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Abstract: The aim of the present analysis is to implement a relativebent computational method, the reproducing kernel Hilber
space, for obtaining numerical solutions for differenaddebraic system of integral-initial conditions. Two exded inner product
spacesV [0, 1] and H [0, 1] are constructed in which the integral-initial conditiorfstiee systems are satisfied. Whilst, two smooth
kernel functionsR; (s) andr; (s) are used throughout the evolution of the algorithm in ordeolitain the required grid points. An
efficient construction is given to obtain the numerical Sohs for the systems together with an existence proof oe#taet solutions
based upon the reproducing kernel theory. In this appraachputational results of some numerical examples are piedéo illustrate
the viability, simplicity, and applicability of the algdhim developed. Finally, the utilized results show that thespnt algorithm and
simulated annealing provide a good scheduling methoddioguch systems.

Keywords: Differential algebraic systems, Reproducing kernel tiie@ram-Schmidt process

1 Introduction regards, there are many iterative methods have been

i il al . fi Liniit proposed to be one of the suitable and successful classes
Differential algebraic systems (DASs) of integral-initia ¢ 1\ merical techniques for obtaining the solutions of

conditions (IICs), which consist of systems of first-order ., , merous types of DASs in general (see, for instance,

differential equations coupled with purely systems of 115 1617 18 19,20,21] and the references therein).
algebraic equations subject to given integral conditions

and initial conditions, respectively, are important bianc The reproducing kernel Hilbert space (RKHS) method
of modern mathematics that arises naturally from theis a numerical, as well as, analytical technique for solving
mathematical models, or indirectly from converting the a large variety of ordinary and partial differential
partial differential equations and the optimal control equations associated to different kind of constraint
problems into ordinary differential equationk 2,3,4,5, conditions, and usually provides the solutions in term of
6,7]. There are a range of physical phenomena for whichrapidly convergent series with components that can be
DASs of IICs provide the model examples, can be foundelegantly computed. In this study, a general technique
in many areas of engineering and science ranging, fronbased on the reproducing kernel theory is proposed for
simple beam bending problems in mechanics to thesolving DASs of IICs in the appropriate inner product
chemical engineering areas of absorption phenomenapaces. The main idea is to construct the direct sum of the
chemical reactions, radiation effects and problemsRKHSs that satisfying the 1ICs of the given systems in
connected with heat transfer, fluid flow, dissipation of order to determining their exact and their numerical
energy, and control theory 8[9,10,11,12,13,14). solutions. The exact and the numerical solutions are
Generally, it is difficult to obtain the closed form represented in the form of series through the functions
solutions for DASs of IICs in terms of elementary value at the right-hand side of the corresponding
functions, especially, for nonlinear, non-constantdifferential and algebraic equations. The advantages of
coefficients, and non-homogeneous cases. Factually, ithe utilized approach lie in the following main
most cases, only approximate solutions or numericaladvantages; firstly, it can produce good globally smooth
solutions can be expected; therefore, it has attracted muchumerical solutions, and with ability to solve many
attention and has been studied by many authors. In thiglifferential systems with complex constraint conditions,
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which are difficult to solve; secondly, the numerical kernel was used for the first time at the beginning of the
solutions and their derivatives are converge uniformly to20th century as a novel solver for the boundary value
the exact solutions and their derivatives, respectively;problems of harmonic and biharmonic functions types.
thirdly, the method is mesh-free, easily implemented andThis theory, which is representative in the RKHS method,
capable in treating various differential systems andhas been successfully applied to various important
various constraint conditions. application in  numerical analysis, computational
Anyhow, DASs of [ICs have been investigated mathematics, image processing, machine learning,
systematically in this analysis for the development,probability and statistics, and financ22[23,24,25,26,
analysis, and implementation of an accurate algorithm27]. The RKHS method is a useful framework for
which allows for the use of some form of concurrent constructing numerical solutions of great interest to
processing technique. More precisely, we consider theapplied sciences. In the recent years, based on this theory,

following set of differential equations: extensive work has been proposed and discussed for the
numerical solutions of several integral and differential
ay (t)uy (t) = fi (tug (t) ,uz (1), un (1)), operators side by side with their theories. The reader is

kindly requested to go througt28 29,30,31,32,33,34,
(1) 35,36,37,38] in order to know more details about the

az (t) ul2 (t) =f2 (tﬂul (t) , U2 (t) s Un (t)) )
: RKHS method, including its modification and scientific

ap () ul (t) = fo (tur () uz (8), - un (1), ?pplitpations,ditsthcharacteristics and symmetric kernel
unctions, and others.
subject to the following set of integral conditions: This article is organized as follows. In the next
section, two extended inner product spaces needed in the
uy (0) = fol k1 (s)ui (s) + 0y, analysis are constructed, and two extended reproducing
B kernel functions are obtained. After that, in Section 3, the
uz (0) = [y ka2 (s)uz (s) + 1y, (2) solutions and the essential theoretical results are

presented based upon the reproducing kernel theory. In
1 Section 4, an efficient iterative technique for the solution
up (0) = [y kp (s) up (s) + 1, is described, whilst, convergent theorem and error
behavior are also presented. Numerical algorithm and
numerical outcomes are discussed to demonstrate the
accuracy and the applicability of the presented method as
utilized in Section 5. Finally, in Section 6 some

simultaneously with the following set of purely systems of
algebraic equations:

ape1 (1) tpi1 (1) = foar (tur (8),u2 (1) un (1), concluding remarks and brief conclusions are utilized.

