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Abstract: The aim of the present analysis is to implement a relatively recent computational method, the reproducing kernel Hilbert
space, for obtaining numerical solutions for differentialalgebraic system of integral-initial conditions. Two extended inner product
spacesW [0, 1] andH [0, 1] are constructed in which the integral-initial conditions of the systems are satisfied. Whilst, two smooth
kernel functionsRt (s) andrt (s) are used throughout the evolution of the algorithm in order to obtain the required grid points. An
efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of theexact solutions
based upon the reproducing kernel theory. In this approach,computational results of some numerical examples are presented to illustrate
the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and
simulated annealing provide a good scheduling methodologyto such systems.
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1 Introduction

Differential algebraic systems (DASs) of integral-initial
conditions (IICs), which consist of systems of first-order
differential equations coupled with purely systems of
algebraic equations subject to given integral conditions
and initial conditions, respectively, are important branch
of modern mathematics that arises naturally from the
mathematical models, or indirectly from converting the
partial differential equations and the optimal control
problems into ordinary differential equations [1,2,3,4,5,
6,7]. There are a range of physical phenomena for which
DASs of IICs provide the model examples, can be found
in many areas of engineering and science ranging, from
simple beam bending problems in mechanics to the
chemical engineering areas of absorption phenomena,
chemical reactions, radiation effects and problems
connected with heat transfer, fluid flow, dissipation of
energy, and control theory [8,9,10,11,12,13,14].
Generally, it is difficult to obtain the closed form
solutions for DASs of IICs in terms of elementary
functions, especially, for nonlinear, non-constant
coefficients, and non-homogeneous cases. Factually, in
most cases, only approximate solutions or numerical
solutions can be expected; therefore, it has attracted much
attention and has been studied by many authors. In this

regards, there are many iterative methods have been
proposed to be one of the suitable and successful classes
of numerical techniques for obtaining the solutions of
numerous types of DASs in general (see, for instance,
[15,16,17,18,19,20,21] and the references therein).

The reproducing kernel Hilbert space (RKHS) method
is a numerical, as well as, analytical technique for solving
a large variety of ordinary and partial differential
equations associated to different kind of constraint
conditions, and usually provides the solutions in term of
rapidly convergent series with components that can be
elegantly computed. In this study, a general technique
based on the reproducing kernel theory is proposed for
solving DASs of IICs in the appropriate inner product
spaces. The main idea is to construct the direct sum of the
RKHSs that satisfying the IICs of the given systems in
order to determining their exact and their numerical
solutions. The exact and the numerical solutions are
represented in the form of series through the functions
value at the right-hand side of the corresponding
differential and algebraic equations. The advantages of
the utilized approach lie in the following main
advantages; firstly, it can produce good globally smooth
numerical solutions, and with ability to solve many
differential systems with complex constraint conditions,
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which are difficult to solve; secondly, the numerical
solutions and their derivatives are converge uniformly to
the exact solutions and their derivatives, respectively;
thirdly, the method is mesh-free, easily implemented and
capable in treating various differential systems and
various constraint conditions.

Anyhow, DASs of IICs have been investigated
systematically in this analysis for the development,
analysis, and implementation of an accurate algorithm
which allows for the use of some form of concurrent
processing technique. More precisely, we consider the
following set of differential equations:



















a1 (t)u
′
1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

a2 (t)u
′
2 (t) = f2 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
ap (t)u

′
p (t) = fp (t, u1 (t) , u2 (t) , · · · , un (t)) ,

(1)

subject to the following set of integral conditions:


























u1 (0) =
∫ 1

0 k1 (s)u1 (s) + η1,

u2 (0) =
∫ 1

0 k2 (s)u2 (s) + η2,
...
up (0) =

∫ 1

0 kp (s)up (s) + ηp,

(2)

simultaneously with the following set of purely systems of
algebraic equations:



















ap+1 (t)up+1 (t) = fp+1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

ap+2 (t)up+2 (t) = fp+2 (t, u1 (t) , u2 (t) , · · · , un (t)) ,
...
an (t)un (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

(3)
subject to one of the following set of initial conditions:

{

up+1 (0) = ηp+1, up+2 (0) = ηp+2, · · · , un (0) = ηn,
{

up+1 (1) = ηp+1, up+2 (1) = ηp+2, · · · , un (1) = ηn,

(4)
where{uj}

p

j=1 ⊂ W 2
2 [0, 1] and{uj}

n

j=p+1 ⊂ W 1
2 [0, 1]

or {uj}
n

j=p+1 ⊂ W
1

2 [0, 1] are unknown functions to be
determined,{fj (t, v1, v2, · · · , vn)}

n

j=1 are continuous
terms in W 1

2 [0, 1] as {vj}
p

j=1 ⊂ W 2
2 [0, 1] and

{vj}
n

j=p+1 ⊂ W 1
2 [0, 1] or {vj}

n

j=p+1 ⊂ W
1

2 [0, 1],
−∞ < vj < ∞, and

W 1
2 [0, 1] ,W 1

2 [0, 1] ,W
1

2 [0, 1] ,W
2
2 [0, 1] are four

RKHSs. Here, the set{aj}
n

j=1 are analytical real-valued
functions on[0, 1] and may take the valuesaj (tλ) = 0
for sometλ ∈ [0, 1] and somej ∈ {1, 2, ..., n} which
make Eqs.(1) and(3) to be singular att = tλ. Through
this paper, we assume that Eqs.(1) - (4) have unique
analytical solutions on[0, 1]. The theory of reproducing

kernel was used for the first time at the beginning of the
20th century as a novel solver for the boundary value
problems of harmonic and biharmonic functions types.
This theory, which is representative in the RKHS method,
has been successfully applied to various important
application in numerical analysis, computational
mathematics, image processing, machine learning,
probability and statistics, and finance [22,23,24,25,26,
27]. The RKHS method is a useful framework for
constructing numerical solutions of great interest to
applied sciences. In the recent years, based on this theory,
extensive work has been proposed and discussed for the
numerical solutions of several integral and differential
operators side by side with their theories. The reader is
kindly requested to go through [28,29,30,31,32,33,34,
35,36,37,38] in order to know more details about the
RKHS method, including its modification and scientific
applications, its characteristics and symmetric kernel
functions, and others.

