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Abstract: In this paper, we formulate an optimal control problem forSiR epidemic model with saturated incidence and saturated
treatment. Two main efforts, namely treatment and vacidnadre considered to limit the disease transmission. Theaats of
vaccination and treatment on the disease transmissionismesded through the basic reproduction number. Then tieachontrol

of the disease, a control problem is formulated and the entist of the control is shown. Two control functions are used, for
vaccinating the susceptible and the other for treatmeattsffor infectious individuals. Appropriate optimal cositmethods are used

to characterize the optimal levels of the two controls. Tfiectiveness of the proposed control solution is shown hygaring the
behavior of controlled and uncontrolled systems. Numeériesults show the impacts of two controls in decreasing Isoteptible
and infectious members of the population.
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1 Introduction using discrete-time model, was studied by Mickefls [

) . . The effectiveness of constant and pulse vaccination
Recently, mathematical models describing the dynamics,gjicies usingSIR model were compared inLf]. Their
of infectious diseases have played an importantrole in thgnheooretical  results showed that under constant

disease control in epidemiology. Most of the models are,5¢cination, the dynamic behavior of the disease model is
interesting in the formulation of the mode of disease gimilar to with no vaccination.
transmission 1,2]. Several authors have suggested many
nonlinear incidence rates to model the disease A number of studies have used the applications of
transmission process3,[4]. With these rates, many optimal control theory in epidemiological modelsl]12,
interesting and problematic transmission dynamics ofl13]. Some of these studies focused on the effect of
disease such as periodic orbits, Hopf bifurcations andvaccination on the dynamics of the disea%d][ Gumel
multiple equilibria have been shown, which state aand Moghadas1f] investigated a disease transmission
comprehensive qualitative illustration of the diseasemodel by considering the impact of a protective vaccine
dynamics and give better implications for the control orand found the optimal vaccine coverage threshold
prediction of disease$]. required for disease control and elimination. Kar and
The epidemic spread causes deaths of millions ofBatabyal L6 used optimal control to study a nonlinear
people as well as expenditure of vast amount of money ifSIRepidemic model with a vaccination program. Various
health care and medical management. It is, thereforemodeling studies have been made to study the role of
essential that adequate attention must be paid to stop theptimal control usingSIR epidemic model (17,1920,
spread of such diseases. Several studies in the literaturl]. In [18], Gul et al. considered a8IRepidemic model
have been carried out to investigate the role of treatmentising vaccination as control. Makinde and Okosgg] [
and vaccination on the spread of diseases (68 fnd  applied optimal control to study the impact of
the references therein). A discrete-time epidemic modethemo-therapy on malaria disease with infective
with vaccination for measles is derived in Lind8.[The  immigrants, while Hattaf et al.23] used optimal control
effect of vaccination on the spread of periodic diseasesstrategies associated with preventing exogenous
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reinfection based on a exogenous reinfection tuberculosi® The epidemic model with controls
model. The authors in Lashari et a24], investigated the
fundamental role of three type of controls, personalWe will study an SIR epidemic model with saturated
protection, treatment, and mosquito reduction strategiesncidence rate and saturated treatment function. The
in controlling malaria. In25], a mathematical model of a saturated incidence rate can interpret the psychological
vector-borne disease that incorporates both direct aneffect or the inhibition effect from the behavioral change
indirect transmission was formulated. Analysis of the of the susceptible individuals when their number
model revealed that the model exhibits the phenomenoincreases or from the crowding effect of the infective
of backward bifurcation with standard incidence. Thenindividuals 7). The inclusion of saturated treatment
the model was further extended taking into account thefunction describe the effect of the infected individuals
density-dependent demographic parameters and contrdeing delayed for treatment2§]. Furthermore, it is
functions to asses the impact of some control measures byssumed that the cure rate of infected increases at a rate
using optimal control techniques. Our aim is to analyzeproportional touy(t), whereu, is treatment of infective
the effects of vaccinating the susceptible individuals andandrg > 0 is a rate constant. We will divide the total
giving treatment to infectious individuals in a geneBdR  population at timet, denoted by N(t) into three
epidemic model. These analysis reveal the possibilities tasubgroups: susceptibl€s), infective (1) and recovered
develop strategies that manipulate the level of vaccinatio (R), individuals. The susceptible individuals become
and treatment efforts. It is important to mention here thatjnfected at a saturated incidence r k|>, wherep is
giltjé(\j"’?rr]k ;ﬁig'ﬁgggfﬁ)e"g:l?srgetﬁ;thﬁ]gégfrurggeg(;’xﬁ:(es transmission rate ankl is nonnegative that measure the
6th|b|t0ry effect. By treatment, the infected individuals
incidence with two control variables (vaccination and (T+Tgto)l
treatment). Note that in this paper, we shall deal with the"€COVer at a saturated treatment functgh) = 751,
optimal control of the disease and we refer the interestedvherer is cure ratero is the rate constant and is
reader to 26] for the mathematical analysis of the model. positive that quantify the extent of the effect of the
infected being delayed for treatment. Furth
defines the opposite effect of the infected being delayed
for treatment andl— describes the psychological effect
from the behavioral change of the susceptible individuals

