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Abstract: In this paper, we formulate an optimal control problem for anSIR epidemic model with saturated incidence and saturated
treatment. Two main efforts, namely treatment and vaccination are considered to limit the disease transmission. The impacts of
vaccination and treatment on the disease transmission are discussed through the basic reproduction number. Then to achieve control
of the disease, a control problem is formulated and the existence of the control is shown. Two control functions are used,one for
vaccinating the susceptible and the other for treatment efforts for infectious individuals. Appropriate optimal control methods are used
to characterize the optimal levels of the two controls. The effectiveness of the proposed control solution is shown by comparing the
behavior of controlled and uncontrolled systems. Numerical results show the impacts of two controls in decreasing bothsusceptible
and infectious members of the population.
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1 Introduction

Recently, mathematical models describing the dynamics
of infectious diseases have played an important role in the
disease control in epidemiology. Most of the models are
interesting in the formulation of the mode of disease
transmission [1,2]. Several authors have suggested many
nonlinear incidence rates to model the disease
transmission process [3,4]. With these rates, many
interesting and problematic transmission dynamics of
disease such as periodic orbits, Hopf bifurcations and
multiple equilibria have been shown, which state a
comprehensive qualitative illustration of the disease
dynamics and give better implications for the control or
prediction of diseases [5].

The epidemic spread causes deaths of millions of
people as well as expenditure of vast amount of money in
health care and medical management. It is, therefore,
essential that adequate attention must be paid to stop the
spread of such diseases. Several studies in the literature
have been carried out to investigate the role of treatment
and vaccination on the spread of diseases (see [6,7] and
the references therein). A discrete-time epidemic model
with vaccination for measles is derived in Linda [8]. The
effect of vaccination on the spread of periodic diseases,

using discrete-time model, was studied by Mickens [9].
The effectiveness of constant and pulse vaccination
policies usingSIR model were compared in [10]. Their
theoretical results showed that under constant
vaccination, the dynamic behavior of the disease model is
similar to with no vaccination.

A number of studies have used the applications of
optimal control theory in epidemiological models [11,12,
13]. Some of these studies focused on the effect of
vaccination on the dynamics of the disease [14]. Gumel
and Moghadas [15] investigated a disease transmission
model by considering the impact of a protective vaccine
and found the optimal vaccine coverage threshold
required for disease control and elimination. Kar and
Batabyal [16] used optimal control to study a nonlinear
SIRepidemic model with a vaccination program. Various
modeling studies have been made to study the role of
optimal control usingSIR epidemic model ( [17,19,20,
21]. In [18], Gul et al. considered anSIRepidemic model
using vaccination as control. Makinde and Okosun [22]
applied optimal control to study the impact of
chemo-therapy on malaria disease with infective
immigrants, while Hattaf et al. [23] used optimal control
strategies associated with preventing exogenous
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reinfection based on a exogenous reinfection tuberculosis
model. The authors in Lashari et al. [24], investigated the
fundamental role of three type of controls, personal
protection, treatment, and mosquito reduction strategies
in controlling malaria. In [25], a mathematical model of a
vector-borne disease that incorporates both direct and
indirect transmission was formulated. Analysis of the
model revealed that the model exhibits the phenomenon
of backward bifurcation with standard incidence. Then
the model was further extended taking into account the
density-dependent demographic parameters and control
functions to asses the impact of some control measures by
using optimal control techniques. Our aim is to analyze
the effects of vaccinating the susceptible individuals and
giving treatment to infectious individuals in a generalSIR
epidemic model. These analysis reveal the possibilities to
develop strategies that manipulate the level of vaccination
and treatment efforts. It is important to mention here that
our work is different from some of the other related works
cited in this paper because the model uses nonlinear
incidence with two control variables (vaccination and
treatment). Note that in this paper, we shall deal with the
optimal control of the disease and we refer the interested
reader to [26] for the mathematical analysis of the model.

The purpose of this paper is to consider a generalSIR
epidemic model [26] to incorporate optimal control
strategies in the form of treatment and vaccination to
decrease the number of susceptible and infectious
individuals with minimum investment in disease control.
The main feature of the present paper is not to consider a
special disease but to present a method of how to treat this
class of optimization problems. The problem is
formulated as an optimal control problem with two
control variables (that represent vaccination and treatment
strategies). To do this, we use a time dependent
percentage of susceptible and infected populations as
control in the SIR model. Thus, the optimal control
(vaccination and treatment) strategy is to minimize the
susceptible and infected individuals as well as the cost of
implementing the two controls. The model will then be
used to determine cost-effective strategies for combatting
the spread of an infectious disease in a given population.
We illustrate how the optimal control theory and the
percentage of the vaccinationu1 and treatmentu2 can be
applied to minimize the susceptible and infected
individuals. Then, we derive the optimality system for the
SIRmodel with the percentage of vaccinated and treated
individuals.

