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Abstract: This research article aims at treating the transverse electromagnetic wave propagation in lossy media, labeled TEMP.
Following the trail of works by Hussain and Belgacem, and Belgacem et al. towards getting the transient electric field solution of
Maxwell’s equations, here we seek Sumudu transform based solution for transient magnetic field. Moreover, we feature connected
interesting shifting properties of the Sumudu transform, some found useful in solving this very particular problem. Furthermore,
we establish new analytico-numerical results, and exhibitgraphical profiles of Sumudued ramp, gaussian pulse, and finite sinusoidal
functions.
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1 Introduction

The mutual relation theory between electric and magnetic
fields are goverened by Maxwell’s equations. The coupled
set of simultaneous equations, considered in various
media, hones down the relation between electric field with
that of conductive current and electric displacement, and
the relation between magnetic field with that of magnetic
induction and magnetic polarization [1,2,3,4,5].
Applications and treatments of this system of equations
abound in the engineering and scientific literature. For
instance, the relation of Maxwell’s equations to the
transmission lines is treated in [6]. Asymptotic methods
variations, and analytical models of electromagnetic
problems are given in [7,8,9]. Generalized electric signal
treatment with Maxwell’s equations in [10,11,12].
Determination of the transversal electric and magnetic
wave propagations in lossy media, (TEMP) problem
solution of Maxwell’s equations, is established in [13,14],
using Laplace transform. The parallel processing of
Maxwells equations in different media and related works
in [15,16], and treatments of fractional Maxwell’s
equations are described in [18,20,30].

Natural and Sumudu transforms based treatments of
Maxwell’s equations seeking the determination of
transient electric and magnetic fields can be found in [17,

19,21,24,25,26,27,28]. Along the same lines, a Sumudu
treatment of unsteady fluid flow problems is done in [44].

Distinctive Sumudu treatments for trigonometric
functions were recently presented in [40], for Bessels
functions (see for instance, [42]) in [21]. Various Sumudu
ordinary and partial differential equations resolutions are
featured in [32,34,41]. In particular, many fractional
differential equations were Sumudu treated in [22,23,26,
29,33,35,36,37,38,39]. Description of various numerical
methods for the solutions of partial differential equations
along with MATLAB mathematical tool plots and
calculations were described in [43].

Like for the Laplace transform (see recent Laplace
transform restructure in [31]), the Sumudu transform,
simply connoted , ”Sumudu”, may be applied to
piece-wise continuous possibly bilateral functions of
exponential orderA = { f (t)|∃M,τ1,τ2 > 0, | f (t)| <

Me
|t|
τ j , if t ∈ (−1) j × [0,∞)}
For functions in the admissible setA, the sumudu is

defined by,

S[ f (t)] =
∫ ∞

0
e−t f (ut)dt

=
1
u

∫ ∞

0
e−

t
u f (t)dt ; u∈ (−τ1,τ2). (1)
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We bring the reader’s attention of the Gamma function
like exponential kernel and the variableu factoring the
argument of the function to be sumudued. As mentioned
in various works of the Authors, the Sumudu turns out to
be the s-mutiplied Laplace trasform where thes is
substituted by 1/u. Being linear the Sumudu preserves
scale, unit and dimension properties.

2 TEMP derivation and Sumudu treatment

Electromagnetism is best summarized through the
realtions of interactions among magnetic field, electric
displacement and electric field, magnetic induction, given
by the of quadruple system of Maxwell vector equations,

(i)∇×E(z, t) =− ∂
∂ t B(z, t)

(ii)∇×H(z, t) = J(z, t)+ ∂
∂ t D(z, t)

(iii) ∇.B(z, t) = 0
(iv)∇.D(z, t) = ρ(z, t)

Here E andH are respective electric and magnetic field
intensity vectors,B , J , D are respective magnetic
induction, current density and electric displacement
vectors,ρ , z , t are respective volume, charge density,
position vector and time. In a lossy medium, the magnetic
induction and electric displacement have the following
relations respectively,

(i)B(z, t) = µH(z, t)
(ii)D(z, t) = εE(z, t)

Therefore in the simple medium, with the aid of Ohm’s
law

(i)J(z, t) = σE(z, t)

Maxwell’s equations are given by,

(i)∇×E(z, t) =−µ ∂
∂ t H(z, t)