individuals with mini : in di ] Svhen their number increases or from the crowding effect
Individuals with minimum investment in disease control. ot the jnfective individuals. Parameter definitions and

The main feature of the present paper is not to consider Assumptions lead to the following system of ordinary
special disease but to present a method of how to treat th'alfferential equations:

class of optimization problems. The problem
formulated as an optimal control problem with two

The purpose of this paper is to consider a gen8tRl
epidemic model 26] to incorporate optimal control
strategies in the form of treatment and vaccination to
decrease the number of susceptible and infectiou

control variables (that represent vaccination and treatme ds BSI

strategies). To do this, we use a time dependent Gt =N T 1pg HSTuwS

percentage of susceptible and infected populations as

control in the SIR model. Thus, the optimal control dl BSI (r+roup)l 5 1
(vaccination and treatment) strategy is to minimize the dat ~ 14kl 1+al —y+o+pl, @)
susceptible and infected individuals as well as the cost of

implementing the two controls. The model will then be dR (r+roup)l

used to determine cost-effective strategies for comlgattin at v+ 1+al HR+UsS,

the spread of an infectious disease in a given population. N .
We illustrate how the optimal control theory and the with initial conditions given at = 0. A, u, y, d are the
percentage of the vaccination and treatment, can be  recruitment rate of the population, the natural mortality
applied to minimize the susceptible and infectedrate of the population, the natural recovery rate of the
individuals. Then, we derive the optimality system for the infective individuals and the disease induced death rate,
SIRmodel with the percentage of vaccinated and treatedespectively. The control variables; is vaccination
individuals. coverage of susceptible. The objective functional
formulates the optimization problem of interest,
. X - : .~ particularly, that of determining the efficient control
rznatzerr:at!cal Tot?]el Wltth()Intr(?tls IS devtelotped 'ntSIeCt'.onStrategies The objective is to minimize the number of
- Analysis or the model with constant controls 1S susceptible and infected individuals at a minimal cost
presented in Section 3. The necessary conditions for an
ver[0, T] (a finite time interval).
optimal control pair and the corresponding states are : T e i
The functional¥ is given by
derived using Pontryagin’s Maximum Principle in Section
4. The numerical simulations of the optimal control

model are given in Section 5. Lastly, the conclusions are T 1 ) )
given in Section 6 F(Ug,Up) = /0 (AsSh+Aoln + 5 (Batf+ Bau) dt. (2)

The organization of the paper is as follows. The
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We adopt to model the control efforts by linear completely susceptible population. The vaccination and
combination ofu?(t) (i = 1,2). The constant#y and B; treatment in our system can have a great effedrR@rro
(i = 1,2) are weights constants which help to balancesee the effect ofu; and u; on Ry, straightforward
each term in the integrand so that none of the termsomputation gives
dominates. The termB;u? andB,u3 represent the costs

associated with vaccination of susceptible and treatment IRy —BA

of infected, respectively. The cost associated with the firs dup  (r+rouz+y+0-+ ) (H+up)?’
control could come from the cost of antimicrobial drugs.