This article is organized as follows. In the next
section, two extended inner product spaces needed in the
analysis are constructed, and two extended reproducing
kernel functions are obtained. After that, in Section 3, the
solutions and the essential theoretical results are
presented based upon the reproducing kernel theory. In
Section 4, an efficient iterative technique for the solutions
is described, whilst, convergent theorem and error
behavior are also presented. Numerical algorithm and
numerical outcomes are discussed to demonstrate the
accuracy and the applicability of the presented method as
utilized in Section 5. Finally, in Section 6 some
concluding remarks and brief conclusions are utilized.

2 Building appropriate inner product spaces

The reproducing kernel approach builds on a Hilbert
spaceH and requires that all Dirac evaluation functional
in H are bounded and continuous [39,40,41,42,43,44,
45,46,47]. In this section, two extended inner product
spacesH [0, 1] and W [0, 1] are constructed. Then, we
utilize the reproducing kernel concept to obtain two
extended reproducing kernel functionsRt (s) and rt (s)
in order to formulate the solutions in the mentioned
spaces.

LetH be a Hilbert space of functionθ : Ω → H on a
setΩ. A function R : Ω × Ω → C is a reproducing
kernel ofH if the following conditions are met. Firstly,
R (·, t) ∈ H for each t ∈ Ω. Secondly,
〈θ (·) , R (·, t)〉 = θ (t) for eachθ ∈ H and eacht ∈ Ω.
The condition 〈θ (·) , R (·, t)〉 = θ (t) is called the
reproducing property, which means that, the value ofθ at
the pointt is reproducing by the inner product ofθ with
R (·, t). Indeed, a Hilbert space which possesses a
reproducing kernel is called a RKHS. Through the
remainder sections, the symbolRt (·) whenever used
meansR (t, ·).
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Definition 2.1 [26] The spaceW 1
2 [0, 1] is defined as

W 1
2 [0, 1] = {z : z is absolutely continuous function on

[0, 1] and z′ ∈ L2 [0, 1]}. On the other hand, the inner
product and the norm inW 1

2 [0, 1] are defined,
respectively, by

〈z1 (t) , z2 (t)〉W 1

2

= z1 (0) z2 (0)+

∫ 1

0

z′1(t)z
′
2(t)dt, (5)

and ||z1||W 1

2

=
√

〈z1 (t) , z1 (t)〉W 1

2

, where

z1, z2 ∈W 1
2 [0, 1].

Definition 2.2 [26] The spaceW 1
2 [0, 1] is defined as

W 1
2 [0, 1] = {z : z is absolutely continuous function on

[0, 1], z (0) = 0, andz′ ∈ L2 [0, 1]}. On the other hand,
the inner product and the norm inW 1

2 [0, 1] are defined,
respectively, by

〈z1 (t) , z2 (t)〉W 1

2

= z1 (0) z2 (0)+

∫ 1

0

z′1(t)z
′
2(t)dt, (6)

and ||z1||W 1

2

=
√

〈z1 (t) , z1 (t)〉W 1

2

, where

z1, z2 ∈W 1
2 [0, 1].

Definition 2.3 The spaceW
1

2 [0, 1] is defined as

W
1

2 [0, 1] = {z : z is absolutely continuous function on
[0, 1], z (1) = 0, andz′ ∈ L2 [0, 1]}. On the other hand,

the inner product and the norm inW
1

2 [0, 1] are defined,
respectively, by

〈z1 (t) , z2 (t)〉W 1

2

= z1 (1) z2 (1)+

∫ 1

0

z′1(t)z
′
2(t)dt, (7)

and ||z1||W 1

2

=
√

〈z1 (t) , z1 (t)〉W 1

2

, where

z1, z2 ∈W
1

2 [0, 1].

Definition 2.4 The spaceW 2k
2 [0, 1] is defined as

W 2k
2 [0, 1] = {z : z, z′ are absolutely continuous

functions on [0, 1], z (0) −
∫ 1

0 k (s) z (s) ds = 0,
z′′ ∈ L2 [0, 1]}. On the other hand, the inner product and
the norm inW 2k

2 [0, 1] are defined, respectively, by

〈z1 (t) , z2 (t)〉W 2k
2

= z1 (0) z2 (0) + z′1 (0) z
′
2 (0)

+

∫ 1

0

z′′1 (t) z′′2 (t) dt, (8)

and ||z1||W 2k
2

=
√

〈z1 (t) , z1 (t)〉W 2k
2

, where

z1, z2 ∈W 2k
2 [0, 1].

Here,〈z1 (t) , z2 (t)〉W 2k
2

satisfies all the requirements
of the inner product as follows; firstly,
〈z1 (t) , z1 (t)〉W 2k

2

≥ 0; secondly,

〈z1 (t) , z2 (t)〉W 2k
2

= 〈z2 (t) , z1 (t)〉W 2k
2

; thirdly,
〈γz1 (t) , z2 (t)〉W 2k

2

= γ 〈z1 (t) , z2 (t)〉W 2k
2

; fourthly,
〈z1 (t) + z2 (t) , z3 (t)〉W 2k

2

=

〈z1 (t) , z3 (t)〉W 2k
2

+ 〈z2 (t) , z3 (t)〉W 2k
2

. Indeed,
〈z1 (t) , z1 (t)〉W 2k

2

= 0 if and only if z1 (t) = 0. To see
this, whenz1 (t) = 0, then 〈z1 (t) , z1 (t)〉W 2k