(ii)∇×H(z, t) = ε ∂
∂ t E(z, t)+σE(z, t)

which by settingH(z, t) = Hy(z, t) andE(z, t) = Ex(z, t),
yields the following PDEs system

∂E(z, t)
∂z

+ µ
∂H(z, t)

∂ t
= 0. (2)

∂H(z, t)
∂z

+ ε
∂E(z, t)

∂ t
+σE(z, t) = 0. (3)

where µ ,ε,σ being strictly positive constants, are the
respective permeability, permittivity and conductivity.
Partially differentiating equation (2) with respect tot,
equation (3) with respect toz, assumingE is exact, (ie
that ∂ 2E

∂ t∂z = ∂ 2E
∂z∂ t ) using equation (2) for ∂E(z,t)

∂z leads to
linear PDE, for the magnetic field.

∂ 2H(z, t)
∂z2 = µε

∂ 2H(z, t)
∂ t2 + µσ

∂H(z, t)
∂ t

. (4)

Sumudu transform application to equation (4) with
S[H(z, t)] = G(z,u) yields the non-homogeneous
differential equation,

d2G(z,u)
dz2 − γ2G(z,u) = Q(z,u). (5)

where γ2 = λ + ψ , so thatλ = µε
u2 and ψ = µσ

u and

Q(z,u) = −γ2h0(z) − λuh
′
0(z), here

h0(z) = limt→0 H(z, t) and h
′
0(z) = limt→0

∂H(z,t)
∂ t . The

homogeneous solution of equation (5) is obtained by

setting Q(z,u) = 0, so that,

(

h
′
0

h0

)

λu = −(λ + ψ),

therefore,

(

h
′
0

h0

)

= −(1+ ψ
λ u) and the particular solution

of equation (5) obtained by method of variation of
parameter are respectively,

Gh(z,u) = A(u)e−γz+B(u)eγz. (6)

Gp(z,u) =
eγz

2γ

∫

e−γzQ(z,u)dz+
e−γz

2γ

∫

eγzQ(z,u)dz. (7)

For the conductivityσ > 0 in the lossy medium, the
boundary condition is assumed as
limz→0 H(z, t) = h(t) ; t ≥ 0. Finiteness requirement and
boundedness satisfication leads toB(u) = 0 in equation
(6) as z → ∞, and from the boundary condition
A(u) = S[limz→0 H(z, t)] = S[h(t)] = G(u). So,

G(z,u) = G(u)e−γz. (8)

Expandinge−γz (eqn (4), page 416, [42]) with a= 1/
√µε,

b = σ/2ε and J0(.) is the zeroth order first kind Bessel
function.

e−γz

γ
= a

∫ ∞

z/a
e−btJ0

(

b
a

√

z2−a2t2

)

e−t/udt. (9)

Differentiating equation (9) with respect toz,

e−γz = e−
b
aze−

1
auz

− a
∫ ∞

z/a
e−bt ∂

∂z
J0

(

b
a

√

z2−a2t2

)

e−t/udt. (10)

Substitutingt/u= v in equation (10),

e−γz = e−
b
aze−

1
auz−au

×
∫ ∞

z/a

[

e−b(uv) ∂
∂z

J0

(

b
a

√

z2−a2(uv)2

)]

× e−vdv. (11)

The integral part of equation (11) can be written as,

e−γz = e−
b
aze−

1
auz−auS[Φ(z,v)]. (12)

whereΦ(z,v) = e−bv ∂
∂zJ0

(

b
a

√
z2−av2

)

for v ≥ z
a and 0

for 0< v< z
a. Hence,

G(z,u) = G(u)e−
b
aze−

1
auz−auG(u)S[Φ(z,v)]. (13)
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Fig. 1: Magnetic fieldH(ζ ,θ ) for the boundary conditionh(t) as exponential ramp function and its Sumudu transformG(ζ ,θ ) plotted
with distanceζ = 0,1,2 and 3 shown in respective left and right plot.

Fig. 2: Magnetic fieldH(ζ ,θ ) for the boundary conditionh(t) as gaussian pulse function and its Sumudu transformG(ζ ,θ ) plotted
with distanceζ = 0,1,2 and 3 shown in respective left and right plot.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


212 F. B. M. Belgacem et al.: Sumudu computation of the transientmagnetic...

Fig. 3: Magnetic fieldH(ζ ,θ ) for the boundary conditionh(t) as finite sinusoidal function and its Sumudu transformG(ζ ,θ ) plotted
with distanceζ = 0,1,2 and 3 shown in respective left and right plot.