Ap+2 (t) Up+4-2 (t) = fp+2 (t7 u1 (t) , U2 (t) ) s Un (t)) )

;n () tn () = f (01 (£) sus (), un (2), 2 Building appropriate inner product spaces
(3)

subject to one of the following set of initial conditions: The reproducing kernel approach builds on a Hilbert
spaceH and requires that all Dirac evaluation functional

{ups1 (0) =1y 1 upp2 (0) =10, un (0) =1, in H are bounded and continuou3940,41,42,43 44,
45,46,47]. In this section, two extended inner product
{upsr1 (1) = Myt tpya (1) = pyas - s (1) = 1y, spacesH [0,1] and W [0,1] are constructed. Then, we

(4)  utilize the reproducing kernel concept to obtain two

where{u;}"_, © W7 [0,1) and{u;}_ , C W5[0,1]  extended reproducing kernel functiods (s) and r; (s)
n —1 . in order to formulate the solutions in the mentioned
or {u;};_,., C W;[0,1] are unknown functions to be spaces
determined, {f; (£, v1,v2,--+ ,vn)};_, are continuous Let H be a Hilbert space of functioh: 2 — H on a
terms in W5 [0,1] as {v;}’_, < W§[0,1] and set. AfunctionR : 2 x 2 — C is a reproducing
An c wiio,1] or {v;}" c W 0,1, kernel of H if the following conditions are met. Firstly,
{oskjepin Wa[0,1] or {vi}jmpia 2[0, 1] R(,t) € H for eacht € (. Secondly,

0 < Vi < oo, and (Y R(. 1)) = 6(t) for eachd € H and eactt € £,

W3 (0,1, W[0,1],W,[0,1],W2[0,1] are four The condition (0(),R(-,t)) = 6(t) is called the
RKHSs. Here, the sefa;}’_, are analytical real-valued  reproducing property, which means that, the valué af
functions on|0, 1] and may take the values; (t,) = 0 the pointt is reproducing by the inner product éfwith

for somet, € [0,1] and somej € {1,2,...,n} which R(-,t). Indeed, a Hilbert space which possesses a
make Eqs(1) and(3) to be singular at = ¢,. Through  reproducing kernel is called a RKHS. Through the
this paper, we assume that Eq4) - (4) have unique remainder sections, the symbdl; (-) whenever used
analytical solutions orf0, 1]. The theory of reproducing meansR (t, -).
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Definition 2.1 [26] The spaceW; [0,1] is defined as (21 (t), 22 ())yyor = (22(t), 21 (£))y2n;  thirdly,
W410,1] = {2 : z is absolutely continuous function on (~,. (¢ 2o (t ’ o = 21 (t), 29 (¢ j fourthly,
[0,1] andz’ € L?[0,1]}. On the other hand, the inner EZ tt():'; Et;>vzzk(t)> 7z (0 22 (D)wye i
product and the norm inWJ[0,1] are defined, ' NG
respectively, by <Zl (t) , 23 (t)>W22k + <22 (t) z3 (t)>W2k- Indeed,
(21 (1), 21 (£)) e = Oif and only if 2, (¢ ) = 0. To see
1

_ his, when z (t) = 0, then (z; (t),21 (t))y2e = O,

21 (1), 22 (£)) 1 = 21 (0) 2 0+/z’tz’tdt,5 t L W3
(21 (8), 22 (1)) wy = 21(0) 22 (0) | 1)z (t)dt, (5) whilst i < () (»W% M en
and where (21 (0)* + ( )+ [y (21 (t)*dt = 0, therefore

21l (21 (8) 21 (8))wp»

21,22 € W21 [0, 1]

Definition 2.2 [26] The spacelV; [0,1] is defined as

W3[0,1] = {z : z is absolutely continuous function on
[0,1], 2 (0) = 0, andz’ € L?[0,1]}. On the other hand,
the inner product and the norm I} [0, 1] are defined,

respectively, by

1
(21 (8), 22 (1)) wy = 21 (0) 22 (0)+/0 #(t)z(t)dt, (6)

and where

(21 ()21 ()

Il
21,29 € E% [0, 1]

Definition 2.3 The space ,[0,1] is defined as
W; [0,1] = {z :
[0,1], 2 (1) = 0, andz’ € L?[0,1]}. On the other hand,
the inner product and the norm W; [0, 1] are defined,
respectively, by

(21 (8), 22 (D)1 = 21 (1)22(1)+/0 # (t)zy(t)dt, (7)

and where

||Zl||W; (z1(t), 21 (t)>W;,

21,22 € W; [0, 1]

Definition 2.4 The spaceW% [0,1] is defined as
W2k [0,1] {z z,7 are absolutely continuous

functions on [0,1], z(0) — fo s)ds 0,

2" € L?[0,1]}. On the other hand, the mner product and

the norm inWz*

(21 (), 22 () e = 21 (0)

[0, 1] are defined, respectively, by

22 (0) + 21 (0) 25 (0)

1
+ / 2 (1) 24 (t) dt, ®)

zl(O)zzl(O)—zl()—Oorzl() 0.

An important subsets of RKHSs are those associated
to continuous kernels. These spaces have wide
applications, including complex analysis, harmonic
analysis, quantum mechanics, statistics, and machine
learning PR2,2324,25]. Next, before any further
discussion, we need to obtain the reproducing kernel
functions of the spaces} [0,1], W1 [0,1], W, [0,1],
andW2k [0, 1], respectively, as follows:

Theorem 2.1 P6] The Hilbert spaceWj [0,1] is a
complete reproducing kernel with the reproducing kernel
function

R (s) = {

Theorem 2.2 The Hilbert spacaV} [0, 1] is a complete
reproducing kernel with the reproducing kernel function

BV (s) = {

Proof. By applying the tabular integration formula on
u'(s)agﬁj” (s) and considering Eq(6), it easy to see
that

(u(). B (5))