2

= 0,
whilst, if 〈z1 (t) , z1 (t)〉W 2k

2

= 0, then

(z1 (0))
2
+ (z′1 (0))

2
+

∫ 1

0
(z′′1 (t))

2
dt = 0, therefore

z1 (0) = z′1 (0) = z′′1 (t) = 0 or z1 (t) = 0.
An important subsets of RKHSs are those associated

to continuous kernels. These spaces have wide
applications, including complex analysis, harmonic
analysis, quantum mechanics, statistics, and machine
learning [22,23,24,25]. Next, before any further
discussion, we need to obtain the reproducing kernel

functions of the spacesW 1
2 [0, 1], W 1

2 [0, 1], W
1

2 [0, 1],
andW 2k

2 [0, 1], respectively, as follows:

Theorem 2.1 [26] The Hilbert spaceW 1
2 [0, 1] is a

complete reproducing kernel with the reproducing kernel
function

R
{1}
t (s) =







R
{1}
t,1 (s) = 1 + s, s ≤ t,

R
{1}
t,2 (s) = 1 + t, s > t.

(9)

.

Theorem 2.2The Hilbert spaceW 1
2 [0, 1] is a complete

reproducing kernel with the reproducing kernel function

R
{1}
t (s) =







R
{1}
t,1 (s) = s, s ≤ t,

R
{1}
t,2 (s) = t, s > t.

(10)

Proof. By applying the tabular integration formula on
u′(s)∂1sR

{1}
t (s) and considering Eq.(6), it easy to see

that
〈

u (s) , R
{1}
t (s)

〉

W 1

2

= u (0)
[

R
{1}
t (0)− ∂1sR

{1}
t (0)

]

+u (1)∂1sR
{1}
t (1)−

∫ 1

0

u (s) ∂2sR
{1}
t (s)ds. (11)

But sinceu (s) , R{1}
t (s) ∈ W 1

2 [0, 1], it follows that

u (0) = 0 andR{1}
t (0) = 0. Thus, using the properties

R
{1}
t (t+ 0) − R

{1}
t (t− 0) = 0 and

∂1sR
{1}
t (t+ 0) − ∂1sR

{1}
t (t− 0) = −1, the rules of

R
{1}
t (s) can be obtained directly.

Theorem 2.3The Hilbert spaceW
1

2 [0, 1] is a complete
reproducing kernel with the reproducing kernel function

R
{1}

t (s) =







R
{1}

t,1 (s) = 1− s, s ≤ t,

R
{1}

t,2 (s) = 1− t, s > t.

(12)
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Proof. By applying the tabular integration formula on

u′(s)∂1sR
{1}

t (s) and considering Eq.(7), it easy to see
that
〈

u (s) , R
{1}

t (s)
〉

W
1

2

= u (1)
[

R
{1}

t (1) + ∂1sR
{1}

t (1)
]

−u (0)∂1sR
{1}

t (0)−

∫ 1

0

u (s) ∂2sR
{1}

t (s)ds. (13)

But sinceu (s) , R
{1}

t (s) ∈ W
1

2 [0, 1], it follows that

u (1) = 0 andR
{1}

t (1) = 0. Thus, using the properties

R
{1}

t (t+ 0) − R
{1}

t (t− 0) = 0 and

∂1sR
{1}

t (t+ 0) − ∂1sR
{1}

t (t− 0) = −1, the rules of

R
{1}

t (s) can be obtained directly.

Theorem 2.4The Hilbert spaceW 2k
2 [0, 1] is a complete

reproducing kernel with the reproducing kernel function

R
{2,k}
t (s) =







R
{2,k}
t,1 (s) , s ≤ t,

R
{2,k}
t,2 (s) , s > t.

(14)

where R
{2,k}
t,1 (s) =

4
∑

i=1

ai (t) s
i−1 + C(t, s),

R
{2,k}
t,2 (s) =

4
∑

i=1

bi (t) s
i−1 + C(t, s) and

C(t, s) = c (t)
∫ s

0

∫ s

0

∫ s

0

∫ s

0
k (s) dsdsdsds.

Proof. The proof of the completeness and the reproducing
property ofW 2k

2 [0, 1] is similar to the proof in [28]. Let
us find out the expression form ofR{2,k}

t (s) inW 2k
2 [0, 1].

Since

〈

u (s) , R
{2,k}
t (s)

〉

W 2k
2

=
1

∑

i=0

u(i) (0) ∂isR
{2,k}
t (0)

+

∫ 1

0

u′′(s)∂2sR
{2,k}
t (s)ds

+c (t)

[

u (0)−

∫ 1

0

k (s)u (s) ds

]

, (15)

whereu (s) , R{2,k}
t (s) ∈ W 2k

2 [0, 1]. By applying the

tabular integration formula onu′′(s)∂2sR
{2,k}
t (s), we get

∫ 1

0

u′′(s)∂2sR
{2,k}
t (s)ds =

1
∑

i=0

(−1)
1−i

u(i) (s) ∂3−is R
{2,k}
t (s) |s=1

s=0

+

∫ 1

0

u (s) ∂4sR
{2,k}
t (s) ds. (16)

According to Eq.(8), one can write
〈

u (s) , R
{2,k}
t (s)

〉

W 2k
2

=

u (0)
[

R
{2,k}
t (0) + ∂3sR

{2,k}
t (0) + c (t)

]

+u′ (0)
[

∂1sR
{2,k}
t (0)− ∂2sR

{2,k}
t (0)

]

−u (1)∂3sR
{2,k}
t (1) + u′ (1) ∂2sR

{2,k}
t (1)

+

∫ 1

0

u (s)
[

∂4sR
{2,k}
t (s)− c (t) k (s)

]

ds. (17)