The organization of the paper is as follows. The
mathematical model with controls is developed in Section
2. Analysis of the model with constant controls is
presented in Section 3. The necessary conditions for an
optimal control pair and the corresponding states are
derived using Pontryagin’s Maximum Principle in Section
4. The numerical simulations of the optimal control
model are given in Section 5. Lastly, the conclusions are
given in Section 6.

2 The epidemic model with controls

We will study an SIR epidemic model with saturated
incidence rate and saturated treatment function. The
saturated incidence rate can interpret the psychological
effect or the inhibition effect from the behavioral change
of the susceptible individuals when their number
increases or from the crowding effect of the infective
individuals [27]. The inclusion of saturated treatment
function describe the effect of the infected individuals
being delayed for treatment [26]. Furthermore, it is
assumed that the cure rate of infected increases at a rate
proportional tou2(t), whereu2 is treatment of infective
and r0 > 0 is a rate constant. We will divide the total
population at time t, denoted by N(t) into three
subgroups: susceptible(S), infective (I) and recovered
(R), individuals. The susceptible individuals become
infected at a saturated incidence rateβ SI

(1+kI) , whereβ is
transmission rate andk is nonnegative that measure the
inhibitory effect. By treatment, the infected individuals
recover at a saturated treatment functiong(I) = (r+r0u2)I

(1+α I) ,
where r is cure rate,r0 is the rate constant andα is
positive that quantify the extent of the effect of the
infected being delayed for treatment. Further,11+α I
defines the opposite effect of the infected being delayed
for treatment and 1

1+kI describes the psychological effect
from the behavioral change of the susceptible individuals
when their number increases or from the crowding effect
of the infective individuals. Parameter definitions and
assumptions lead to the following system of ordinary
differential equations:

dS
dt

= Λ −
βSI

1+ kI
− µS−u1S,

dI
dt

=
βSI

1+ kI
−

(r + r0u2)I
1+αI

− (γ + δ + µ)I ,

dR
dt

= γI +
(r + r0u2)I

1+αI
− µR+u1S,

(1)

with initial conditions given att = 0. Λ , µ , γ, δ are the
recruitment rate of the population, the natural mortality
rate of the population, the natural recovery rate of the
infective individuals and the disease induced death rate,
respectively. The control variablesu1 is vaccination
coverage of susceptible. The objective functionalF

formulates the optimization problem of interest,
particularly, that of determining the efficient control
strategies. The objective is to minimize the number of
susceptible and infected individuals at a minimal cost
over[0,T] (a finite time interval).

The functionalF is given by

F (u1,u2) =

∫ T

0

(

A1Sh+A2Ih+
1
2
(B1u2

1+B2u2
2)
)

dt. (2)
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We adopt to model the control efforts by linear
combination ofu2

i (t) (i = 1,2). The constantsAi andBi
(i = 1,2) are weights constants which help to balance
each term in the integrand so that none of the terms
dominates. The termsB1u2

1 andB2u2
2 represent the costs

associated with vaccination of susceptible and treatment
of infected, respectively. The cost associated with the first
control could come from the cost of antimicrobial drugs.
Whereas the cost associated with the second control could
arise from medical treatment of the infected people, cost
associated with treating patients with other health
complications or cost of drug. The problem is to find
optimal functions(u∗1(t),u

∗
2(t)) such that

F (u∗1,u
∗
2) = min{F (u1,u2), (u1,u2) ∈U}

where the control set is defined as

U = {(u1,u2)|ui(t) is Lebesgue measurable

on [0,1], 0≤ u1(t),u2(t)≤ 1, t ∈ [0,T]},
(3)

subject to the system (1) and suitable initial conditions
[17]. We use Pontryagin’s Maximum Principle to solve
this optimal control problem. Before deriving the
optimality system and proving the existence of an optimal
control for system (1), first, we analyze the model by
considering constant controls.

