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Abstract: Theq-difference equations are important inq-calculus. In this paper, we apply the iterative method which is suggested by
Daftardar and Jafari, hereafter called the Daftardar-Jafari method, for solving a type ofq-partial differential equations. We discuss
the convergency of this method. In the implementation of this technique according to other iterative methods such as Adomian
decomposition and homotopy perturbation methods, one doesnot need the calculation of the Adomian’s polynomials for nonlinear
terms. It is proven that under a special constraint, the given result by this method converges to exact solution of nonlinearq-ordinary or
q-partial differential equations.

Keywords: q-calculus; Daftardar-Jafari method; iterative method;q-partial differential equations.

1 Introduction

The q-difference has many applications in different
mathematical areas and appears in connections between
physics and mathematics, such as statistical physics [18],
fractal geometry [8,9], quantum mechanics, number
theory, combinatorics, orthogonal polynomials [11] and
other sciences including quantum theory, mechanics and
theory of relativity [2,?].

Wu has applied the variational iteration method for
solving q-diffusion equations andq-difference equations
of second order [20,?,21]. In [17], Qin and Zeng have
extended the homotopy perturbation method to obtain the
exact solution of q-diffusion equations. The
one-dimensionalq-differential transformation (qDTM)
has been used by Jing and Fan (cf. [14]) for solving the
q-differential equations. In [7], El-Shahed and Gaber
applied the two-dimensionalq-differential transformation
to solve theq-diffusion andq-wave equations. After that,
Jefari et. al. used reducedq-differential transformation
method forq-partial differential equations (cf. [12]).

Recently Daftardar and Jafari introduced an iterative
method to obtain solution of functional equations (cf.
[6]). It was proved that this method is convergent in [6,3].

This method has been used used for solving nonlinear
time-fractional partial differential equations [16], singular
boundary value problems, fifth and sixth order nonlinear
boundary value problems, Laplace equation [22,23,24]
and other type of equations [6,3].

This iterative method solves nonlinear equations
without using Adomian polynomials and it is advantage
over the ADM and the HPM.

In the paper we have used this method to obtain exact/
approximate solution ofq-partial differential equations.
The present paper is organized as follows. After this
introduction Section 2 reviews the properties of
q-calculus. In Section 3, we recall the DJM for solving
q-PDEs, Also we investigate the convergence of this
method. Furthermore in Section 4 by using the DJM, we
solve few examples. Finally Section 5 is devoted to
conclusions.

2 Properties of q-calculus

In this section we briefly review some notation and basic
definitions and theorems ofq-calculus.
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•q-Calculus
The q-derivative of a real continuous functionf (x) is
defined as follows

Dx
q f (x) =

f (qx)− f (x)
(q−1)x

x∈R\ {0},

whereq in (0,1) is a fixed number. The derivative at 0 is
shown by f ′(0), that meansf ′(0) is exists. . The partial
q-derivatives for a multivariable continuous function
f (x;y; ...) are defined by Jackson [15] and are given by

∂ x
q f (x;y; ...) =

f (qx;y; ...)− f (x;y; ...)
(q−1)x

, q∈ (0,1)

∂ x
q f (x;y; ...)|x=0 = lim

n→∞

f (xqn;y; ...)− f (0;y; ...)
xqn .

Theq-integral [15] is

∫ x

0
f (t)dqt = (1−q)x

∞

∑
n=0

qn f (xqn).

•q-Leibniz Product law

Dx
q[ f (x)g(x)] = g(qx)Dx

q[ f (x)]+ f (x)Dx
q[g(x)].

•q-Integration by parts
We may write

∫ b

a
g(qx)Dx

q f (x)dqx= f (x)g(x)|ba−
∫ b

a
f (x)Dx

qg(x)dqx.

(1)
From (1) we have the following relation:

∫ x

0
Dx

q f (x)dqx= f (x)− f (0).

For more information aboutq-calculus, readers are
referred to [15,10,4,2,11].

3 Daftardar-Jafari method

In this section, we adopt the Daftardar-Jafari method for
solving q-difference equations. Consider the following
type ofq-functional equation:

u= g+Nq(u), (2)

where g is a known function andNq is a nonlinear
operator. In this technique we decomposey as following
infinite series form:

u=
∞

∑
i=0

ui . (3)

Also, the nonlinear operator in (2) decompose as

Nq

(

∞

∑
i=0

ui

)

= Nq(u0)+
∞

∑
i=1

{

Nq(
i

∑
j=0

u j)−Nq(
i−1

∑
j=0

u j)

}

.

(4)

Substituting equations (3) and (4) into (2) leads to

∞

∑
i=1

ui = f +Nq(u0)+
∞

∑
i=1

{

Nq(
i

∑
j=0

u j)−Nq(
i−1

∑
j=0

u j)

}

.

To compute the components ofui , i ≥ 0 in series (3), we
use the following recurrence relation:











u0 = f ,
u1 = Nq(u0),
um+1 = Nq(u0+ . . .+um)−Nq(u0+ . . .+um−1),

m= 1,2, . . .