Since R
{2,k}
t (s) ∈ W 2k

2 [0, 1], it follows that

R
{2,k}
t (0) =

∫ 1

0 k (s)R
{2,k}
t (s)ds. Thus, If

R
{2,k}
t (0) + ∂3sR

{2,k}
t (0) + c (t) = 0,

∂1sR
{2,k}
t (0) − ∂2sR

{2,k}
t (0) = 0, ∂3sR

{2,k}
t (1) = 0, and

∂2sR
{2,k}
t (1) = 0. then Eq. (17) implies that

〈

u (s) , R
{2,k}
t (s)

〉

W 2k
2

=

∫ 1

0
u (s)

[

∂4sR
{2,k}
t (s)− c (t) k (s)

]

ds. Now, for each

t ∈ [0, 1], if R{2,k}
t (s) satisfies

∂4sR
{2,k}
t (s)− c (t) k (s) = δ (s− t) , (18)

then
〈

u (s) , R
{2,k}
t (s)

〉

W 2k
2

= u (t). Obviously,

R
{2,k}
t (s) is the reproducing kernel function of

W 2k
2 [0, 1]. For the conduct of proceedings in the proof, it

requires the expression form ofR{2,k}
t (s). For t 6= s, the

auxiliary formula of Eq.(18) is λ4 = 0, and its auxiliary
values areλ = 0 with multiplicity 4. So, let the
expression form ofR{2,k}

t (s) be as defined in Eq.(14).
But on the other aspect as well, for Eq.(18), let

R
{2,k}
t (s) satisfies

∂qsR
{2,k}
t (t+ 0) − ∂qsR

{2,k}
t (t− 0) = 0, q = 0, 1, 2.

Integrating Eq.(18) from x − ε to t + ε with respect toy
and letting ε → 0, we have the jump degree of
∂3sR

{2,k}
t (s) at s = t such that

∂3sR
{2,k}
t (t+ 0) − ∂3sR

{2,k}
t (t− 0) = −1. Through the

last descriptions and by using Maple13 software
package, the unknown coefficients ofR{2,k}

t (s) can be
obtained.

Throughout this paper and without the loss of
generality we are focusing on the construction proof by
using W 2k

2 [0, 1] and W 1
2 [0, 1] as the domain space.

Actually, in the same manner, we can employ our

c© 2018 NSP
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construction ifW 2k
2 [0, 1] andW

1

2 [0, 1] are the domain
space.

Remark 2.1 Henceforth and not to conflict unless stated
otherwise, we denote the following symbols:

H [0, 1] =
⊕n

j=1W
1
2 [0, 1] ,

W [0, 1] =
(

⊕p
j=1W

2kj
2 [0, 1]

)

⊕

(

⊕n
j=p+1W

1
2 [0, 1]

)

.

(19)

Rt (s) =

(

R
{2,k1}
t (s) , · · · ,

(

R
{2,kp}
t

)

pth
(s))

)

,

(

R
{1}
t

)

(p+1)th
(s) , · · · ,

(

R
{1}
t

)

nth
(s)T ,

rt (s) =
(

R
{1}
t (s) , R

{1}
t (s) , · · · ,

(

R
{1}
t

)

nth
(s)

)T

.

(20)

Definition 2.5 [26] The inner product Hilbert space
H [0, 1] can be defined as

H [0, 1] = {(z1, z2, · · · , zn)
T
: {zj}

n

j=1 ⊂W 1
2 [0, 1]}.

(21)
The inner product and the norm inH [0, 1] are building as

〈z (t) , w (t)〉H =

n
∑

j=1

〈zj(t), wj(t)〉W 1

2

, (22)

and ||z||H =

√

n
∑

j=1

||zj||
2
W 1

2

, respectively, wherez, w ∈

H [0, 1].

Definition 2.6 The inner product Hilbert spaceW [0, 1]
can be defined as

W [0, 1] = {(z1, z2, · · · , zp, zp+1, · · · , zn)
T

such that

zj ∈

{

W
2kj
2 [0, 1] , j = 1, 2, · · · , p,

W 1
2 [0, 1] , j = p+ 1, p+ 2, · · · , n.

(23)

The inner product and the norm inW [0, 1] are building as

〈z (t) , w (t)〉W =

p
∑

j=1

〈zj (t) , wj (t)〉
W

2kj
2

+

n
∑

j=p+1

〈zj (t) , wj (t)〉W 1

2

, (24)

and ||z||W =

√

p
∑

j=1

||zj||
2

W
2kj
2

+
n
∑

j=p+1

||zj ||
2
W 1

2

,

respectively, wherez, w ∈ W [0, 1].

The spacesH [0, 1] andW [0, 1] are complete Hilbert
with some special properties. So, all the properties of the
Hilbert space will be hold. Further, theses spaces
possesses some special and better properties which could
make some systems be solved easier. For instance, many
systems studied inL2 [0, 1] space, which is a complete
Hilbert, requires large amount of integral-differential
computations and such computations may be very
difficult in some cases. Thus, the numerical
integrals-differentials have to be calculated in the cost of
losing some accuracy. However, the properties of the
spaces H [0, 1] and W [0, 1] require no more
integral-differential computations for some functions,
instead of computing some values of a function at some
grid points. In fact, this simplification of computations
not only improves the computational speed, but also
improves the computational accuracy.

3 Representation of analytical and numerical
solutions

In this section, we will show how to solve the DAS of
IICs of Eqs.(1) - (4) by using the RKHS method in detail
and we will see what the influence choice of the
continuous linear operators. Anyhow, the formulation and
the implementation method of the exact and the
numerical solutions are given in the extended RKHSs
W [0, 1] and H [0, 1]. Meanwhile, we construct an
orthogonal function systems of the spaceW [0, 1] based
on the use of the Gram-Schmidt process.

