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Abstract: In this paper, we present a stochastic queuing model for the road traffic, which captures the stationary density-flow
relationships in both uncongested and congestion conditions. The proposed model is based on theM/g/c/c state dependent queuing
model of Jain and Smith, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a
reformulation of theM/g/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed
relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally
we calculate the speed and travel time distributions for theM/g/c/c state dependent queuing model and for the proposed model and
we derive stationary performance measures (expected number of cars, blocking probability, expected travel time and throughput). A
comparison with results predicted by theM/g/c/c state dependent queuing model shows that the proposed modelcorrectly represents
the dynamic of traffic and gives a good performances measures. The results illustrate the good accuracy of the proposed model.

Keywords: Traffic flow modeling, finite queuing systems, state dependent queue, simulation.

1 Introduction

Traffic flow on freeways is a complex process with many
interacting components and random perturbations such as
traffic jams, stop-and-go waves, hysteresis phenomena,
etc. These perturbations propagate from upstream to
downstream sections. During traffic jams, drivers are
slowing down when they observe traffic congestion in the
downstream section, causing upstream propagation of a
traffic density perturbation.

Models for flow on a link have developed from the
fundamental diagram, where flow is a function of density
via the macroscopic LWR first-order continuum model (
i.e., Lighthill-Whitham-Richards theory of kinematic
waves) [17,20]. In this paper, we propose a stochastic
traffic model based on the queuing model of [21] and on
the Godunov scheme [12,16] of the LWR traffic model.
We calculate a stationary probability distribution of the
M/g/c/c state dependent queuing model [15,21] on a
road section, by considering density-flow fundamental
diagrams rather than density-speed ones [11]. The model
suppose a triangular fundamental diagram which
correctly captures the stationary density-flow
relationships in both uncongested and congestion

conditions. In this, we use the functions of traffic demand
and supply for the section, and derive a model for a road
with a downstream supply, we present stationary
performance measures (expected travel time, throughput,
etc.), and we derive a distributions of speed and travel
time. The model we propose here can also be used to the
analysis of travel times through road traffic [7,8,9].

The remainder of this paper is organized as follows.
In Section 2, we first present a review of the existing
works on literature. In this regards, we present a short
review of theM/g/c/c state dependent queuing model of
Jain and Smith. In Section 3, we rewrite theM/g/c/c
state dependent queuing model on a road section by
considering density-flow fundamental diagrams rather
than density-speed ones (triangular fundamental
diagram). In Section 4, we consider the traffic demand
and supply functions for the section, and derive a model
for a road with a downstream supply. We derive some
performance measures (expected number of cars,
blocking probability, expected travel time and throughput)
and we compared it byM/g/c/c state dependent queuing
model . In Section 5 , we calculate the speed and expected
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travel time distributions, and we present our simulation
results. In Section 6, we briefly summarize our findings.

2 Literature review

The dynamics of traffic flows in road networks is
complex, and is subject to stochastic disturbances.
Congested networks involve complex traffic interactions.
Providing an analytical description of these intricate
interactions is challenging. The study of network
congestion is of interest in various fields, ranging from
the analysis of spillbacks (i.e. the backwards propagation
of congestion) in urban traffic or pedestrian traffic [15,
21].

In the following, we focus on the LWR first order
model (Lighthill-Whitham-Richards theory of kinematic
waves) [17,20], for which numerical schemes have been
performed since decades [12]. The model is more recently
developed [6,16]. There has been a recent interest in the
development of stochastic link models. Most studies have
considered stochastic cell-transmission
models (CTM) [6], where traffic demand and supply
functions are used.

In [19], the authors proposed a stochastic formulation
of the link-transmission model, which is an operational
instance of Newells theory of kinematic waves [18]. The
kinematic wave model (KWM) is more recently
developed [22]. In [3], the compositional stochastic
model extends the cell transmission model [6] by defining
sending (demand) and receiving (supply) functions
explicitly as random variables. Several simulation models
based on queueing theory have been developed, but few
studies have explored the potential of the queueing theory
framework to develop analytical traffic models. In [19],
the authors proposed an analytical stationary model,
which is directly derived from the KWM. A review of
stationary queueing models for highway traffic and exact
analytical stationary queueing models of signalized and
unsignalized intersections are given by several
authors [14,24,25]. In [10,13], the authors contributed to
the study of signalized intersections and presented a
unifying approach to both signalized and unsignalized
intersections. These approaches resort to infinite capacity
queues, and thus fail to account for the occurrence of
breakdown and their effects on upstream links. Calculus
of traffic flow breakdown probability remains an
important issue when analyzing the stability and
reliability of transportation system [2,26]. Finite capacity
queueing network model (FCQN) are of interest for a
variety of applications such as the study of manufacturing
networks, circulation systems and prison networks [21],
etc. FCQN model allows to account for finite lengths,
which enables the modeling and analysis of breakdowns.
The methods proposed in [1,15,21] resort to finite
capacity queueing theory and derive stationary
performance measures. In [4], the authors describe a