3 Analysis of the model with constant
controls

In this section, we determine the steady state solutions and
their stability, the bifurcation behavior as well as the basic
reproductive number of system (1) by assuming that the
control parameters are constant. The first, two equations
in system (1) are independent of the third equation, and
therefore third equation can be excluded without loss of
generality. Thus, we can rewrite system (1) as

dS
dt

= Λ −
βSI

1+ kI
− µS−u1S,

dI
dt

=
βSI

1+ kI
−

(r + r0u2)I
1+αI

− (γ + δ + µ)I .

(4)

The disease free equilibrium of system (4) is given byE0=
( Λ

µ+u1
,0). The basic reproduction number, denoted byR0,

associated to the system (4), is given by

R0 =
βΛ

(r + γ0u2+ γ + δ + µ)(µ +u1)
.

The thresholdR0 is called the basic reproduction number,
which is defined as the average number of secondary
infections produced by an infected individual in a

completely susceptible population. The vaccination and
treatment in our system can have a great effect onR0. To
see the effect ofu1 and u2 on R0, straightforward
computation gives

∂R0

∂u1
=

−βΛ
(r + r0u2+ γ + δ + µ)(µ +u1)2 ,

∂R0

∂u2
=

−r0βΛ
(r + r0u2+ γ + δ + µ)2(µ +u1)

,

thus ∂R0
∂u1

< 0, and∂R0
∂u2

< 0.
From this analysis, we see that a higher vaccinationu1

of susceptible and higher treatment to infectedu2 both
decreasesR0. This aspect can be a very useful control
strategy and will be further explored in Section 5 through
numerical simulation.

The variational matrixM0 corresponding toE0 is given
by,

(

−µ −u1
−βΛ
µ+u1

0 (R0−1)(r + r0u2+ γ + δ + µ)

)

.

Therefore, the disease free equilibriumE0 is locally
asymptotically stable ifR0 < 1. The endemic equilibrium
is given byE1 = (S∗, I∗), where

S∗ =
Λ(1+ kI∗)

β I∗+(µ +u1)(1+ kI∗)
,

andI∗ satisfy the following quadratic equation

AI2+BI+C= 0, (5)

where

A = α(γ + δ + µ)(β + k(µ +u1)),
B = α(γ + δ + µ)(µ +u1)

+(r + r0u2+ γ + δ + µ)(β + k(µ +u1))−αβΛ ,
C = (r + r0u2+ γ + δ + µ)(µ +u1)(1−R0).

(6)
Note that, the coefficientA in (5) is always positive andC
is positive if R0 < 1, C is negative ifR0 > 1, andC = 0
if R0 = 1. Thus, we have the following result (see [26] for
more detail).

Theorem 3.1. System (2) has a backward bifurcation at
R0 = 1, if and only if the coefficientB in (5) is less than 0.

The existence of backward bifurcation atR0 = 1 (C=
0), so thatβΛ = (r + γ0u2+ γ + δ + µ)(µ +u1), can also
be expressed explicitly in terms ofα. The conditionb< 0,
with βΛ = (r+γ0u2+γ +δ +µ)(µ +u1), is equivalent to

α >
βΛ(β + k(µ +u1))

(µ +u1)2(r + r0u2)
. (7)

So, backward bifurcation occurs atR0 = 1 if and only ifα
satisfy the relation (7). From this, it can be easily seen
that the parameterα, which lead to the backward
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bifurcation, decrease as the control variablesu1 and u2
increases. The occurrence of backward bifurcation
suggests that disease eradication is achievable only when
the effect of the infected being delayed for the treatment
can not exceed some level. Moreover, for the disease not
to become endemic again, treatment and vaccination
controls must be maintained at this level for all time.

Theorem 3.2. If R0 > 1, then the endemic equilibrium is
locally asymptotically stable if
α < min{ βΛ(β+k(µ+u1))

(µ+u1)2(r+r0u2)
, β+k(µ+u1)+k(δ+γ+µ+r+r0u2)

r+r0u2
}.

Proof. The proof is worked out for a similar case in ([26],
Theorem 4.2).

4 Characterization of the optimal control

In this section, first we prove the existence of an optimal
control for system (1).

Theorem 4.1. There exist optimal controls(u∗1(t),u
∗
2(t))

and corresponding solutions,S∗, I∗ andR∗ that minimizes
F (u1,u2) overU .