R{l}()—l—i—s,sgt, ©)
9
RE (s) =1+t s>t

z is absolutely continuous function on

R (s) =s,s <t,
o (10)
E;{}Q} (s)=t, s>t

u(0) |BIY (0) - 0B} (0)]

w5

+u (1) olRM (1) - / B (5)0°R{MV (s)ds.  (12)
0

But sinceu (s), R (s) € Wi[0,1], it follows that
uw(0) =0 andﬁil} (0) = 0. Thus, using the properties
RM (t+0) R (t—0) = 0 and
ORM (t+0) — 9'RM (1t —0) = —1, the rules of
R (s) can be obtained directly.

and ||Zl|| 2k = <21 (t) , 21 (t)> 2k, Where .
522 \/ e Theorem 2.3The Hilbert spacd¥, [0, 1] is a complete
21,22 € W3P [0, 1], reproducing kernel with the reproducing kernel function
Here,(z; .(t) )22 (t))ng satisfies all the requirements 0 E{ll} (s)=1—s,5<t,
of the inner product as follows; firstly, R, 7 (s)= ) (12)
(21 (£) ;21 () yyz > 0;  secondly, By (s)=1—t s>t
@© 2018 NSP
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1
4 p{2,k}
ds. 16
Proof. By applying the tabular integration formula on +/0 u(s) 0 Ry (s)ds (16)
—{1 . . .
u'()91RL (s) and considering Eq(7), it easy to see According to Eq(8), one can write
that
{2.k}
-1} —{1} —{1} u(s), R (s)) =
(w0 B (), =u) R W)+ R (1) (e BER ),
o ) o w(0) [RI* (0) + 92REM (0) + ¢ (1)
0 0= [ R s @
| o I +u (0) [9LREM (0) - 92REM (0)]
But sinceu (s), Rt (s) € W4][0,1], it follows that
u(l) =0 anth }( 1) = 0. Thus, using the properties u(1)0PRPF (1) + 4/ (1) 92REPM (1)
EY¢r0 - EBY@-o - 0 and
{1} {1}
OIR ] (t+0) — O'R,” (t—0) = -1, the rules of —I—/lu(s) [34R;{27k} (s) — C(t)k(s)} ds. (17)
E;{ V (s) can be obtamed directly. 0
1 {Q’k} 2k P
. . S R Wik [0,1], it foll that
Theorem 2.4The Hilbert spacdV3* [0, 1] is a complete '{Z‘f,i ! (i) < 2 [{2 k]} toro O\;]VS af
reproducing kernel with the reproducing kernel function Rt“ (0) - ‘2[01@ s) Ry (s)ds. Thus, |
R (©O) + ERPTO) + ey =0,
(2 B3 (5), 5 < LR (0) - 22R{** (0) = 0, 32R[*™ (1) = 0, and
R (s) {2,k} (14) 8§R§2’k} (1) = 0. then Eqg. (17) implies that
R 57 (s), s>t (2.5} B
(u(s) BV () =
4 2
where Rfﬁ’k} (s) = Yal(t) s+ Oty s) fol (s) [84R{2’k}( ) — c(t)k(s)} ds. Now, for each
0 . 7 t € [0,1],if RI** (s) satisfies
R ( ) = X (t) sl 4+ C(t,s) and o
4 5 — _
ol o fo o) dsdsdsds. DRPM () —c(tk(s)=6(s—1t),  (18)
{Q’k} — 1
Proof. The proofofthe completeness and the reproducingnen <“(S)’Rt (S)>W22k = u(t). Obviously,
property of W2k [0, 1] is similar to ;hke} proof |n21k8] Let RiQ,k} (s) is the reproducing kernel function of
us find out the expressmnformﬁg{ )inW3%[0,1]. w2k [0, 1]. For the conduct of proceedings in the proof, it
Since requires the expression form Bt;m k} ). Fort # s, the
auxiliary formula of Eq.(18) is \* = 0 and its auxiliary
< (s), RE™ ( >W% Zu” 0) ' RI** (0) values areA = 0 with multiplicity 4. So, let the

1
—|—/ u”(s)angz’k}(s)ds
0

se(o) )~ | k()uls) . as

whereu (s), RI** (s) € W2k [0,1). By applying the
tabular integration formula om”(s)aijz’k} (s), we get

/0 W (£)02REM (5)ds

1
> (- (5) 2 RIM (s) 228

=0

expression form oﬂi’f“} (s) be as defined in Eq.14).

But on the other aspect as well, for E@18), let
Riz’k} (s) satisfies
IR (£ 40) — 92RPPM (1 —0) = 0,4 = 0,1,2

Integrating Eq(18) from z — € to t + ¢ with respect ta
and lettnge — 0, we have the jump degree of
BRI () at s = t such that
BREM (¢ +0) — 93RPM (¢ — 0) = —1. Through the
last descriptions and by using Maplé}3 software

package, the unknown coefficients Bit{ k} ) can be
obtained.

Throughout this paper and without the loss of
generality we are focusing on the construction proof by
using W3*[0,1] and W3[0,1] as the domain space.
Actually, in the same manner, we can employ our

(@© 2018 NSP
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construction ifW2* [0, 1] and W; [0,1] are the domain The spaced? [0, 1] andW [0, 1] are complete Hilbert

space. with some special properties. So, all the properties of the
Hilbert space will be hold. Further, theses spaces

Remark 2.1 Henceforth and not to conflict unless stated possesses some special and better properties which could

otherwise, we denote the following symbols: make some systems be solved easier. For instance, many
" . systems studied il [0, 1] space, which is a complete
H[0,1] = ;_, Wy [0,1], Hilbert, requires large amount of integral-differential

. n computations and such computations may be very
W[O’l]:( :?:1 W22k] [0, 1])@(@3':%1&% [0, 1])' difficult in some cases. Thus, the numerical
(19) integrals-differentials have to be calculated in the cdst o
losing some accuracy. However, the properties of the