Whereas the cost associated with the second control could IRy —ToPA

arise from medical treatment of the infected people, cost oup (r+roUup+y+o+u)2(u+up)’

associated with treating patients with other health ) )

complications or cost of drug. The problem is to find thusa—'jf <0, and[,—'j;J <0.

optimal functiong(u; (t), u;(t)) such that From this analysis, we see that a higher vaccination
of susceptible and higher treatment to infectedboth
decrease®y. This aspect can be a very useful control

Z(u1,u5) = min{.Z (ug,up), (ug,ux) €U} strategy and will be further explored in Section 5 through
. ) numerical simulation.
where the control set is defined as The variational matrislg corresponding t&, is given
U = {(ug,u2)|ui(t) is Lebesgue measurable 3) by,
on|[0,1], 0 < uy(t),ux(t) <1, t € [0,T]}, (—u—ul ﬂfﬁ\l )
subject to the systeml) and suitable initial conditions 0 (Ro—1)(rrolla+y+0+k)

[17. We use Pontryagin's Maximum Principle to solve Therefore, the disease free equilibriugy is locally

this optimal control problem. Before deriving the ; ; : o
optimality system and proving the existence of an optimalf"lsymptouc{jIIIy stable iRy < 1. The endemic equilibrium

control for system 1), first, we analyze the model by '~ 9'V&" byEy = (S',17), where

considering constant controls. A(L+KI%)
S’< =
Bl + (U +ug)(1+kI*)’
3 Analysis of the model with constant andl* satisfy the following quadratic equation
controls
Al 4+ BlI+C=0, (5)

In this section, we determine the steady state solutions and
their stability, the bifurcation behavior as well as theibas Where
reproductive number of system (1) by assuming that the A—a
control parameters are constant. The first, two equations B—
in system (1) are independent of the third equation, and
therefore third equation can be excluded without loss of ~ _

(Y+0+u)(B+k(H+uy)),
aly+o+p)(H+u)

+(r+rouz+ Y+ 90+ H)(B+K(H+u1)) —aBA,
(r+rouz+y+03+ p)(H+u1)(1—Ro).

generality. Thus, we can rewrite system (1) as (6)
Note that, the coefficier in (5) is always positive an@

ds BsI is positive if Ry < 1, C is negative ifRy > 1, andC =0

FTi N— 1k HS—uiS, if Ry = 1. Thus, we have the following result (sexg] for

(4) ~ more detail).

Theorem 3.1. System (2) has a backward bifurcation at

Ro = 1, if and only if the coefficienB in (5) is less than 0.
The existence of backward bifurcationRy=1 (C =

The disease free equilibrium of system (4) is giverithy= 0), so thatBA = (r + ypuz + y+ &+ ) (1 + uz), can also

dl _ BSI (r+roup)l
dt  1+Kkl 1+al

—(y+o+p)l.

(745;+0). The basic reproduction number, denotedRay  be expressed explicitly in terms at The conditiorb < 0,
associated to the system (4), is given by with BA = (r + youp + y+ 0+ ) (U +uy), is equivalent to
BA BA(B + k(M +u1))
= . a > . 7
Ro (r+youa+y+0+u)(u+uy) (1 +U)2(r +rouyp) O

The thresholdR, is called the basic reproduction number, So, backward bifurcation occursR$ = 1 if and only ifa
which is defined as the average number of secondargatisfy the relation (7). From this, it can be easily seen
infections produced by an infected individual in a that the parametemr, which lead to the backward
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bifurcation, decrease as the control variablgsand u, Theorem 4.2. Given an optimal control paifu;, us) and a
increases. The occurrence of backward bifurcationsolution(S*,1*,R*) of the corresponding state systet)-(
suggests that disease eradication is achievable only whe2), there exists adjoint variablds, i = 1,2,3 satisfying
the effect of the infected being delayed for the treatment

can not exceed some level. Moreover, for the disease not ) BA— )l

to become endemic again, treatment and vaccination 271\ _ L2 (A —A3)Up+ AL — A,

controls must be maintained at this level for all time. dt—  1+kl
Theorem 3.2. If Ry > 1, then the endemic equilibriumis ~ dA2(t) _ B(A1—A2)S  (r+rouz)(A2—As3)
locally asymptotically stable if dt (1+al)? (1+al)? )
q< min{ BA(B+k(p+uy)) B+k(u+ul)+k(6+y+u+r+rou2)}
(I (rrouz)” otz ' Hy+0+ A2 —yAs—Ag,