Proof. The integrand of the objective functionalF given
by (2) is a convex function of(u1,u2) and the state system
(1) satisfies the Lipshitz property with respect to the state
variables since state solutions are bounded. The existence
of optimal controls follows [28].

In order to find an optimal solution , we need to find
the Lagrangian and Hamiltonian for the problem(1)−(2).
The Lagrangian of the control problem is given by

L = A1S+A2I +1/2(B1u
2
1+B2u2

2).

We need the minimal value of the Lagrangian. For this,
the HamiltonianH for the control problem, whereλi , i =
1,2,3 are the adjoint variables, is given by

H = L(S, I ,u1,u2)+λ1

[

Λ −
βSI

1+ kI
− µS−u1S

]

+ λ2

[

β SI
1+kI −

(r+r0u2)I
1+α I − (γ + δ + µ)I

]

+ λ3

[

γI +
(r + r0u2)I

1+αI
− µhR+u1S

]

.

(8)

We now derive the necessary conditions, using
Pontryagin’s maximum principle [29], that optimal
control functions and corresponding states must satisfy.

Theorem 4.2. Given an optimal control pair(u∗1,u
∗
2) and a

solution(S∗, I∗,R∗) of the corresponding state system (1)-
(2), there exists adjoint variablesλi , i = 1,2,3 satisfying

dλ1(t)
dt

=
β (λ1−λ2)I

1+ kI
+(λ1−λ3)u1+ µλ1−A1,

dλ2(t)
dt

=
β (λ1−λ2)S
(1+αI)2 +

(r + r0u2)(λ2−λ3)

(1+αI)2

+(γ + δ + µ)λ2− γλ3−A2,

dλ3(t)
dt

= µλ3,

(9)

with transversality conditions

λi(T) = 0, i = 1,2,3. (10)

Furthermore, the control functionsu∗1 andu∗2 are given by

u∗1 = max{min{
(λ1−λ3)S∗

B1
,1},0}, (11)

u∗2 = max{min{
(λ2−λ3)r0I∗

B2(1+αI∗)
,1},0}. (12)

Proof. In order to determine the transversality conditions
and the adjoint equations, we use the Hamiltonian (8).
The adjoint system results from Pontryagin’s Maximum
Principle [29].

dλ1(t)
dt

=−
∂H
∂S

,
dλ2(t)

dt
=−

∂H
∂ I

,
dλ3(t)

dt
=−

∂H
∂R

,

with λi(T) = 0, i = 1,2,3.
In order to obtain the characterization of the control

given by (11)-(12), solving the equations,

∂H
∂u1

= 0,
∂H
∂u2

= 0, (13)

on the interior of the control set and using the property of
the control spaceU, we can obtain the desired
characterization (11) and (12).
�

Here we call formulas (11) and (12) for (u∗1,u
∗
2) the

characterization of the optimal control. The optimal
control and the state are found by solving the optimality
system, which consists of the state system (1), the adjoint
system (9), initial conditions at t = 0, boundary
conditions (10), and the characterization of the optimal
control (11)-(12). To solve the optimality system we use
the transversality and initial conditions together with the
characterization of the optimal control(u∗1,u

∗
2) given by

(11)-(12). In addition, the second derivative of the
Lagrangian with respect tou1 and u2, respectively, is
positive, which shows that the optimal problem is
minimum at controlsu∗1 and u∗2. Therefore, taking the
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state system together with the adjoint system, the optimal
control, and the transversality conditions, we have the
following optimality system:

dS
dt

= Λ −
βS(t)I(t)

1+ kI
− µ(t)S

−max{min{ (λ1−λ3)S
B1

,1},0}S,

dI
dt

=
βS(t)I(t)

1+ kI

−(r + r0max{min{ (λ2−λ3)r0I
B2(1+α I) ,1},0})

I(t)
1+α I

−(γ + δ + µ)I(t),

dR
dt

= γI +(r + r0max{min{
(λ2−λ3)r0I
B2(1+αI)

,1},0})
I(t)

1+αI

−µhRh(t)+max{min{
(λ1−λ3)S

B1
,1},0}S,

(14)
with H∗ at (t,S∗, I∗,R∗,u∗1,u

∗
2,λ1,λ2,λ3):

H∗ = A1S∗+A2I∗

+ 1
2

(

B1(max{min{
(λ1−λ3)S∗

B1
,1},0})2

+B2(max{min{
(λ2−λ3)r0I∗

B2(1+αI∗)
,1},0})2

+λ1
dS∗
dt +λ2

dI∗
dt +λ3

dR∗
dt ,

u∗1 = max{min{
(λ1−λ3)S∗

B1
,1},0},

u∗2 = max{min{
(λ2−λ3)r0I∗

B2(1+αI)
,1},0},

λi(T) = 0.