Ri(s) = <Rt{2,k1} (s),--- 7(Rt{2,kp}) (S))) ’ spaces H[O,l] . and W[O,'l] require no more
pth integral-differential computations for some functions,
instead of computing some values of a function at some

Eil} (8),--, Eil} ()", grid points. In fact, this simplification of computations
(p+1)th th
P " not only improves the computational speed, but also
T improves the computational accuracy.
re(s) = (B (), B (5).- (BEY) (9)

(20)
3 Representation of analytical and numerical
Definition 2.5 [26] The inner product Hilbert space solutions
H [0, 1] can be defined as
In this section, we will show how to solve the DAS of
HI0,1]) = {(z1, 22, »2n)" : {2}/, c Wy [0,1]}. IICs of Egs.(1) - (4) by using the RKHS method in detail
(21) and we will see what the influence choice of the
The inner product and the norm i [0, 1] are buildingas  continuous linear operators. Anyhow, the formulation and
the implementation method of the exact and the
- numerical solutions are given in the extended RKHSs
(2 (t)’w(t»H:Z<Zi(t)ij(t)>wgv @2) w01 and H0,1]. M(gaanwhile, we construct an
j=1 orthogonal function systems of the spddg[0, 1] based

~ on the use of the Gram-Schmidt process.
2 .
and|z[[; = 4/ ;||Zj||W21. respectively, where, w € Now, to apply the RKHS method ot [0,1] and

’ W [0, 1], we will define the following linear operators:

H0,1].
. . W2k [0,1) —» W [0,1],j=1,2,--- ,p
Definition 2.6 The inner product Hilbert space” [0,1] . 2 2000 S
can be defined as Ty WA0,1] > WE0,1], j=p+1,p+2,---,n,
W[O? 1] = {(213223 Tt 5 Zpy Aptls 7Z7L)T (25)
such that
such that »
) aj’u”tv.j:1727"'7p7
WQQkJ [07 1] ’ ] = 1727 ARy 2 Lju’j (t) = ! . (26)
zj € (23) aju; (), 7=p+1Lp+2,---,n.
Eé[()?l]? ]:p+17p+277n

For the conduct of proceedings in the algorithm
The inner product and the norm# [0, 1] are buildingas  construction, we put

F = COIUmn(fl,fQ,"' 7fp7fp+17"' afn)v

(2 (1), w @)y =

> (2 (1) 1wy (1),

=1 2 u = Column(uy, ug, - -+ , Up, Upt1,- " ,Un),
n u' = Column(u}, ub, - - - Uy Uy g5 Ul
+ (2 () ,w; )y (24) 1 1
j;"l - Oé:(fo kl(s)ul+7717"',f0 kp(s)up+77p,"',0)nxla
P ) n 9 e; = Column(0,0,---0, 1¢,,0,---,0), 1,
and lzlly = o2l + 2 el ! «
j=1 2 j=p+1 L = Diagonal(Ly, Lo, -+ , Ly, Lpy1,--+ , Ly).
respectively, where, w € W [0, 1]. (27)
(@© 2018 NSP
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Thus, based on this, the DAS of IICs of E@$) - (4) can
be converted into the following equivalent form:
L:WI0,1] — H[0,1] suchthatLu (t) = F (t,u (1)),
(28)
in whichu € W [0,1] andF € H [0,1];

subject to the following sets of constraint conditions:

efu(0)=ela,j=1,2,,p

and

eju(0)=efnj=p+lp+2--n (29
Lemma 3.1 The operators
{LY, WM 0,1 = w301 and
{L;}7_, = W5[0,1] — W3 [0,1] are bounded and
linear.
Proof. In this proof, we are focusing on
{L; } [0 1] — W3 [0,1]. The linearity part is

bVIOUS for the boundedness part, we need to prove that

HLJU’]”W21 < M||UJ||W221CJ, where M > 0. By the

Schwarz inequality, one can write
s (1) = <uj<->,R§2“<->>W;kj <

S Ol ey

@l = (wOARETO) | <

sl [ RE O o and

[ @ < luglly e |[O2REY (-)‘]W§k7. From the

definition of the inner product and the norm1at} [0, 1],
it follows that

e

_ ((aj (0)a; (0))* + [ (a} (2)
< ( (0) (u (0))°

=

u!(1))? dt)
+ (0 (0 )" ) ar) )

2
RS () L.

1
2

4WJ

+
N\
S
—~
S
oo~
—~
~~
~—
~—
'S
<
<

4
O2RIZFY (. W ARE

O s )
RS () L

o) o O, )

al {27k} () 2k ;

+
N
&,
2
B3
A~
—
S
<N
SN—

PRI 0|

(30)

where
M =

max((a})[ ])%

Theorem 3.1 6] The operatol. : W [0,1] — H [0, 1] is
bounded and linear.

2
tR(gQ’k} ()HW2k +

J
2

a2 (0)|

2
o2REH) (.)ijkj]%,

Proof. Clearly, L is linear operator fromi¥ [0,1] into

H [0,1]. The boundedness part is shown as follows: for

eachu € W0, 1], we have

[ Lullg =

n
2
D ILjusll
j=1

p
$ZIIL wjlliy + Z 1L 3

j=p+1

\IZIIL Ik ||uj||W2k3+ Z L1 Ny

Jj=p+1

P 2 & 2
2 L5 22 Mg I, 25
=1 j=1 2

A

2 LI 22 Ml
Jj=p+1 Jj=p+1 -
d 2 Z 2
(2 LGP+ >0 (L5117)
< Jj=1 J=p+1

P 2 n 2
(22 Mugllpzes + 220 Mugllyy)
=1 R e

= L[ el - (31)

Considering Lemma 3.1 and the boundedness of

{L;}_, and{L;}7_ ., implies thatL is bounded.