Now, to apply the RKHS method onH [0, 1] and
W [0, 1], we will define the following linear operators:

Lj :







W
2kj
2 [0, 1] →W 1

2 [0, 1] , j = 1, 2, · · · , p,

W 1
2 [0, 1] →W 1

2 [0, 1] , j = p+ 1, p+ 2, · · · , n,

(25)
such that

Ljuj (t) =

{

aju
′
j (t) , j = 1, 2, · · · , p,

ajuj (t) , j = p+ 1, p+ 2, · · · , n.
(26)

For the conduct of proceedings in the algorithm
construction, we put

F = Column(f1, f2, · · · , fp, fp+1, · · · , fn) ,

u = Column(u1, u2, · · · , up, up+1, · · · , un) ,

u′ = Column
(

u′1, u
′
2, · · · , u

′
p, u

′
p+1, · · · , u

′
n

)

,

α =
(

∫ 1

0 k1 (s)u1 + η1, · · · ,
∫ 1

0 kp (s)up + ηp, · · · , 0
)

n×1
,

ej = Column(0, 0, · · · 0, 1jth, 0, · · · , 0)n×1 ,

L = Diagonal(L1, L2, · · · , Lp, Lp+1, · · · , Ln) .
(27)
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Thus, based on this, the DAS of IICs of Eqs.(1) - (4) can
be converted into the following equivalent form:

L :W [0, 1] → H [0, 1] such thatLu (t) = F (t, u (t)) ,
(28)

in whichu ∈W [0, 1] andF ∈ H [0, 1];
subject to the following sets of constraint conditions:

eTj u (0) = eTj α, j = 1, 2, · · · , p

and

eTj u (0) = eTj η, j = p+ 1, p+ 2, · · · , n. (29)

Lemma 3.1 The operators
{Lj}

p

j=1 : W
2kj
2 [0, 1] → W 1

2 [0, 1] and

{Lj}
n

j=p+1 : W 1
2 [0, 1] → W 1

2 [0, 1] are bounded and
linear.

Proof. In this proof, we are focusing on
{Lj}

p

j=1 : W
2kj
2 [0, 1] → W 1

2 [0, 1]. The linearity part is
obvious, for the boundedness part, we need to prove that
‖Ljuj‖W 1

2

≤ M ‖uj‖
W

2kj
2

, whereM > 0. By the

Schwarz inequality, one can write

|uj (t)| =

∣

∣

∣

∣

〈

uj (·) , R
{2,k}
t (·)

〉

W
2kj
2

∣

∣

∣

∣

≤

‖uj‖
W

2kj
2

∥

∥

∥
R

{2,k}
t (·)

∥

∥

∥

W
2kj
2

,

∣

∣u′j (t)
∣

∣ =

∣

∣

∣

∣

〈

uj (·) , ∂
1
tR

{2,k}
t (·)

〉

W
2kj
2

∣

∣

∣

∣

≤

‖uj‖
W

2kj
2

∥

∥

∥
∂1tR

{2,k}
t (·)

∥

∥

∥

W
2kj
2

, and
∣

∣u′′j (t)
∣

∣ ≤ ‖uj‖
W

2kj
2

∥

∥

∥
∂2tR

{2,k}
t (·)

∥

∥

∥

W
2kj
2

. From the

definition of the inner product and the norm ofW 1
2 [0, 1],

it follows that
∣

∣

∣

∣aju
′
j

∣

∣

∣

∣

W 1

2

=
(

(

aj (0)u
′
j (0)

)2
+
∫ 1

0

(

a′j (t)u
′′
j (t)

)2
dt
)

1

2

≤

(

a2j (0)
(

u′j (0)
)2

+
(

∫ 1

0

(

a′j (t)
)4 (

u′′j (t)
)4
dt
)

1

2

)
1

2

≤ [a2j (0) ‖uj‖
2

W
2kj
2

∥

∥

∥
∂1tR

{2,k}
0 (·)

∥

∥

∥

2

W
2kj
2

+

(

∫ 1

0

(

a′j (t)
)4

‖uj‖
4

W
2kj
2

∥

∥

∥
∂2tR

{2,k}
t (·)

∥

∥

∥

4

W
2kj
2

dt

)
1

2

]
1

2

≤ ‖uj‖
W

2kj
2

[a2j (0)
∥

∥

∥
∂1tR

{2,k}
0 (·)

∥

∥

∥

2

W
2kj
2

+

(

∫ 1

0
max

(

(

a′j
)4

[0, 1]
) ∥

∥

∥
∂2tR

{2,k}
t (·)

∥

∥

∥

4

W
2kj
2

dt

)
1

2

]
1

2

= ‖uj‖
W

2kj
2

[a2j (0)
∥

∥

∥
∂1tR

{2,k}
0 (·)

∥

∥

∥

2

W
2kj
2

+max
(

(

a′j
)4

[0, 1]
)

1

2

∥

∥

∥
∂2tR

{2,k}
t (·)

∥

∥

∥

2

W
2kj
2

]
1

2

≤M ‖uj‖
W

2kj
2

,M > 0,

(30)

where

M = [a2j (0)
∥

∥

∥
∂1tR

{2,k}
0 (·)

∥

∥

∥

2

W
2kj
2

+

max
(

(

a′j
)4

[0, 1]
)

1

2

∥

∥

∥
∂2tR

{2,k}
t (·)

∥

∥

∥

2

W
2kj
2

]
1

2 .

Theorem 3.1 [26] The operatorL :W [0, 1] → H [0, 1] is
bounded and linear.