methodology for approximate analysis of open state
dependentM/g/c/c queueing networks. The evacuation
problem was analyzed usingM/g/c/c state dependent
queuing networks [5,27] when an algorithm was
proposed to optimize the stairwell case and increase
evacuation times towards the upper stories. In [11], the
authors proposed a reformulation of the linear case of
M/g/c/c state queueing model [15], which uses the
density-flow fundamental diagrams and consider
upstream traffic demand and downstream traffic supply.

3 Review on M/g/c/c state dependent queuing
model

In this section, we present a review on theM/g/c/c state
dependent queuing model of Jain and Smith. This model
was used to model pedestrian and vehicular traffic
flow [15,21].

A link of a road network is modeled withc servers set
in parallel, wherec is the link capacity (the maximum
number of occupants in the link). The model assumed that
the average speedvn depends on the number of occupants
n on the road, according to a non-increasing
density-speed relationship.
In accordance to Tregenza’s empirical studies [23], the
average speed that an occupant will move through a link
depends on several factors but mainly is a function of the
number of occupants in the link. Based on these studies,
linear and exponential congestion models are developed
for the average pedestrian/vehicles speed in traffic
links [15,27].
The linear congestion model is based on the idea that the
service rate is a linear function of the number of
occupants in the link and is given as follows.

vn = v f
(c− n+1)

c
, (1)

The exponential congestion model is based on the idea
that the service rate is related to the number of occupants
by an exponential function and is given as follows.

vn = v f exp

[

−(
n−1

β
)γ
]

. (2)

in which β and γ are shape and scale parameters
respectively. Parametersβ and γ are found by fitting
points to the curve in Fig. 1. In fact, Fig.1 presents an
approximation of empirical vehicular speed-density
curves, based on various empirical studies [15]. Fitting
the points (1,v f ), (a,va) and (b,vb) gives one the
algebraic relationships shown below [27]:

β = a−1

[ln(v f /va)]
1/γ = b−1

[ln(v f /vb)]
1/γ ,

γ = ln
[

ln(va/v f )

ln(vb/v f )

]

/ ln
(

a−1
b−1

)

.
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Fig. 1: Exponential approximation of empirical M/g/c/c state-
dependent traffic flow model, (a) (Jain and Smith, 1997), and
empirical distributions for vehicular traffic flows, (b) (Edie,
1961), (c) (Underwood, 1961), (d) (Greenshields, 1935), (e)
(Drake et al., 1967), and (f) (Transportation Research Board,
2000) [15].

The valuesa and b are arbitrary points used to fit the
exponential curve. In vehicular related applications [15],
commonly used values area = 20Lk and b = 140Lk
corresponding to densities of 20 and 140 veh/mi-lane
respectively. Looking at the curves presented in Fig. 1,
reasonable values for such points areva = 48 miles per
hour andvb = 20 miles per hour.
L is the length of the link andk is its width (or number of
lanes).
The arrival process of cars into the link is assumed to be
Poisson with rateλ , while the service rate is general and
depend on the number of occupantsn on the link. A
normalized service ratef (n) is defined as the ratio of
average speed to free speed, in order to capture
congestion effects, and is takenf (n) = vn/v f ,
0 ≤ f (n) ≤ 1. In the linear case, we have
f (n) = (c − n + 1)/c. In the exponential case, we have

f (n) = exp[−((n−1)/β )γ].

The stationary probability distributionPn = P(N = n)
of the number of occupantsN in the M/g/c/c state
dependent model have been developed in [27] and shown
in [21] to be stochastic equivalent to a pure Markovian
M/M/c/c queueing model. Then, these probabilities can
be written as follows.

Pn =
(λ L/v f )

n

∏n
i=1 i f (i)P0, n = 1, ..,c.

P0 =
(

1+∑c
n=1

(λ L/v f )
n

∏n
i=1 i f (i)

)−1
.