Next, we construct an orthogonal function systems of

the spacéV [0, 1] as follows: put

@i (t) = (re; (t); €5 =
T
(R ),0,0,-,0) ,j=1,
T
(1) o
(0. R (4),0.-,0) i=2 gy
: -
@00 0) g
andy,; (t) = Lo, (t),i = 1,2,..,j = 1,2, ,n,
whereL* = Diagona(Lj, L3, -+ , L5, L, JLx)is

the adjoint operator of., R,;{l} (s) is the reproducing
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kernel function of W [0,1], and {t;};=, is dense on
[0,1].

Algorithm 3.1 The orthonormal function systems

(oc0,n)

{vi; (¢ }(” ) of the spacé¥' [0, 1] can be derived
from the Gram-Schmidt orthogonalization process of
{vy (t)}gf;’g(l’l) as follows:
Step 1Fori =1,2,...andk = 1,2, . ldothefollowing:

_ _ ijo_

If I =k =1, then sel,;, = IIwuHW
If = k 1, then set
iy = —1 - — B ;
\/szk\\ivfp;(wm(t),wlp(t))W
if 1 > K then set ujl =

Z (P, (1) 0, (1)) MZ&
\/ 13y —
Output: the orthogonahzatlon coeﬁicienusj of the

orthonormal systems, ; (t).
Step 2Fori =1,2,...andj =1,2,---

wzk(t) 1/fzp(t)>

,n set

i J
= Z Z inus (1) (33)
=1 k=1
function

the orthonormal

(o0, n)

(i,9)=

Output:

{0y (0}

Step 3Stop.

systems

The subscripts by the operator, denoted byL,,
indicates that the operatdr applies to the function of.
Indeed, it is easy to see that,
¥, () L, (t) (L*¢y; (s), Ry (5)>W =
<<pl-j (s),LsR; (s)>H = LsR; (s)],_,, €W [0,1]. Thus,
;; () can be expressed in the form

Vi
¢z‘j (t) = LRy (5)|3:ti'

of

Theorem 3.2For Eqgs.(28) and(29), if {¢;},-, is dense

on|[0, 1], then{4,; (t)}§§}2(1,1) is the complete function

systems of the spad#& [0, 1].

Proof For each fixed u € wo,1], let
< >W = 0. Then,
<Lu() 90” t) y = Lu(t;) = 0. Whilst on the other
hand,

wlt) = Lute = L (u0) (Re();e5), e

where

0,-
(Re ()65 =9 7=np
{1} ’
<0’ 0 (Et (8))<p+1>h "0> ’
J=pr+1
: T
(0,0,- 0, (Ej” (s))()m> ,j=n.
(34)
Hence, Lu (t;) = E (Lu(t), @ (1)), ¢; = 0. But

Jj=
since{t;};, is dense or{lo 1], we must haveLu( ) =
It follows thatw () = 0 from the existence of ~

0.

Theorem 3.3If {¢;};2, is dense or0, 1] and the solution
of Egs.(28) and(29) is unique, then their exact solution
satisfies the infinite expansion form

= Z Z Aij{ﬁz‘j (t) (35)

i=1 j=1

[ J .
Aij = ZZN%JCIC (tlau (tl))'

=1 k=1

Proof. Applying Theorem 3.2, it is easy to see that

{vi; (¢ }( P (1 ) is the complete orthonormal basis of
W [0,1]. Since, (u(t),p; (1)) = wu;(t;) for each

u € W[O 1], while on the other hand,
iz( u (), (t)),, ¥, (t) is the Fourier series
i=1j

expansion about{{bij (t)}gf;’)i)(l’l). Then the series
E Z( (t), ¢y (1)), ¥y (1) is convergent in the
=1 J—
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sense of|-||,;,. Thus, using Eq(33), we have

u(t) = ) <U (t) a¢ij (t)>W @ij (t)

i

=S S w0, i Ohwiy (1)

i=1j=1 I=1k=1

= S S il (ut), o (D) By (1)

=SS Sl (B ) (D) s (1)

=SS S i (1) o (D) By (0

(36)
Therefore, the form of Eq(35) is the exact solution of
Eqgs.(28) and(29).

Anyhow, sinceW [0, 1] is a Hilbert space, it is clear
thatu (1) = Y- > Ay (t) < oc. Therefore, the finite

i=1j=1
sequence of functions

(37)

is convergent in the sense of the normi&f[0, 1] and the
numerical solution,, (t) of w (t) for Egs.(28) and(29)
can be obtained and calculated directly by EY).

4 Construct and implement the iterative
technique

In this section, we consider the given DAS of IICs and
construct an iterative technique to find their solutions in
the space W [0,1] for linear and nonlinear case

simultaneously. Also, numerical solutions of the same
system, obtained using proposed method with existing
[ICs are proved to converge to the exact solutions with
decreasing absolute difference between the exact valueghere M; = -

and the values obtained using RKHS method.
The basis of our RKHS method for solving E¢28)

According to Eq.(35), the representation form of the
exact solution of EqY28) - (29) can be written as

oo n
u(t) = Z Z Aijti; (t).
i=1 j=1
For numerical computations, we define thgterm
numerical solution of: (t) by

n n
Unp (t) = Z Z Bij¢ij (t),
i=1 j=1
where the coefficients B;; and the successive
approximations; (t), ¢ = 1,2, ...,n are given as

i J )
Bi; = Z Zﬂﬂfk (ti, w1 (t)) -

=1 k=1

In the iterative process of Eq&39) and (40), we can
guarantee that the numerical solutiop (¢) satisfies the
constraints conditions of Eq29). Now, we will proof
thatu,, (¢) in the iterative formula of Eq$39) and(40) is
converge to the exact solutien(t) of Eqgs.(28) and(29).
Lemma 4.11f v € W |0, 1], then the numerical solution
u, () and its derivativer; (¢) are converging uniformly to
the exact solutiom (¢) and its derivative.’ (t) asn — oo,
respectively.