Proof. Clearly, L is linear operator fromW [0, 1] into
H [0, 1]. The boundedness part is shown as follows: for
eachu ∈ W [0, 1], we have

‖Lu‖H =

√

√

√

√

n
∑

j=1

||Ljuj ||
2
W 1

2

=

√

√

√

√

p
∑

j=1

||Ljuj||
2
W 1

2

+

n
∑

j=p+1

||Ljuj||
2
W 1

2

≤

√

√

√

√

p
∑

j=1

||Lj||
2
||uj||

2

W
2kj
2

+

n
∑

j=p+1

||Lj ||
2
||uj ||

2
W 1

2

≤

√

√

√

√

√

√

√

p
∑

j=1

||Lj ||
2

p
∑

j=1

||uj ||
2

W
2kj
2

+
n
∑

j=p+1

||Lj||
2

n
∑

j=p+1

||uj||
2
W 1

2

≤

√

√

√

√

√

√

√

(
p
∑

j=1

||Lj ||
2
+

n
∑

j=p+1

||Lj||
2
)

(
p
∑

j=1

||uj ||
2

W
2kj
2

+
n
∑

j=p+1

||uj||
2
W 1

2

)

= ||L|| ||u||W . (31)

Considering Lemma 3.1 and the boundedness of
{Lj}

p

j=1 and{Lj}
n

j=p+1 implies thatL is bounded.

Next, we construct an orthogonal function systems of
the spaceW [0, 1] as follows: put

ϕij (t) = (rti (t))j ej =







































(

R
{1}
ti

(t) , 0, 0, · · · , 0
)T

, j = 1,

(

0, R
{1}
ti

(t) , 0, · · · , 0
)T

, j = 2,

...
...

(

0, 0, · · · , 0, R
{1}
ti

(t)
)T

, j = n,

(32)

andψij (t) = L∗ϕij (t), i = 1, 2, ..., j = 1, 2, · · · , n,
whereL∗ = Diagonal

(

L∗
1, L

∗
2, · · · , L

∗
p, L

∗
p+1, · · · , L

∗
n

)

is

the adjoint operator ofL, R{1}
t (s) is the reproducing
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kernel function ofW 1
2 [0, 1], and {ti}

∞
i=1 is dense on

[0, 1].

Algorithm 3.1 The orthonormal function systems
{

ψij (t)
}(∞,n)

(i,j)=(1,1)
of the spaceW [0, 1] can be derived

from the Gram-Schmidt orthogonalization process of
{

ψij (t)
}(∞,n)

(i,j)=(1,1)
as follows:

Step 1:For l = 1, 2, ... andk = 1, 2, ..., l do the following:
If l = k = 1, then setµijlk = 1

‖ψ
11

‖
W

;
If l = k 6= 1, then set

µ
ij
lk = 1

√

‖ψlk‖
2

W
−

l−1
∑

p=1

〈ψlk(t),ψlp(t)〉
2

W

;

If l > k, then set µ
ij
lk =

−1
√

‖ψlk‖
2

W
−

l−1
∑

p=1

〈ψlk(t),ψlp(t)〉
2

W

l−1
∑

p=k

〈

ψlk (t) , ψlp (t)
〉

µ
ij
pk;

Output: the orthogonalization coefficientsµijlk of the
orthonormal systemsψij (t).

Step 2:For i = 1, 2, ... andj = 1, 2, · · · , n set

ψij (t) =

i
∑

l=1

j
∑

k=1

µ
ij
lkψlk (t) ; (33)

Output: the orthonormal function systems
{

ψij (t)
}(∞,n)

(i,j)=(1,1)
.

Step 3:Stop.

The subscripts by the operatorL, denoted byLs,
indicates that the operatorL applies to the function ofs.
Indeed, it is easy to see that,
ψij (t) = L∗ϕij (t) =

〈

L∗ϕij (s) , Rt (s)
〉

W
=

〈

ϕij (s) , LsRt (s)
〉

H
= LsRt (s)|s=ti ∈ W [0, 1]. Thus,

ψij (t) can be expressed in the form of
ψij (t) = LsRt (s)|s=ti .

Theorem 3.2For Eqs.(28) and(29), if {ti}
∞
i=1 is dense

on [0, 1], then
{

ψij (t)
}(∞,n)

(i,j)=(1,1)
is the complete function

systems of the spaceW [0, 1].

Proof. For each fixed u ∈ W [0, 1], let
〈

u (t) , ψij (t)
〉

W
= 0. Then,

〈

u (t) , ψij (t)
〉

W
=

〈

u (t) , L∗ϕij (t)
〉

W
=

〈

Lu (t) , ϕij (t)
〉

H
= Lu (ti) = 0. Whilst on the other

hand,

u (t) =
n
∑

j=1

uj (t) ej =
n
∑

j=1

〈

u (·) , (Rt (·))j ej

〉

W
ej ,

where

(Rt (·))j ej =











































































































(

R
{2,k1}
t (s) , 0, 0, · · · , 0

)T

, j = 1,

(

0, R
{2,k2}
t (s) , 0, 0, · · · , 0

)T

, j = 2,

...
(

0, · · · , 0,
(

R
{2,kp}
t (s)

)

pth
, 0, · · · , 0

)T

,

j = p,

(

0, · · · , 0,
(

R
{1}
t (s)

)

(p+1)th
, 0, · · · , 0

)T

,

j = p+ 1,
...
(

0, 0, · · · , 0,
(

R
{1}
t (s)

)

(n)th

)T

, j = n.

(34)

Hence,Lu (ti) =
n
∑

j=1

〈

Lu (t) , ϕij (t)
〉

H
ej = 0. But

since{ti}
∞
i=1 is dense on[0, 1], we must haveLu (t) = 0.

It follows thatu (t) = 0 from the existence ofL−1.

Theorem 3.3If {ti}
∞
i=1 is dense on[0, 1] and the solution

of Eqs.(28) and(29) is unique, then their exact solution
satisfies the infinite expansion form

u (t) =

∞
∑

i=1

n
∑

j=1

Aijψ̄ij (t) , (35)

Aij =
i

∑

l=1

j
∑

k=1

µ
ij
lkfk (tl, u (tl)) .