(3)

whereL is the length of the link section andv f is the
speed corresponding to one occupant in the link (ie. the
free speed).

FromPn, we can easily derive important performance
measures.

–The blocking probability :
Pc = P0(λ L/v f )

c/∏c
i=1 i f (i),

–The throughput :θ = λ (1−Pc),
–The expected number of cars in the section :
N̄ = ∑c

n=1 nPn,
–The expected service time :W = N̄/θ .

4 Model of road section

In this section, we slightly modify theM/g/c/c state
dependent queueing model of Jain and Smith, by defining
the normalized service ratef (n) as the ratio of the
average flow (qn) by the maximum flow (qmax), rather
than the average speed (vn) by the free speed (v f ). This
modification will permit us to consider the demand and
supply functions of a road section, and then to use them in
the case where two or many sections are set in tandem. In
the following, we present theM/g/c/c state dependent
queuing model on one road section, for which we
consider a triangular fundamental traffic diagram [11].

Q(ρ) = min(v f ρ ,w(ρ j −ρ)). (4)

The demand and the supply functions∆(ρ) andΣ(ρ)
respectively are given as follows.

∆(ρ) = min(v f ρ ,qmax), (5)

Σ(ρ) = min(qmax,w(ρ j −ρ)). (6)

whereqmax= ρ j/(1/v f +1/w), andρ = n/L.
ρ ,Q(ρ),v f ,w, ρ j, L, qmax and n denote respectively the
car-density in the road section, the car-flow, the free
speed, the backward wave speed, the jam-density, the
length of the road section, the maximum flow and the
number of cars.
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We defineT as the service time, ie the time needed
for a car to pass through one road section. Let us notice
here that the service depends on both traffic demand and
traffic supply, since we have here a state-dependent service
model. The expected service timeE(T ) depends on the
numbern of cars on the road and is given byE(T ) = L/vn,
wherevn = Q(ρ)/ρ .

The expected service timeE(T ) is then given as
follows.

E(T ) =
n

min(v f
n
L ,w(

c−n
L ))

.

The average service rateµ of one server (one car place)
is then given as follows.

µ =
1

E(T )
=

vn

L
=

min(v f
n
L ,w(

c−n
L ))

n
.

The overall service rateqn of the road section (the
queueing system) withn cars is equivalent to the number
of occupied servers multiplied by the rate of each server,
and is nothing but the car-flow on the section, given by
the fundamental diagram (4).

qn = nµ = min

(

v f
n
L
,w

(

c− n
L

))

.

The normalized service rate is then fixed to

f (n) =
qn

qmax
=

min(v f
n
L ,w(

c−n
L ))

qmax
. (7)

We have 0≤ f (n)≤ 1.
Stationary probabilities of the number of cars on the

road section are derived by substituting the expression of
qn, into the Chapman-Kolmogorov equations for solving
the probabilities of a single queue [21].

Pn =
λ n

∏n
i=1 µi

P0, n = 1, ..,c.

P0 =
(

1+∑c
n=1

λ n

∏n
i=1 µi

)−1
.

(8)

Then, the stationary probability distribution of the
number of cars on the road section is given as
follows [11]

Pn =
(λ )n( L

v f
)ncr ( L

w )n−ncr

∏ncr
i=1 i∏n

i=ncr+1(c−i)
P0, n = 1, ..,c.

P0 =

(

1+∑c
n=1

(λ )n( L
v f

)ncr ( L
w )n−ncr

∏ncr
i=1 i∏n

i=ncr+1(c−i)

)−1

.

(9)

wherencr = ρcrL is the number of cars corresponding to
the critical car-density.

4.1 Model with a downstream supply

We model here a road section withM/g/c/c state
dependent queuing model, as presented above, but we

Fig. 2: A road section with a downstream supply constraint.

consider that the service of section 1 is constrained by the
supply flow of the downstream section (section 2), as in
Fig. 2.

The model assume that the supply flow of the
downstream section is stochastic, the stationary
probability distribution of the number of cars in the
downstream section is given and a triangular fundamental
traffic diagrams for the two sections are given ( See Fig.
3).

Fig. 3: Triangular fundamental diagrams.

The car-flow outgoing from section 1 and entering to
section 2 is assumed to be given by the minimum between
the traffic demand on section 1 and the traffic supply of
section 2.

q12(n1,n2) = min(∆1(ρ1),Σ2(ρ2))

=min

(

v f 1
n1

L1
,qmax

1 ,qmax
2 ,w2(

c2−n2

L2
)

)

.