Proof. The proof is worked out for a similar case ir2{,

Theorem 4.2). dAs(t)

dt

with transversality conditions

= HAs,

4 Characterization of the optimal control Ai(T)=0, =123 (10)

Furthermore, the control function andu; are given by

In this section, first we prove the existence of an optimaly; = max{min{w, 1},0}, (11)
control for system1). B:

, _ . (A2 —Ag)rol”
Theorem 4.1. There exist optimal controléus (t),us(t)) Y2 = max{mm{m, 1,0} (12)
and corresponding solutionS;, I* andR* that minimizes
Z (u1,Up) overU. Proof. In order to determine the transversality conditions

and the adjoint equations, we use the Hamiltonid@n (
Proof. The integrand of the objective functiona given  The adjoint system results from Pontryagin’s Maximum
by (2) is a convex function ofuz, up) and the state system Principle R9.
(1) satisfies the Lipshitz property with respect to the state
variables since state solutions are bounded. The existence

of optimal controls follows 28§]. diit)  dH dA(t)  dH dAs(t) dH
In order to find an optimal solution , we need to find dt 9S dt dl dt dR
the Lagrangian and Hamiltonian forthe_problelm_ (2). with A(T) = 0,i=1,2,3.
The Lagrangian of the control problem is given by In order to obtain the characterization of the control
given by (L1)-(12), solving the equations,
L = A1S+ Aol +1/2(B1uf + Bou3). OH _  oH (13)
dul o dUZ 7

We need the minimal value of the Lagrangian. For this,
the HamiltoniarH for the control problem, wher#;, i =
1,2,3 are the adjoint variables, is given by

on the interior of the control set and using the property of
the control spaceU, we can obtain the desired

characterization 1D and 2.
O
_ BSI Here we call formulasil) and (L2) for (uj,u5) the
H= L(S,I,ul,u2)+)\1[/\ Tiyw HSTWS characterization of the optimal control. The optimal

control and the state are found by solving the optimality
Sl (rerou)l system, which consists of the state systd the adjoint
+’\2{%_ ( 1+oaI2) _(V+5+“)|} () system 9), initial conditions att = 0, boundary
conditions (0), and the characterization of the optimal
(r +roup)l control 11)-(12). To solve the optimality system we use
Tral HeR+ Uls} : the transversality and initial conditions together witle th
characterization of the optimal contr@li,us) given by
(1D)-(12). In addition, the second derivative of the
We now derive the necessary conditions, usingLagrangian with respect to; and up, respectively, is
Pontryagin’'s maximum principle 2B], that optimal positive, which shows that the optimal problem is
control functions and corresponding states must satisfy. minimum at controlsu; and u;. Therefore, taking the

+ A3 |:y| +
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state system together with the adjoint system, the optimal
control, and the transversality conditions, we have the
following optimality system: P

2000

1500

ds . BSI(t) Lo
a1k KOS

ptible individual

Sust

500

—max{mln{ M_Ag)S A3 ,1},0}S,

dl - BSt)l(t) Fig. 1: The plot represents population of susceptible individuals
dt 1+kl with and without control.