(38)

(39)

(40)

Proof. For eacht € [0, 1], one can write

[ (1) = @ (1)

: (i (1) =0 (0),0f (Re (1)) s

1

<

A

Il
-

[Cun (8) = w (), OF Re (£) €5 )y, €5

n
< 3 g = ully |
j=1

(41)

0 (Re (0); e lesl

n

=ty = ully 32 [0 (R 0,4, e

SMi||un—uHW,Mi>0,i=0,l,

n

9 (Re (1)), ejH le;|. Hence, if
j=1 w
uy —ully, — 0asn — oo, thenu, (t) andu, (t) are

and (29) is summarized below for the exact and the CONverge uniformly ta: () andu’ (1), respectively.

numerical solutions. Firstly, we shall make use of the
following facts about the linear and the nonlinear case

depending on the internal structure of the function

Case 1If Eq. (28) is linear, then the exact and the

Theorem 4.1If [ju, 1 —ul|,;,, — 0,t, — s asn — oo,
l|lwy -1l is bounded, and” (¢, (t)) is continuous, then
F (ty, up—1(ty)) — F (s,u(s)) asn — oc.

numerical solutions can be obtained directly from Proof. Firstly, we will prove thatu,, (t;) — u(s).

Eqgs.(35) and(37), respectively.

Case 2If Eq. (28) is nonlinear, then the exact and the
numerical solutions can be obtained by using the

following iterative process.

Since, we can note that

[un—1 (ty) — u(s)]
) = up—1(8) + uy—1(s) — u(s)|

= up—1 (ty
tn) = tup—1 ()| + |up-1(s) —u(s)|.

S |’U/77,1 ( n
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By reproducing property of the kernel functidét) (s), we
haveuw, 1 (t;) = 3 (uy-1 (). (R, (1)) ;¢;) €5 anc

<un,1 (t), (R (£)), ej>W e;. Thus,

n

2.

Jj=1

Uy—1 () =

ﬂ%aHMZH&U Rmmdbmt

(43)
From the symmetry of R, it follows that
H(Rt" (t) — Rs (t))j ejHW — 0 ast, — s andn — oo.

In terms of the boundedness ¢f, ||, one obtains
that |u,— (t,) — u,—1 (s)| = 0 as soon a$, — s and

n — oo. Again, by Lemma 4.1, for each € [0,1], it
holds thatju,, 1 (s) —u (s)| < My |luy—1 —ully;,, — 0.
Therefore,u,—1 (t,) — wu(s) in the sense of|-||,;, as
t, — sandn — oo. As a result, by the means of the
continuation  of F, it is implies that
F (ty, un—1 (t;)) = F (s,u(s)) asn — oc.

Theorem 4.2Suppose thdtu, ||, is bounded in Eqg39)
and(40), {t;}.2, is dense off0, 1], and Eqs(28) and(29)
have a unique solution. Then theerm numerical solution
u, (t) converges to the exact solutian(t) with « (t) =

fZ&m¢>

i=1j=

Proof. The proof can be divided into two steps. Firstly,

we will prove the convergence af, (¢). From Eqs.(39)
and (40), we infer that

upt1(t) = uy(t) + E B(n+1)j{ﬁ(n+1)j (t). From the

(oc0,n)

orthogonality of {{p o= it follows that
2 2

il = llugllyy + E B 1y = llup-ally +

ZlB + Z B2 ;== |luolliy + Z Z B,

J= i=1j=1

otherformulat|on it holds thatu,, 1|y, > [|uy|l,, . Due
to the condition that|[u,||,, is bounded,||u,||,, is
convergent and there exists a constantsuch that
o0

> Z B = c. This implies that{

> B
i=17= Jj=1 i=1
On the other hand, sinde (t) — uc—1 (¢))L(uc—1 (t) —

€ 2

uc—g (t))L...L(ups1 (t) — uy (t)), it follows for ¢ > 7
that

2
(|

2
llue = uplly = llue —uc—1 +uc—1 — . + uyy1 —

2 2 2
= |u¢ — uc—1l["+lluc—1 — uc—2|| "+ A|un+1 — uyl|” .
(44)

Furthermore||u¢ — u<,1||§v = Consequently,

> Bz».
j=1

asn,( — oo, we havel|luc — uy |5, = Z Z B} —
l=n+1j=
0. Considering the completeness bf [0, 1], there exist
u € W0,1] such that, (t) — u () asn — oo in the
sense of|-||y,
Secondly, we will prove that (¢) is the solution of
Egs. (28) and (29). Taking the limits in Egs(39) and

(40), one can get (t) = Z Z Bmw” (t). But on the

1=1j=
other aspect as well(Lu) (t) = Z E By L; (1),
i=1j=
thus; (LU) ( ) Z: Z <L ij (t)aSle (t)>H =
Zl ) Bij (1 (1), Loy, (1)), =
1=1j5=
Z:l Zl Bij (i (1) s %0 (1))
1=1j=
Lk
Therefore, > > B, (Lu),, (tr) =
UV=1k'=1
0o n _ l k
> 2 Bij(i; (1), 30 X Bl ()w =
i=1j=1 I'=1k'=1
> 22 Bij (y; (1) ¥y (), = Bu. For the conduct
i=1j=1
of proceedings in the proof, ifl = 1, then
(L’U,)j ( 1) = fJ (tl,U() (tl))’ ] = 1725' N, that iS,
Lu(ty) = F(t1,uo(t1)). Again, if [ = 2, then
(LU,)] ( 2) = fJ (tQ,Ul (tg)), ] = 1725' N, that iS,
Lu (ta) = F (t2,uq (t2)). In the same manner, we can
discover the following general pattern form:

Lu(t,) = F (ty,uy—1(t;)). Since{t;};2, is dense on
[0,1], then for eachs € [0, 1], there exists subsequence

oo
{tnj}, X such that,, — s asj — oco. But since, we
i :

have known thatLu (tnj) = F(tnj,unj,l (tnj)).
Hence, letj — oo, by the continuity of ', we have
Lu(s) = F(s,u(s)). Hence,u (t) satisfies Eq.28).
Also, sincev,; (t) € W0,1], thenu (t) satisfies the
constraint conditions of E¢29). In other wordsu (¢) is
the solution of Eqs(28) and(29). The application of the
unlqueness of solution yields that

u(t) = ElZB”%()
i=1j
Let e, = |[lu—uyll,,, Whereu(t) and u, () are

given by Eqs(35) and(37), respectively. Then using the
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expansionsy (t) = i 3 (u(t), ¥y (8)), ¥ (t) and Output: the orthogonal function systenas ; (t;).
I i=lj=1 Step 2Forl = 2,3, ...,nandk = 1,2, ..., [, do Algorithm
U (t) = El J; (0 ’&ij (t)>W &ij (t). one can write ¢ émg[jt a?hdekorthogonahzatlon coefﬂmen,téﬂ
53] _ i:%?lgjl <u ) ’{pij (t)ﬁv and Ste?oﬁcj):veirrfg:_ 2,3,. ,77'— 1 éndk =1,2,...,1—1,dothe
E Z (u(t) 1y (t )>iv Clearly,e,—1 > &, Sety;; (t;) = i EJ: pitbu, ();
and conslegtjjentl{/sn}n , are decreasing in the sense of Output: the orthonormal function system; (t;).

the norm ofW[O 1]. B)f Theorem3.3, we know that Step 4SetB;; = Z E Nzkfk (1, w1 ()
Z Z (u(t), ¢y (8)),, ¥i; (t) is convergent. Thus, =1 k=1

AT o Setu; (1) = 21 S0 By (1),
= t i (t 0 or 0 as i=1j=1
= i:%“; (@) vy O)y — & Output: the numerical solutiom,, (¢;) of u (¢;).
n — 0. Step 5Stop.
Using RKHS algorithm, takingt; = ;:11
5 Application and numerical simulations i = 1,2,..,nin u,(t) of Eg. (37), generating the

reproducing kernel functions, (s), R; (s) on [0, 1], and
In order to solve the DASs of IICs numerically on a applying Algorithms 3.1 and 5.1 throughout the
computer, the system is approximated by a discrete on@umerical computations; some graphical results, tabulate
and the continuous functions are approximated by finitedata, and numerical comparison are presented and
arrays of values. Anyhow, to demonstrate the simplicity discussed quantitatively at some selected grid points on
and effectiveness of the proposed method, numerical0,1] to illustrate the numerical solutions for the
solutions for three different DASs of IICs is constructed following DASs of IICs. In the process of computation,
using the RKHS method. Results obtained by theall the symbolic and numerical computations are
proposed method are compared systematically with someerformed by using MAPLE3 software package.
other well-known methods and are found outperforms in
terms of accuracy and generality. Example 5.1Consider the following differential equation:

By generating the finite direct sum between the spaces , .
uy (t) = tug (t) —ua (t) + €', (45)

Wi [0,1], W1 [0,1], 77, [0,1], W2 [0,1] and merge the

kernel functionsk{" (s), R\ (s), R (s), RI** (5)  subject to the integral condition:

in one vector space that satisfying the corresponding IICs, L

we can directly pbtaln the exact anq the numerical up (0) = [ suy (s), (46)
solutions by applying the following algorithm.

Algorithm 5.1 To approximate the solutiom, (¢) of u () ~ Simultaneously with the following algebraic equation:
for Egs.(28) and(29), we do the following steps: s (6) + e tug (£) =+ ¢, (47)

Input: The interval [0,1], the integersyn, the kernel
functions R; (s), ¢ (s), the differential operatot., subject to the initial conditions:
and the functiorf.

Output: Numerical solutionu,, (t) of u (t) at each grid uz (0) = 0. (48)
points in the independent interval 1].

. . o
Step 1Fixedt in [0, 1] and sets € [0, 1; Here,t € [0,1], whilst the exact solutions arg () = e

andus (t) = tet.

If S < t, set
R — R{kal} - R{l} . . . .
e(s)=[R;7 (s), (Byy i1 (s), Example 5.2 Consider the following set of differential
) . b equations:
(&) G / .
t) =y (1) — +1,
Else setR; = [R{2 2k} ( ) R (E;{}?}) (8) ’ uy ( ) u1 ( ) U3 ( ) n (U1 ( )) ) (49)
(BEY) @I e uh () = w3 (1) +uzt (1) e=® — (£ +1)%,
| L2 S)|7s
Fori — 1™ pandj = 1,2.--- n, do the Subjecttothe integral conditions:
following:
Sett, g i1 . uy (0) = fée_sul (s) +1,
i =T ) (50)
Se':wi,g ( i) = [ (S)]s:ti; uz (0) = fo suz (s) + 4_1v
(@© 2018 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 2, 317-330 (2018)www.naturalspublishing.com/Journals.asp NS = 327
Table 1 Numerical values of the dependent variahlgs (¢) anduy,z (¢) in Example 5.1.
t uy (1) un (t) us (1) un2 (1)
0 1 0.999999999983888 0 0
0.16 1.173510870991810 1.173510870931385 0.187761739358690 0.187761739302131
0.32 1.377127764335957 1.377127764127835 0.440680884587506 0.440680884556301
0.48 1.616074402192893 1.616074401628453 0.775715713052589 0.775715713003221
0.64 1.896480879304951 1.896480879219793 1.213747762755169 1.213747762024998
0.80 2.225540928492467 2.225540928101454 1.780432742793974 1.780432742279523
0.96 2.611696473423117 2.611696473135761 2.507228614486193 2.507228614240745