Therefore, the normalized service ratef (n1,n2) of
section 1 is given as follows.

f (n1,n2) =
q12

qmax
1

=
min

(

v f 1
n1
L1
,qmax

1 ,qmax
2 ,w2(

c2−n2
L2

)
)

qmax
1

.

(10)

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 1, 59-68 (2017) /www.naturalspublishing.com/Journals.asp 63

Fig. 4: Stationary probability distributions.λ = 0.5 veh/s, 1 veh/s and 1.5 veh/s respectively from left to right sides.

Fig. 5: Comparison of the expected number of cars, in left. Comparison of the blocking probability, in right. Our model with red color.
Jain and Smith model with blue color.

1.The stationary probability distribution of the number
of cars on section 2, is assumed fixed and given by (9),
in function ofθ , as follows.

P(2)
n2 (θ ) =

(θ)n2(
L2
v f 2

)ncr2 (
L2
w2

)n2−ncr2

∏
ncr2
i=1 i∏

n2
i=ncr1+1(c2−i)

P0(θ ), n2 = 1, ..,c2.

P(2)
0 (θ ) =

(

1+∑c2
n2=1

(θ)n2(
L2
v f 2

)ncr2 (
L2
w2

)n2−ncr2

∏
ncr2
i=1 i∏

n2
i=ncr2+1(c2−i)

)−1

.

(11)
2.In section 1, we have anM/g/c1/c1 system,

parameterized by the traffic supply of the downstream
section (the number of cars in section 2).

–The stationary probability distribution of the
number of cars on section 1, parameterized by the
number of cars on section 2, is given as follows.

Pn1|n2
(λ ) = (λ/qmax

1 )n1

∏
n1
i=1 f (i,n2)

P0|n2
(λ ),

P0|n2
(λ ) =

(

1+∑c1
n1=1

(λ/qmax
1 )n1

∏
n1
i=1 f (i,n2)

)−1

.
(12)

–Then, the stationary probability distribution of the
number of cars on section 1 is obtained as follows.

P(1)
n1 (λ ,θ ) = ∑c2

n2=0 Pn1|n2
(λ )P(2)

n2 (θ ), n1 = 1, ..,c1.

P(1)
0 (λ ,θ ) = ∑c2

n2=0 P0|n2
(λ )P(2)

n2 (θ ).
(13)

3.The average outflow from section 1,θ , is given as
follows (using little’s law).

θ = λ
(

1−P(1)
c1 (λ ,θ )

)

. (14)

Using the data of Table 1, Fig. 4 compares the
stationary probability distribution of the number of carsn
on the road section for our model with downstream
supply (formula13), with red color and for the linear case
of Jain and Smith model (formula3), with blue color. The
arrival ratesλ is varied from one illustration to another
(λ = 0.5 veh/s, 1 veh/s and 1.5 veh/s).

Fig. 4 shows that the number of carsn on the road
section increases, in term of stationary probability, with
the arrival rate λ . The difference between the two
stationary distributions in the middle of Fig. 4
(λ = 1 veh/s) can be explained by using the flow ratio
rather than the speed ratio as a measure of the service
rate. Moreover, in the case of Jain and Smith model (blue
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Table 1: Sections parameters.
Sectioni L (m) v f (m/s) w (m/s) ρ j (veh/m) qmax (veh/s) ρcr (veh/m) c (veh)

1 100 28 14 0.18 1.6 0.06 18
2 100 14 7 0.18 0.8 0.06 18

color), the probability of saturation of the road section is
larger than our model. Fig. 5 shows for an increasing
arrival rateλ , the expected number of cars in the road
section (̄N = ∑c

n=1nPn) and the blocking probability
(Pc = P(N = c)), for our model with downstream supply
(red color) and for the model of Jain and Smith (blue
color).

4.2 Performance measures

In the following, we give an illustration example. We
consider two road sections as in Fig. 2. We assume that
the fundamental diagrams for those roads are triangular,
see Fig. 3. Table 1 gives the parameters for the
illustrations.

-Expected travel time (W)

The travel time through a road section is a random
variable and is a function of the number of cars on the
road section. Since the road section has a finite length, it
can be seen as a queuing system with a finite capacity, for
which the travel timeW (or, service time) can be derived
using the Little’s law. The latter law gives the travel time
as the average number of cars in the road (N̄) divided by
the effective arrival rate (λ (1−Pc)).