—(r + romax{min{ 2 1’:3020' 1}, O})

—(y+0+u)l(),

dR (A2—Az)rol 1(t)
— = romax{min{ ———=—1},0
gt ~ V1 (r+romaxmin{-g Bx(1+al)’ HO T
. (A1—A3)S
_uth(t)—’_maX{mln{%al}ao}sv B
1 ey
(14) _ _ o
with H* at (t, S, 1*,R*, U}, U3, A1, A2, A3): Fig. 2. The plot represents population of infective individuals
with and without control.
H* = AiS + Al *
%(Bl(max{mm{g 1},0})2 ]
(A2 — Ag)rol* ) - o
Bo(max{min{ ————,1},0
+ 2( { { (1 Fal* ) } }) ém ‘x'
+)\1 +)\2 +)\3 s (15) -
- maxming 21229 1
Uy = max{min{ B, 1,0}, Fig. 3: The plot represents population of recovered individuals
with and without control.
( )\3)r0|*
u, = max{min{ ———=———,1},0
2 { { (1+a|) ) }7 }7
Ai(T) =0.

08 —— contr
_conuml

The problem described above is a two point boundary
value problem, with specified initial conditions for the
state system and terminal boundary conditions for adjoint o8
equations. To find out the optimal control and state, we
will numerically solve the above systentsf and (5). s e

20 20
Time(day)

. ) ) Fig. 4. Optimal controlu; given by (11).
5 Numerical results and discussion

In this section, the optimality system is solved using

Runge-Kutta fourth order scheme. The optimal strategy ighis problem for the valu& = 50. This value was chosen
achieved by solving the adjoint and state systems and th® represent the time (in days) at which vaccination and
transversality conditions. We note that this is a two-pointtreatment is stopped. In our numerical simulation, first we
boundary-value problem, with separated boundarystart to solve the state equatiorly (Ising Runge-Kutta
conditions at time$ = 0 andt = T. It is our aim to solve  fourth order forward in time with a guess for the controls
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N control in the epidemic model 6 Concl us‘ On

o1 In this paper, we analyzed an optimal control strategy in
the SIR epidemic model with saturated incidence and
saturated treatment. In case of constant control, it isdoun
02 that the model exhibits backward bifurcation. The
N epidemiological implication of backward bifurcation is
that for effective eradication and control of the dise&%e,
should be less than a critical values less than one.
Fig. 5: Optimal controlu, given by (12). Moreover, achieving this may be too costly, because it
means that for constant controls, one needs to keep
vaccinating and treating for infinite time. Therefore, we
considered time dependent controls as a way out, to
. . . ) . ensure the eradication of the disease in a finite time. In
over the simulated time. Then, using the current iterationy,;g light, we set up an optimal control problem in the
of the state equations, the adjoint equations in th.e Systefhrm of treatment and vaccination to minimize the
(9) are solved by a backward method with the nymper of infective and susceptible populations. A
transversality conditionsl(). We update the controls by o mparison between optimal control and without control
using a convex combination of the controls in the \ya5 aiso presented. It is easy to see that the optimal
previous iteration and the value from the characterization -ntrol is much more effective for reducing the number of
of the system 11)-(12). Repeat this process and Stop infected individuals. The number of susceptible, infected
iterations if the values of unknowns at the previous a4 recovered individuals with the optimal control and
iteration are very close to the ones at the present iterationyithout control are shown in figures to illustrate the
We may refer the reader to seB0[31] such iterative  qyera|l picture of the epidemic. Moreover, it is observed
algorithms for more detail. that a higher vaccination and treatment rate decreases the
The susceptible, infected, and recovered individualsbasic reproduction number. So, vaccination and treatment
with and without control are plotted using the parametershas positive impact in controlling the transmission of the
values as/A =100, = 0.02, u = 0.000039,a = 0.01, disease.
y=0.08,0=0.02,k=0.5,r =0.2,rg =0.2. The values
for weight constants ard; = 0.09, A, = 0.02,B; = 10
and B, = 10. When viewing the graphs, remember thatACkn0W|edgement
each of the individuals without control is marked by
un-dashed lines and individuals with control are markedThe author is grateful to the anonymous referee for a
by dashed lines. The graphs from simulating the modelcareful checking of the details and for helpful comments
given in Fig. 1-Fig. 3, help to compare the population of that improved this paper.
susceptible (S), the infected (I) and the recovered
individuals(R) both with controls and without controls.
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