The inverse Sumudu transform of equation (13)
(application of second shifting and convolution theorem
equations (50) and (51) in [17]) yields the magnetic field
solution.

H(z, t) = e−
b
azh(t − z/a)−a

×
∫ ∞

z/a
h(t− τ)e−bτ

× ∂
∂z

J0

(

b
a

√

z2− (aτ)2

)

dτ. (14)

Introducing the variablet − τ = β in (14),

H(z, t) = e−
b
azh(t − z/a)−ae−bt

×
∫ t−z/a

0
h(β )ebβ

× ∂
∂z

J0

(

b
a

√

z2−a2(t −β )2

)

dβ . (15)

Considering the assigned and related permeability,
permittivity and conductivity toa andb earlier and further
substituting for the normalised timeθ and spaceζ
variables,θ = bt = σt

2ε ; ζ = bz
a = σz

2

√

µ
ε ; η = bβ = σβ

2ε ,

so that (t − z/a) = 2ε
σ (θ − ζ ) ,

(

z2−a2(t −β )2
)

=
4ε

µσ2

(

ζ 2− (θ −η)2
)

, dβ = 2ε
σ dη . In consideration of

Bessel functions properties, The normalised magnetic

field in the lossy but conducting media(σ > 0) is,

H(ζ ,θ ) = e−ζ h

(

2ε
σ
(θ − ζ )

)

+ ζe−θ

×
∫ θ−ζ

0
eη h

(

2ε
σ

η
)

×
I1
(

√

(θ −η)2− ζ 2
)

(

√

(θ −η)2− ζ 2
) dη . (16)

For the normalized time variableθ =buand space variable
ζ = bz/a the Sumudu transform of magnetic field is given
by,

G(ζ ,θ ) = S[H(ζ ,θ )] = e−ζ G

(

2ε
σ

θ
)

e−ζ/θ + ζe−θ

×
∫ θ−ζ

0
eηG

(

2ε
σ

θ
)

e−(θ−η)/θ

×
I1
(

√

(θ −η)2− ζ 2
)

(

√

(θ −η)2− ζ 2
) dη . (17)

3 Boundary conditions and numerical results

For the exponential ramp functionh(t) = 1− e−1/τ in
equation (16) with the ratio [17] 2ε/σ = τ, H(ζ ,θ ) is
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Table 1: Numerical calculations of magnetic fieldH(ζ ,θ ) due toh(t) as exponential ramp function with the ratio [17] 2ε/σ = τ for
the different distanceζ and timeθ .

H(ζ ,θ ) θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

ζ = 0 0 0.99995 1 1 1

ζ = 1 0.75453 0.82413 0.85571 0.87476 0.88780

ζ = 2 0.53103 0.65638 0.71600 0.75252 0.77778

ζ = 3 0.34354 0.50387 0.58499 0.63608 0.67196

ζ = 4 0.20241 0.37175 0.46608 0.52788 0.57224

ζ = 5 0.10656 0.26284 0.36166 0.42976 0.48004

ζ = 6 0.048812 0.17751 0.27294 0.34296 0.39648

Table 2: Numerical calculations of Sumudu transform of magnetic field G(ζ ,θ ) due toG(u) as Sumudu transform of exponential ramp
function with the ratio [17] 2ε/σ = τ for the different distanceζ and timeθ .

G(ζ ,θ ) θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

ζ = 0 0.90909 0.95238 0.96774 0.97561 0.98039

ζ = 1 0.55564 0.67680 0.73362 0.76820 0.79210

ζ = 2 0.32852 0.47411 0.55117 0.60104 0.63678

ζ = 3 0.18502 0.32595 0.40948 0.46650 0.50881

ζ = 4 0.097442 0.21889 0.30006 0.35869 0.40366

ζ = 5 0.046886 0.14288 0.21638 0.27279 0.31763

ζ = 6 0.019986 0.090159 0.15317 0.20489 0.24763

Table 3: Numerical calculations of magnetic fieldH(ζ ,θ ) due toh(t) as gaussian pulse function with the ratio [17] 2ε/σ = ∆τ and
t0 = ∆τ where∆τ = 0.354 ns [17] for the different distanceζ and timeθ .