Proof. Applying Theorem 3.2, it is easy to see that
{

ψ̄ij (t)
}(∞,n)

(i,j)=(1,1)
is the complete orthonormal basis of

W [0, 1]. Since,
〈

u (t) , ϕij (t)
〉

= uj (ti) for each
u ∈ W [0, 1], while on the other hand,
∞
∑

i=1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉

W
ψ̄ij (t) is the Fourier series

expansion about
{

ψ̄ij (t)
}(∞,n)

(i,j)=(1,1)
. Then the series

∞
∑

i=1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉

W
ψ̄ij (t) is convergent in the
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sense of‖·‖W . Thus, using Eq.(33), we have

u (t) =
∞
∑

i=1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉

W
ψ̄ij (t)

=
∞
∑

i=1

n
∑

j=1

〈u (t) ,
i
∑

l=1

j
∑

k=1

µ
ij
lkψlk (t)〉W ψ̄ij (t)

=
∞
∑

i=1

n
∑

j=1

i
∑

l=1

j
∑

k=1

µ
ij
lk 〈u (t) , L

∗ϕlk (t)〉W ψ̄ij (t)

=
∞
∑

i=1

n
∑

j=1

i
∑

l=1

j
∑

k=1

µ
ij
lk 〈Lu (t) , ϕlk (t)〉H ψ̄ij (t)

=
∞
∑

i=1

n
∑

j=1

i
∑

l=1

j
∑

k=1

µ
ij
lk 〈fk (t, u (t)) , ϕlk (t)〉H ψ̄ij (t)

=
∞
∑

i=1

n
∑

j=1

Aijψ̄ij (t) .

(36)
Therefore, the form of Eq.(35) is the exact solution of
Eqs.(28) and(29).

Anyhow, sinceW [0, 1] is a Hilbert space, it is clear

thatu (t) =
∞
∑

i=1

n
∑

j=1

Aij ψ̄ij (t) < ∞. Therefore, the finite

sequence of functions

uη (t) =

η
∑

i=1

n
∑

j=1

Aij ψ̄ij (t) , (37)

is convergent in the sense of the norm ofW [0, 1] and the
numerical solutionuη (t) of u (t) for Eqs.(28) and(29)
can be obtained and calculated directly by Eq.(37).

4 Construct and implement the iterative
technique

In this section, we consider the given DAS of IICs and
construct an iterative technique to find their solutions in
the space W [0, 1] for linear and nonlinear case
simultaneously. Also, numerical solutions of the same
system, obtained using proposed method with existing
IICs are proved to converge to the exact solutions with
decreasing absolute difference between the exact values
and the values obtained using RKHS method.

The basis of our RKHS method for solving Eqs.(28)
and (29) is summarized below for the exact and the
numerical solutions. Firstly, we shall make use of the
following facts about the linear and the nonlinear case
depending on the internal structure of the functionF .

Case 1:If Eq. (28) is linear, then the exact and the
numerical solutions can be obtained directly from
Eqs.(35) and(37), respectively.

Case 2:If Eq. (28) is nonlinear, then the exact and the
numerical solutions can be obtained by using the
following iterative process.

According to Eq.(35), the representation form of the
exact solution of Eqs.(28) - (29) can be written as

u (t) =

∞
∑

i=1

n
∑

j=1

Aij ψ̄ij (t) . (38)

For numerical computations, we define theη-term
numerical solution ofu (t) by

uη (t) =

η
∑

i=1

n
∑

j=1

Bijψ̄ij (t) , (39)

where the coefficients Bij and the successive
approximationsui (t), i = 1, 2, ..., η are given as

Bij =

i
∑

l=1

j
∑

k=1

µ
ij
lkfk (tl, ul−1 (tl)) . (40)

In the iterative process of Eqs.(39) and(40), we can
guarantee that the numerical solutionuη (t) satisfies the
constraints conditions of Eq.(29). Now, we will proof
thatuη (t) in the iterative formula of Eqs.(39) and(40) is
converge to the exact solutionu (t) of Eqs.(28) and(29).
Lemma 4.1 If u ∈ W [0, 1], then the numerical solution
uη (t) and its derivativeu′η (t) are converging uniformly to
the exact solutionu (t) and its derivativeu′ (t) asη → ∞,
respectively.

Proof. For eacht ∈ [0, 1], one can write
∣

∣

∣
u
(i)
η (t)− u(i) (t)

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

j=1

〈

uη (t)− u (t) , ∂it (Rt (t))j ej

〉

W
ej

∣

∣

∣

∣

∣

≤
n
∑

j=1

∣

∣

〈

uη (t)− u (t) , ∂itRt (t) ej
〉

W
ej
∣

∣

≤
n
∑

j=1

‖uη − u‖
W

∥

∥

∥
∂it (Rt (t))j ej

∥

∥

∥

W
|ej|

= ‖uη − u‖
W

n
∑

j=1

∥

∥

∥
∂it (Rt (t))j ej

∥

∥

∥

W
|ej|

≤Mi ‖uη − u‖
W

,Mi > 0, i = 0, 1,

(41)

where Mi =
n
∑

j=1

∥

∥

∥
∂it (Rt (t))j ej

∥

∥

∥

W
|ej |. Hence, if

‖uη − u‖
W

→ 0 asη → ∞, thenuη (t) andu′η (t) are
converge uniformly tou (t) andu′ (t), respectively.

Theorem 4.1If ‖uη−1 − u‖
W

→ 0, tη → s asη → ∞,
‖uη−1‖W is bounded, andF (t, u (t)) is continuous, then
F (tη, uη−1 (tη)) → F (s, u (s)) asη → ∞.