(15)

The problem described above is a two point boundary
value problem, with specified initial conditions for the
state system and terminal boundary conditions for adjoint
equations. To find out the optimal control and state, we
will numerically solve the above systems (14) and (15).

5 Numerical results and discussion

In this section, the optimality system is solved using
Runge-Kutta fourth order scheme. The optimal strategy is
achieved by solving the adjoint and state systems and the
transversality conditions. We note that this is a two-point
boundary-value problem, with separated boundary
conditions at timest = 0 andt = T. It is our aim to solve
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Fig. 1: The plot represents population of susceptible individuals
with and without control.
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Fig. 2: The plot represents population of infective individuals
with and without control.
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Fig. 3: The plot represents population of recovered individuals
with and without control.
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Fig. 4: Optimal controlu1 given by (11).

this problem for the valueT = 50. This value was chosen
to represent the time (in days) at which vaccination and
treatment is stopped. In our numerical simulation, first we
start to solve the state equations (1) using Runge-Kutta
fourth order forward in time with a guess for the controls
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Fig. 5: Optimal controlu2 given by (12).

over the simulated time. Then, using the current iteration
of the state equations, the adjoint equations in the system
(9) are solved by a backward method with the
transversality conditions (10). We update the controls by
using a convex combination of the controls in the
previous iteration and the value from the characterizations
of the system (11)-(12). Repeat this process and stop
iterations if the values of unknowns at the previous
iteration are very close to the ones at the present iteration.
We may refer the reader to see [30,31] such iterative
algorithms for more detail.

The susceptible, infected, and recovered individuals
with and without control are plotted using the parameters
values as:Λ = 100,β = 0.02, µ = 0.000039,α = 0.01,
γ = 0.08,δ = 0.02,k= 0.5, r = 0.2, r0 = 0.2. The values
for weight constants areA1 = 0.09, A2 = 0.02, B1 = 10
and B2 = 10. When viewing the graphs, remember that
each of the individuals without control is marked by
un-dashed lines and individuals with control are marked
by dashed lines. The graphs from simulating the model,
given in Fig. 1-Fig. 3, help to compare the population of
susceptible (S), the infected (I) and the recovered
individuals(R) both with controls and without controls.

In Fig. 1, we have plotted susceptible individual with
and without controls. We see that the population of the
susceptible individuals sharply decreases in first two or
three days after that it begins to increase very slowly and
goes to its stable state.

In Fig. 2, we see that if there are no controls infected
individuals without controls continually increases, but if
there are controls the population of infected individuals
begins to decrease from the very beginning day of
vaccination and treatment and gradually decreases as time
goes on.

In Fig. 3, the population of recovered individuals
increases rapidly with controls. As expected, the
population of the susceptible group decreases with time
while that of the recovered group gradually increases for
the inclusion of vaccinated susceptible group and treated
infectious group.

Fig. 4 and Fig. 5 represent the optimal controlsu∗1 and
u∗2. The control vanishes in day 50 and there remains very
small number of susceptible and infected individuals.

6 Conclusion

In this paper, we analyzed an optimal control strategy in
the SIR epidemic model with saturated incidence and
saturated treatment. In case of constant control, it is found
that the model exhibits backward bifurcation. The
epidemiological implication of backward bifurcation is
that for effective eradication and control of the disease,R0
should be less than a critical values less than one.
Moreover, achieving this may be too costly, because it
means that for constant controls, one needs to keep
vaccinating and treating for infinite time. Therefore, we
considered time dependent controls as a way out, to
ensure the eradication of the disease in a finite time. In
this light, we set up an optimal control problem in the
form of treatment and vaccination to minimize the
number of infective and susceptible populations. A
comparison between optimal control and without control
was also presented. It is easy to see that the optimal
control is much more effective for reducing the number of
infected individuals. The number of susceptible, infected
and recovered individuals with the optimal control and
without control are shown in figures to illustrate the
overall picture of the epidemic. Moreover, it is observed
that a higher vaccination and treatment rate decreases the
basic reproduction number. So, vaccination and treatment
has positive impact in controlling the transmission of the
disease.
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