2.718281828459045

2.718281827751456

2.718281828459045

2.718281828229471

Table 2 Numerical values of the dependent variahlgs (¢), un2 (t), anduy,s (¢) in Example 5.2

; w, () 0 w0 (0)

0 2.718281826327278 —0.000000001895396 1
0.16 3.189933270319385 0.148419981604011 0.928476685564841
0.32 3.743421374024469 0.277631731955104 0.870388271788553
0.48 4.392945675887708 0.392042080909051 0.821994930830145
0.64 5.155169487518942 0.494696207847439 0.78086879917688
0.80 6.049647411643256 0.587786639485744 0.745355983124897
0.96 7.099326989961757 0.672944426438238 0.714285679827479

1 7.389056036977788 0.693147127060917 0.707106780485565

Table 3 Numerical values of the dependent variahlgs (¢), un2 (t), uns (), anduy4 (t) in Example 5.3.

t

|un () — w1 (2)]

|un2 () — uz ()]

|uns () — us (2)]

[una () — ua (1)]

0 6.77393774 x 10~ 2.81688636 x 10~ ° 5.95128789 x 10~ " 1.90495767 x 107
0.16 3.04644408 x 108 4.97586606 x 10~° 7.35618057 x 10~7 2.92327896 x 10~
0.32 7.02482980 x 108 1.00492597 x 1078 2.34717390 x 1078 7.87919454 x 1077
0.48 2.87288290 x 1077 3.82075576 x 1078 4.87564335 x 1077 1.20484809 x 1078
0.64 6.02059218 x 1078 1.42838984 x 10~¢8 1.21798967 x 108 3.35573115 x 1077
0.80 1.36113692 x 1077 4.67986424 x 1077 2.60534860 x 10~° 2.96273934 x 1078
0.96 3.50745738 x 1077 1.35392753 x 1077 9.61230455 x 107° 5.17649545 x 107°

1.06582351 x 1077

3.86098600 x 10~7

0

0

simultaneously with the following algebraic equation: simultaneously with the following set of singular algelorai

In"2 (uy (t)) + 2sinh (ug (1) u3 (1) =1, (51) equations:
subject to the initial conditions: sinh (£) s (£) — cosh (£) g (£) + sin~" (ua (£))
us (0) =1. (52) t+0.57 ,

tus (t) — tan™! (uz " (t) ua (1))

Here,t € [0, 1], whilst the exact solutions are, (t) = — tcosh (£) us () + £ — 0.57

e u (t) = In (t + 1), andus () = (t + 1) 2. (55)
. . . bject to th [ ditions:
Example 5.3 Consider the following set of singular subject to the purely condifions
differential equations: us (1) = sin (1)
’ 56
{U4(1)=COS(1). (56)

t(t—1)uh (t) =t (t— 1)y (t) +uf (£) ug > (t)
—ug?(t) +1,

{ (t—1)u} (t) = (t — V) ug (t) — /1T —uZ () + cost,

Here,t € [0,1], whilst the exact solutions are, (¢)
(53)  sinh (t), ua (t) = cosh (t), us (t) = sin (t), anduy (t)

subject to the integral conditions: cos (t).
_ i -1
u(0) = fo (=s)ua(s) + e, (54) For the conduct of proceedings in the solutions for the
uy (0) = f(lJ 4etuy (s) — (62 4 1) , last examples, it requite the expansion rules for the kernel
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functionth{Q’k} (s)whenk (s) = s,k (s) =e %, k(s) = values obtained using the RKHS are tabulated for
—s, andk (s) = 4e®, respectively. As a special case and Example 5.3.
without the loss of generality we are finding the rules of

R,;{Z’k} (s) whenk (s) = s. To do so, we need to find the
coefficientsa; (¢), b; (t), andc (t) in

S

1(t) +az () s +as (t) s*
+ay (t) s +c(t) 15—2‘)0,
b1 (t) + b2 (t) s + b3 (t) 52
+b4 (t) 83 =+ C(t) 18_2‘)07

s>,

R (s) = (57)
s > t.

Anyhow, by solving the following sets of algebraic
equations by using MaplE3 software package:

Riz’s} (0) = fol sRiQ"S}(s)dS,

R (0) + B3R (0) + e (1) =0,

OLR{>* (0) = 92R{** (0) = 0,

O2R{* (1) =0,

BRI (1) =0

IR (t40) — 9IRPM (1 —0) = 0,4 =0,1,2,
(

BRI (t+0) — 9REM (1 —0) = —1.

(58)

6 Concluding remarks

The reproducing kernel algorithm is a powerful method
for solving various linear and nonlinear differential
systems of different types and orders. In this study, we
introduce the reproducing kernel approach to enlarge its
application range. It is analyzed that the proposed method
is well suited for use in DASs of IICs for ordinary
differential equations of volatile orders and resides & it
simplicity in dealing with those conditions. However, the
RKHS method does not require discretization of the
variables, it provides the best solution in a less number of
iterations and reduces the computational work. Numerical
experiments are carried out to illustrate that the present
method is an accurate and reliable analytical technique
for treating DASs of IICs. It is worth to be pointed out
that the RKHS method is still suitable and can be
employed for solving other strongly linear and nonlinear
systems of differential equations.
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