Fig. 6: Comparison of the expected travel time through section 1.
In red color, our model. In blue color, model of Jain and Smith.

Fig. 6 compares, for an increasing arrival rateλ , the
expected travel time through road section 1 of Fig. 2, for
our model with downstream supply and for the linear case

of Jain and Smith model (see Table 1 for the parameters
of the road section).
The curves of the expected travel time for the two models
are not monotone increasing. There is an upper limit for
the arrival rateλ , which is 0.8 veh/s, from there the
vehicles begins to slow down and the expected travel time
begins to increase. Therefore, the expected travel time
before this point (λ = 0.8 veh/s) is very low (around the
free time (L/v f )) for the linear case of Jain and Smith
model and our model. When the traffic volume is large (λ
> 0.8 veh/s) vehicles will slow down and the expected
travel time increase in value for the two models of traffic,
but still lower in our model with downstream supply. The
expected travel time continues to increase with demand
beyond capacity.

-Throughput (θ )

Throughputθ can be calculated using two methods.
Measuring the effective arrival rate of the accepted cars in
the system(θ = λ (1 − Pc)). Measuring the effective
departure rate of the served cars in the system
(θ = ∑c

n=1 qnPn).

Fig. 7: Comparison of the throughput through section 1. In red
color, our model. In blue color, model of Jain and Smith.

Fig. 7 compares, for an increasing arrival rateλ , the
throughput through road section 1 of Fig. 2, for our model
with downstream supply and for the linear case of Jain
and Smith model (see Table 1 for the parameters of the
road section).
The curves of throughput increases linearly with arrival
rateλ , but there is a halt to the monotonic increase. The
throughput decreases with the arrival rate from the value
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λ = 0.8 veh/s, which corresponds to the flow capacity of
the second section (minimum between flow capacities of
sections 1 and 2).

When the blocking probability is low, the throughput
is linear up to 0.8 veh/s. From that arrival rate (λ = 0.8
veh/s), the blocking probability increases (see Fig.5 in
right), the throughput decreases, the expected number of
cars also increases up to the system capacityc (see Fig.5
in left), and the expected travel time worsens around 10
times. Arrival rates above 0.8 cannot improve the system
throughput that reaches its limit aroundθ = 0.32 veh/s
for our model andθ = 0.17 veh/s for Jain and Smith
model. Then, the system would be able to give a higher
throughput under an arrival rate of 0.8 veh/s. That seems
to be the flow capacity of the second section.

5 Speed and travel time distributions

One of the most basic formula in traffic flow theory is the
one expressing the interdependence of the average
car-flow (q), the average car-density(ρ) and the average
car-speed(v). The formula tells thatq = ρv. When two of
the three variables are known, the third variable can easily
be obtained.
The average car-speedvn through a road section is a
random variable because the number of carsn on the road
section is random. Using the expression of the linear
speed in the model of Jain and Smith (equation (1)), the
car-speed probability distribution is given by:

P(vn = v) = P

(

n =

⌊

1+ c

(

1−
v
v f

)⌋)

.

in which ⌊x⌋ is the largest integer not superior tox .
Then, the car-speed distribution is given as follows.

Pv = P(vn = v) = (λL/v f )
⌊1+c(1−v/v f )⌋

∏
⌊1+c(1−v/v f )⌋

i=1 i(c−i+1)/c
P0, v = 1, ..,v f .

P0 =

(

1+∑
v f

v=1
(λL/v f )

⌊1+c(1−v/v f )⌋

∏
⌊1+c(1−v/v f )⌋

i=1 i(c−i+1)/c

)−1

.

(15)
The average travel timeτ through a road section can be
evaluated given the road section lengthL and the average
car-speedv. Basically, we haveτ = L/v. By this, the travel
time probability distribution is given by:

P(τ = t) = P(v =
L
t
) = P

(

n =

⌊

1+ c

(

1−
L

tv f

)⌋)

.

Then, the average travel time distribution is given as
follows.

Pt = P(τ = t) = (λL/v f )
⌊1+c(1−L/(tv f ))⌋

∏
⌊1+c(1−L/(tv f ))⌋

i=1 i(c−i+1)/c
P0, t = ⌊L/v f ⌋, ..,L.

P0 =

(

1+∑L
t=⌊L/v f ⌋

(λL/v f )
⌊1+c(1−L/(tv f ))⌋

∏
⌊1+c(1−L/(tv f ))⌋

i=1 i(c−i+1)/c

)−1

.

