relations betweenT and number of candidate services
Number

< 1000
1000− 1500− 2000−

> 2500
of services 1500 2000 2500

T 104 105 106 107 108

In order to verify the performance of improved SA,
the experiments were carried out to compare the efficiency
with the not improved. In the SA, theVtime is computed
by the same way of other attributes, and the deterioration
solution was not accepted.

Fig. 9: Comparison of efficiency by WSC-ISA and SA

According to statistical results from Figure 9, the
efficiency of WSC for the test by WSC-ISA is higher than
SA’s about 6%.

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 2025-2032 (2014) /www.naturalspublishing.com/Journals.asp 2031

The composition time is another evaluation indicator
for real-time WSC. The comparison of time by using
WSC-ISA and LP is shown in Figure 10.

Fig. 10: Comparison of composition time by WSC-ISA and LP

The composition time of WSC-ISA and LP are both
prolonged with the number of candidate services’
increasing and the time of WSC using WSC-ISA is
shorter than LP by an average of 33.8%.

The comparison of time by using WSC-ISA and SA is
shown in Figure 11.

Fig. 11: Comparison of composition time by WSC-ISA and SA

The figure shows that in the experiment, both
computing of composition time can be accomplished in 5
seconds, and the time of WSC-ISA is shorter than SA by
an average of 12.3%, which shows algorithm WSC-ISA
reduces the computation time while maintains the high
efficiency.

5 Conclusions

In real-time systems, punctuality is the primary
requirement. Especially in solving the NP problem of web
service composition for QoS, it must guarantee that time
is short enough and accuracy is high enough.

In this paper, we propose a composition algorithm
based on semantic web services framework. The UDDI is
extended and the time ontology inference is builtthe
selection of candidate services by reasoning gets more
accuracy. In the process of composition, the algorithm of
WSC-ISA with time priority is designed, which obtains
higher combination efficiency in shorter time. The
algorithm improves the accuracy for time matching and
reduces the composition time, which can meet the needs
of real-time services in a certain extent.

Acknowledgement

This work has been supported by the National Science
Foundation of China (Grant No. 61101214, 61371195),
the Key Project of National Defense Basic Research
Program of China (Grant No. B1120132031) and the
Fundamental Research Funds for the Central Universities
(Grant No. 20120842003, 20110842001). Thanks for the
help.

References

[1] B.Al-Shargabi, A.Sabri and A.El Sheikh, Web Service
Composition Survey: State of the Art Review, Recent
Patents on Computer Science,3, 91-107 (2010).

[2] H. Wang, Y. Shi, X. Zhou, Web Service Classification using
Support Vector Machine, IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2010, 3-6 (2010).

[3] R. Karunamurthy, F. Khendek, R H.Glitho, A Novel
Architecture for Web Service Composition, Journal of
Network and Computer Applications,35, 787-802 (2012).

[4] H. Tian, K. Liu, Research on Semantic Web Service
Composition, IEEE World Automation Congress, WAC
2012, 1-4 (2012).

[5] Y.B. Kim, Real-time Estimation and Analysis of Time-based
Accessibility and Usability for Ubiquitous Mobile-Web
Services, KSII Transactions on Internet and Information
Systems,5, 938-958 (2011).

[6] C. Okutan, N.K. Cicekli, A Monolithic Approach to
Automated Composition of Semantic Web Services with the
Event Calculus, Knowledge-Based Systems,23, 440-454
(2010).

[7] Q. Yu, L. Wang, D. Huang, Fishery Web Service
Composition Method based on Ontology, Journal of
Integrative Agriculture,11, 792-799 (2012).

[8] D. Paulraj, S. Swamynathan, M. Madhaiyan, Process
Model-based Atomic Service Discovery and Composition
of Composite Semantic Web Services using Web Ontology
Language for Services (OWL-S), Enterprise Information
Systems,6, 445-471 (2012).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2032 H.Jingjing et. al. : Real-time Service Composition Algorithm based...

[9] H. Fethallah, C. Amine, B. Amine, Automated Discovery
of Web Services: an Interface Matching Approach based
on Similarity Measure, Proceedings of the 1st International
Conference on Intelligent Semantic Web Services and
Applications, 13 (2010).

[10] F. Lecue, N. Mehandjiev, Satisfying End User Constraints
in Service Composition by Applying Stochastic Search
Methods, International Journal of Web Services Research,
7, 41-63 (2010).

[11] J. J. Hu, X. Zhao, Y. D. Cao, Research on Transaction Web
Service Selection Algorithm in WSC, Applied Mathematics
& Information Sciences,7, 725-731 (2013).

[12] X. Q. Fan, X. W. Fang, C. J. Jiang, Research on Web service
selection based on cooperative evolution, Expert Systems
with Applications,38, 9736-9743 (2011).

[13] Bellman R. DYNAMIC PROGRAMMING AND A NEW
FORMALISM IN THE CALCULUS OF VARIATIONS.
Proc Natl Acad Sci U S A.,40, 231-235 (1954).

Hu jingjing received
the PhD degree in Computer
science from Beijing
Institute of Technology,
Beijing, China. She is
currently a lecturer in the
school of Software of Beijing
Institute of Technology. Her
research interests are in the
areas of service computing,
multi-agent systems, and

GPU-based computer tomography.

Ma siying is
a postgraduate in
the school of Software,
Beijing Institute
of Technology, China.
Her research interests
include artificial
intelligence, services
computing, software
engineering, etc.

Zhao xing received
the Ph.D degree
in Computer science
from University
of Science & Technology
of China, HeFei, China.
He is currently an associate
professor in the school
of Mathematical sciences
of Capital Normal University.
His research interests

are in the areas of computer tomography, service
computing.

Cao yinyin is
a postgraduate in
the school of Software,
Beijing Institute
of Technology, China.
Her research interests
include parallel computing,
services computing,
software engineering,
etc.

c© 2014 NSP
Natural Sciences Publishing Cor.


	Introduction
	Search strategies
	The algorithm of WSC
	The evaluation of performance
	Conclusions