(5)

Theorem 1.If N is a contraction, then the defined series in
(3) is absolutely convergent.

Proof.If N is a contraction, i.e.‖Nq(x)−Nq(y)‖ 6 k‖x−
y‖, 0< k< 1 , Then in view of (5) we have

‖um+1‖ = ‖Nq(u0+ . . .+um)−Nq(u0+ . . .+um−1‖

6 k‖um‖6 km‖u0‖, m= 0,1,2, . . .

So the series
∞

∑
i=0

ui converges (absolutely and uniformly)

to a solution of equation (2) (see [5]).

Theorem 2.If the defined series in(3) is convergent, then
it gives an exact solution of the nonlinear problem(2).

Proof.If the series (3) is convergent, then in view of (5) we
have

u0+u1+ . . .+um+1 = f +Nq(u0+ . . .+um).

Whenm tends to infinity we have

lim
m→∞

m+1

∑
i=0

ui = lim
m→∞

(

f +Nq

(

m

∑
i=0

ui

))

= f +Nq

(

lim
m→∞

m

∑
i=0

ui

)

= f +Nq(y) = y.

4 Examples

Example 1.Consider the following Riccati type nonlinear
q-differential equation

dq

dqx
y(x) = 1+ y2(x); y(0) = 0. (6)

Equation (6) is equivalent to the followingq-integral
equation

y(x) = x+
∫ x

0
y2(t)dqt
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Following the algorithm given in (5) we have

u0(x) = f (x) = x,

u1(x) = Nq(u0) =

∫ x

0
u2

0(t)dqt =
∫ x

0
t2dqt =

1−q
1−q3x3

,

u2(x) = Nq(u0+u1)−Nq(u0) = (7)

1−q
1−q3x5

(

2
1−q
1−q5 +

1−q
1−q7x2

)

,

...

Hence

y(x) = x+
1−q
1−q3x3+

1−q
1−q3x5(2

1−q
1−q5 +

1−q
1−q7x2)+ . . . .

Example 2.Consider the followingq-partial derivative
difference equation [20,17]

∂q

∂qt
u(x, t) =

∂ 2

∂x2 u(x, t)+
∂
∂x

(xu(x, t)) , u(x,0) = x2

(8)

By applying q-integral operator on both side of (8), the
equation converts to the followingq-integral equation

u(x, t) = x2+

∫ t

0

[

∂ 2

∂x2 u(x,k)+
∂
∂x

(xu(x,k))

]

dqk.

In view of the given algorithm in (5) the components of
ui(x, t), i ≥ 0 will compute as follows:

u0(x, t) = f = x2
,

u1(x, t) = Nq(u0) =
∫ t

0
[2+3x2]dqk= [2+3x2]t,

u2(x, t) = Nq(u0+u1)−Nq(u0) = (8+9x2)
t2

[2]q!
,

u3(x, t) = (26+27x2)
t3

[3]q!
,

...

un(x, t) = (3n−1+3nx2)
tn

[n]q!
, n≥ 1

Hence

u(x, t) = x2+(2+3x2)
t

[1]q!
+(8+9x2)

t2

[2]q!
+

(26+27x2)
t3

[3]q!
+ . . .+

(3n−1+3nx2)
tn

[n]q!
+ . . .

= x2+
∞

∑
i=1

(3n−1+3nx2)
tn

[n]q!
.

This example has been solved using the VIM [20] and also
the HPM [17].

5 Conclusions

The Daftardar-Jafari iterative method has been applied to
give very reliable and accurate solutions to the
q-difference equations. This method solves nonlinear
problems without using Adomians polynomials which
can be considered as preferable over the ADM and the
HPM. Expanding of our work to q-fractional order
derivative cases will be interesting.
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(2003).

[5] Y. Cherruault, Convergence of Adomians method,
Kybernetes18 (1989) 3138.

[6] V. Daftardar-Gejji and H. Jafari,J. Math. Anal. Appl.316
753-763 (2006).

[7] M. El-Shahed, M. Gaber,Appl. Math. Comput.217 9165-
9172 (2011).

[8] A. Erzan,Phys. Lett. A225 235-238 (1997).
[9] A. Erzan and J.P. Eckmann,Phys. Rev. Lett.78 3245-3248

(1997).
[10] G. Gasper and M. Rahman,Basic hypergeometric series,

Encyclopedia of Mathematics and Its Applications,
Cambridge University Press, Cambridge, UK, (1990).

[11] M.E.H. Ismail, Classical and quantum orthogonal
polynomials in one variable, Cambridge University
Press, Cambridge, UK, (2005).

[12] H. Jafari, A. Haghbin, S. Hesam, D. Baleanu,Romanian J.
Phys., 59 399-407 (2014).

[13] A.J. Jerri, Introduction to integral equations with
applications, second ed., WileyInterscience, New York, NY,
(1999).

[14] S.C. Jing, H.Y. Fan,Comm. Theoret. Phys.23(1), 117-120
(1995).

[15] V. Kac and P. Cheung,Quantum calculus, Universitext,
Springer, New York, NY, (2002).
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