(16)

Using the parameters of section 1 in Table 1. Fig. 8
shows the histograms for the probability distribution of the
average car-speed and the average travel time through the
road section, for the linear case of the model of Jain and
Smith. The arrival rate considered isλ = 0.8 veh/s.

For our road section model with a triangular
fundamental diagram, the average car-speedvn is given
by the car-flow (Q(ρ)) in the road divided by the
car-density (ρ).

The car-speed probability distribution satisfies.

P(vn = v) = P

(

min(v f
n
L ,w(

c−n
L ))

n
L

= v

)

.

Then, two cases are distinguished:

1.ρ ≤ ρcr =⇒ vn = v f . Then,P(vn = v f ) = ∑ncr
n=0P(N =

n),
2.ρ > ρcr =⇒ vn < v f . Then,

P(vn = v) = P
(

N = ⌊ wc
v+w⌋

)

.

The car-speed probability distribution is then given as
follows.

P(vn = v) =











0 if v > v f ,

∑ncr
n=0 P(N = n) if v = v f ,

P
(

N = ⌊ wc
v+w⌋

)

if v < v f .

(17)

Similarly, we get the following formula for the
probability distribution of the average travel timeτ
through a road section. We use the formulaτ = n/q.

P(τ = t) = P

(

n
min(v f n/L,w((c− n)/L))

= t

)

.

Then, two cases are distinguished:

1.ρ ≤ ρcr =⇒ τ = L/v f . Then,
P(τ = L/v f ) = ∑ncr

n=0 P(N = n),
2.ρ > ρcr =⇒ τ > L/v f . Then,

P(τ = t) = P
(

N = ⌊ wct
L+wt ⌋

)

.

The average travel time probability distribution is then
given as follows.

P(τ = t) =











0 if t < L/v f ,

∑ncr
n=0 P(N = n) if t = L/v f ,

P
(

N = ⌊ wct
L+wt ⌋

)

if t > L/v f .

(18)

Fig. 9 displays the histograms for the probability
distribution of the average car-speed and the average
travel time through the road section, for our model with
downstream supply. The arrival rate is fixed to
λ = 0.8 veh/s. Fig. 9 shows that when the arrival rate is
low, speed distribution corresponds to the free speed
(v f = 28 m/s ) with a high probability, and the average
travel time distribution corresponds to the free time
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Fig. 8: Car-speed probability distribution histogram, in left. Average travel time distribution histogram, in right. Linearcase of Jain and
Smith model. The parameters of the road section are those of road section 1 in Table 1, and the arrival rate isλ = 0.8 veh/s.

Fig. 9: Car-speed probability distribution histogram, in left. Average travel time distribution histogram, in right. Model with downstream
supply. The parameters of the road section are those of road section 1 in Table 1, and the arrival rate isλ = 0.8 veh/s.

Fig. 10: Car-speed probability distribution histogram, in left. Average travel time distribution histogram, in right. Model with
downstream supply. The parameters of the road section are those of road section 1 in Table 1, and the arrival rate isλ = 2 veh/s.
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(t f = L/v f = 3.5 s), with the same probability. In this
case, traffic is fluid because the section is not occupied (or
blocked) by the cars.
Fig. 10 displays the histograms for the probability
distribution of the average car-speed and the average
travel time through the road section, for our model with
downstream supply. The arrival rate is fixed to
λ = 2 veh/s.

Fig. 10 shows that when the arrival rateλ is large, the
average car-speed is very low, and the average travel time
is very large (more than 3.5 s). Note that the average travel
time in the road section is almost fifteen times larger than
the free speed (about 60 seconds).

6 Conclusion and future work

This paper presents a queuing model for road traffic that
preserves the finite capacity property of the real system.
Based on theM/g/c/c state dependent queuing model of
Jain and Smith, we have proposed a stochastic queuing
model for the road traffic which captures the stationary
density-flow relationships in both uncongested and
congestion conditions.

Experimental investigations of the proposed model
are presented. Performance measures have been validated
by comparison withM/g/c/c state dependent queuing
model of Jain and Smith. Car-speed and average travel
time probability distributions are derived for two case of
arrival rate. The curves of those distributions shows that
the proposed model correctly captures the interaction
between upstream traffic demand and downstream traffic
supply. Future work shall include the extension of the
model to more than two sections in tandem to
tree-topologies (complex series, merge, and split
networks), and consider the case where traffic demand,
traffic supply and fundamental diagrams are stochastic.
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