H(ζ ,θ ) θ = 1 θ = 2 θ = 3 θ = 4 θ = 5

ζ = 0 1 0.0000034886 1.4783×10−22 7.6084×10−50 4.7946×10−88

ζ = 1 0.0000012834 0.40902 0.048668 0.029978 0.020639

ζ = 2 −3.2092×10−8 4.7215×10−7 0.16673 0.044262 0.031858

ζ = 3 −2.0463×10−8 −1.3208×10−8 1.7369×10−7 0.067757 0.029866

ζ = 4 6.2332×10−10 −3.2728×10−9 −4.6344×10−9 6.3897×10−8 0.027460

ζ = 5 1.5204×10−8 4.7466×10−9 4.4811×10−10 −1.4303×10−9 2.3506×10−8

ζ = 6 1.4138×10−8 6.1290×10−9 2.5462×10−9 6.8364×10−10 −3.7871×10−10

shown in Fig.1 the first plot and its Sumudu transform
G(u) = u/τ

1+(u/τ) in equation (17) with the same ratio

G(ζ ,θ ) is shown in Fig.1 the second plot. For both the
plots the normalized distance considered asζ = 0,1,2
and 3 and the timeθ ∈ [0,50]. The numerical calculations
of magnetic field H(ζ ,θ ) for the exponential ramp
function is given in Table1. From Table1, for the fixed
distanceζ , when time θ is increasing, magnetic field

H(ζ ,θ ) is increasing, while for the fixed timeθ , when
distance ζ is increasing magnetic fieldH(ζ ,θ ) is
decreasing. This holds true for the Sumudu transform of
magnetic fieldG(ζ ,θ ) also, whose numerical calculations
are shown in Table2 thus our result coincides with the
result in (first paragraph, page 287, [17]). Therefore when
distanceζ while increasing for the fixed timeθ magnetic
field H(ζ ,θ ) and its Sumudu transformG(ζ ,θ ) slowly
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Table 4: Numerical calculations of Sumudu transform of magnetic field G(ζ ,θ ) due toG(u) as Sumudu transform of gaussian pulse
function with the ratio [17] 2ε/σ = ∆τ andt0 = ∆τ where∆τ = 0.354 ns [17] for the different distanceζ and timeθ .

G(ζ ,θ ) θ = 1 θ = 2 θ = 3 θ = 4 θ = 5

ζ = 0 0.18764 0.15239 0.11968 0.097469 0.081940

ζ = 1 0.025395 0.043960 0.045454 0.043029 0.039885

ζ = 2 -0.0048998 0.0075871 0.014073 0.016809 0.017814

ζ = 3 -0.0065423 -0.0021483 0.0021922 0.0050194 0.0067787

ζ = 4 -0.00099165 -0.0018952 -0.00076673 0.00065675 0.001884

ζ = 5 0.0037114 0.00063773 -0.00035708 -0.00025265 0.00020310

ζ = 6 0.0040575 0.0017812 0.00043775 -0.000032921 -0.000079335

Table 5: Numerical calculations of magnetic fieldH(ζ ,θ ) due toh(t) as finite sinusoidal function with the ratio [14] 2ε/σ = τ/25 for
the different distanceζ and timeθ .

H(ζ ,θ ) θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

ζ = 0 0.58779 -0.95106 0.95106 -0.58779 0

ζ = 1 0.60835 -0.59414 0.42201 -0.053014 -0.31339

ζ = 2 0.45068 -0.25561 0.090338 0.17729 -0.33318

ζ = 3 0.27304 -0.029227 -0.058575 0.21752 -0.23138

ζ = 4 0.13997 0.082407 -0.088605 0.17172 -0.11350

ζ = 5 0.060783 0.11322 -0.062743 0.10716 -0.026044

ζ = 6 0.021879 0.10107 -0.023689 0.055585 0.022194

Table 6: Numerical calculations of Sumudu transform of magnetic field G(ζ ,θ ) due toG(u) as Sumudu transform of finite sinusoidal
function with the ratio [14] 2ε/σ = τ/25 for the different distanceζ and timeθ .

G(ζ ,θ ) θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

ζ = 0 0.34118 0.17565 0.10572 0.070274 0.049988

ζ = 1 0.20853 0.12483 0.080143 0.055335 0.040386

ζ = 2 0.12329 0.087443 0.060213 0.043295 0.032466

ζ = 3 0.069440 0.060120 0.044729 0.033603 0.025941

ζ = 4 0.036570 0.040373 0.032780 0.025838 0.020580

ζ = 5 0.017596 0.026351 0.023639 0.019650 0.016195

ζ = 6 0.0075009 0.016630 0.016734 0.014759 0.012625

tends to zero. Now for the fixed distanceζ when the time
θ is increasing, magnetic fieldH(ζ ,θ ) and its Sumudu
transformG(ζ ,θ ) slowly tend to 1 which can be seen in
both the plots of Fig.1 and the entries of Tables1 and 2.

Secondly, the gaussian pulse function
h(t) = exp(−a2(t − t0)2) in equation (16) with the ratio
[17] 2ε/σ = ∆T, a = 2

√
π/∆T, ∆T = 0.354 ns with

relative permittivityεr = 80, permittivityε = 705×10−12

F/m and conductivityσ = 4 S/m [17], H(ζ ,θ ) is shown
in Fig. 2 the first plot and its Sumudu transform

G(u) =
√

π
2auerfc

(

1
2au−at0

)

exp
(

(

1
2au

)2− t0
u

)

in equation

(17) with the same ratioG(ζ ,θ ) is shown in Fig.2 the
second plot. For both plots the normalized distance
considered asζ = 0,1,2 and 3 and the timeθ ∈ [0,5].
The numerical calculations of magnetic fieldH(ζ ,θ ) for
the gaussian pulse function is given in Table3.
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Finally the boundary condition finite sinusoidal
function defined byh(t) = sin(2πt/τ) for 0 ≤ t ≤ τ and
0 for t > τ in equation (16) with the ratio [14]
2ε/σ = τ/25,H(ζ ,θ ) is shown in Fig.3 the first plot and

its Sumudu transformG(u) =
2uτπ(exp( 2τ

u )−1)exp(− 2τ
u )

τ2+4π2u2 in
equation (17) with same ratioG(ζ ,θ ) is shown in Fig.3
the second plot. For both plots the normalized distance
considered asζ = 0,1,2 and 3 and the timeθ ∈ [0,50].
The corresponding numerical values are given in Tables5
and 6.

4 Conclusion

In this work., in Sumudu treating the TEMP problem with
aim to ascertain the related magnetic field behavior, we
obtained analytical expressions, numerical tables and
graphical profiles for both the magnetic field and its
Sumudu under various initial conditions functions,
namely exponential ramp, gaussian pulse, and finite
sinusoidal initiations. We observe that both the magnetic
field, H(ζ ,θ ), and its Sumudu transform,G(ζ ,θ )
emanate at the value for,θ = 0,.which confirms the intial
value theorem for the Sumudu transform. In the case of
the exponential ramp function, both the magnetic field
H(ζ ,θ ) and its SumuduG(ζ ,θ ) increase with increasing
θ ,and decrease with increasing,ζ . This same behavior is
also observed with gaussian pulse function initiation.
However, in this case also the moving peaks are
decreasing with increasingζ , andθ . In fact, we can
extrapolate that the peaks tend to decay fast and are
expected to vanish as both distance and time tend to
infinity, which corroborates the final value theorem for
the Sumudu. In the case of finite sinusoidal function,
periodicity is observed in the magnetic field,H(ζ ,θ ) and
the time location of the peak in its Sumudu transform
G(ζ ,θ ) is maintained for various values of,ζ , albeit
diminishing in height with increasing values of,ζ .
Unlike for the Laplace transform (and even other
transforms like Fourier or Mellin see for instance [45,46,
47]), we were able to mirror the magnetic field results and
profiles with their Sumudu counterparts, simply because
the Sumudu transform does preserve scale and units. We
note however that the Sumudu does not preserve
periodicity as is observed from Fig.3 and as is expected
from previous works by the authors et al. Moreover this is
clearly expected due to domain reduction caused by
convergence requirements prescribed on the transformed
function by the constantsτ1 and τ2. We feel that there
may be much more to be deduced and deducted from the
collective works and treatments so far by the authors et al.
and others regarding the interactions of the electric and
magnetic field and the TEMP problem as a physical
application. Furthermore, we particularly feel that the
Sumudu has a lot more to give both on the theoretical
basis and the applied ones, and that there may be more to
be observed on both ends in this very work and in its

relation to previous ones. Hence, while we feel specially
lucky that we extended the Sumudu theory and
applications thus far, we remain completely open for
readers feedbacks and comments, which regardless of
sways, we would always and continuously appreciate.
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