Proof. Firstly, we will prove thatuη−1 (tη) → u (s).
Since, we can note that

|uη−1 (tη)− u (s)|
= |uη−1 (tη)− uη−1 (s) + uη−1 (s)− u (s)|

≤ |uη−1 (tn)− uη−1 (s)|+ |uη−1 (s)− u (s)| .
(42)
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By reproducing property of the kernel functionRt (s), we

haveuη−1 (tη) =
n
∑

j=1

〈

uη−1 (t) ,
(

Rtη (t)
)

j
ej

〉

W
ej and

uη−1 (s) =
n
∑

j=1

〈

uη−1 (t) , (Rs (t))j ej

〉

W
ej. Thus,

|uη−1 (tη)− uη−1 (s)|

=

∣

∣

∣

∣

∣

n
∑

j=1

〈

uη−1 (t) , (Rtη (t))j ej − (Rs (t))j ej

〉

W
ej

∣

∣

∣

∣

∣

≤
n
∑

j=1

∣

∣

∣

〈

uη−1 (t) ,
(

Rtη (t)−Rs (t)
)

j
ej

〉

W
ej

∣

∣

∣

≤
n
∑

j=1

‖uη−1 (t)‖W

∥

∥

∥

(

Rtη (t)−Rs (t)
)

j
ej

∥

∥

∥

W
|ej |

≤ ‖uη−1 (t)‖W

n
∑

j=1

∥

∥

∥

(

Rtη (t)−Rs (t)
)

j
ej

∥

∥

∥

W
|ej | .

(43)
From the symmetry of R, it follows that
∥

∥

∥

(

Rtη (t)−Rs (t)
)

j
ej

∥

∥

∥

W
→ 0 astη → s andη → ∞.

In terms of the boundedness of‖uη−1‖W , one obtains
that |uη−1 (tη)− uη−1 (s)| → 0 as soon astη → s and
η → ∞. Again, by Lemma 4.1, for eachs ∈ [0, 1], it
holds that|uη−1 (s)− u (s)| ≤ M1 ‖uη−1 − u‖

W
→ 0.

Therefore,uη−1 (tη) → u (s) in the sense of‖·‖W as
tη → s andη → ∞. As a result, by the means of the
continuation of F , it is implies that
F (tη, uη−1 (tη)) → F (s, u (s)) asη → ∞.

Theorem 4.2Suppose that||uη||W is bounded in Eqs.(39)
and(40), {ti}

∞
i=1 is dense on[0, 1], and Eqs.(28) and(29)

have a unique solution. Then theη-term numerical solution
uη (t) converges to the exact solutionu (t) with u (t) =
∞
∑

i=1

n
∑

j=1

Bij ψ̄ij (t).

Proof. The proof can be divided into two steps. Firstly,
we will prove the convergence ofuη (t). From Eqs.(39)
and (40), we infer that

uη+1(t) = uη(t) +
n
∑

j=1

B(η+1)jψ̄(η+1)j (t). From the

orthogonality of
{

ψ̄ij (t)
}(∞,n)

(i,j)=(1,1)
it follows that

||uη+1||
2
W

= ||uη||
2
W

+
n
∑

j=1

B2
(η+1)j = ||uη−1||

2
W

+

n
∑

j=1

B2
ηj +

n
∑

j=1

B2
(η+1)j = ... = ||u0||

2
W +

η+1
∑

i=1

n
∑

j=1

B2
ij . In

other formulation, it holds that||uη+1||W ≥ ||uη||W . Due
to the condition that||uη||W is bounded,||uη||W is
convergent and there exists a constantc such that
∞
∑

i=1

n
∑

j=1

B2
ij = c. This implies that

{

n
∑

j=1

B2
ij

}∞

i=1

∈ l2.

On the other hand, since(uζ (t)− uζ−1 (t))⊥(uζ−1 (t)−

uζ−2 (t))⊥...⊥(uη+1 (t) − uη (t)), it follows for ζ > η
that

||uζ − uη||
2
W

= ||uζ − uζ−1 + uζ−1 − ...+ uη+1 − uη||
2
W

= ||uζ − uζ−1||
2
+||uζ−1 − uζ−2||

2
+...+||uη+1 − uη||

2
.

(44)

Furthermore,||uζ − uζ−1||
2
W

=
n
∑

j=1

B2
ζj . Consequently,

asη, ζ → ∞, we have||uζ − uη||
2
W

=
ζ
∑

l=η+1

n
∑

j=1

B2
lj →

0. Considering the completeness ofW [0, 1], there exist
u ∈ W [0, 1] such thatuη (t) → u (t) asη → ∞ in the
sense of||·||W .

Secondly, we will prove thatu (t) is the solution of
Eqs. (28) and (29). Taking the limits in Eqs.(39) and

(40), one can getu (t) =
∞
∑

i=1

n
∑

j=1

Bijψ̄ij (t). But on the

other aspect as well,(Lu) (t) =
∞
∑

i=1

n
∑

j=1

BijLψ̄ij (t),

thus, (Lu)k (tl) =
∞
∑

i=1

n
∑

j=1

Bij
〈

Lψ̄ij (t) , ϕlk (t)
〉

H
=

∞
∑

i=1

n
∑

j=1

Bij
〈

ψ̄ij (t) , L
∗ϕlk (t)

〉

W
=

∞
∑

i=1

n
∑

j=1

Bij
〈

ψ̄ij (t) , ψlk (t)
〉

W
.

Therefore,
l
∑

l′=1

k
∑

k′=1

Blkl′k′ (Lu)k′ (tl′) =

∞
∑

i=1

n
∑

j=1

Bij〈ψ̄ij (t) ,
l
∑

l′=1

k
∑

k′=1

Blkl′k′ψl′k′ (t)〉W =

∞
∑

i=1

n
∑

j=1

Bij
〈

ψ̄ij (t) , ψ̄l′k′ (t)
〉

W
= Blk. For the conduct

of proceedings in the proof, ifl = 1, then
(Lu)j (t1) = fj (t1, u0 (t1)), j = 1, 2, · · · , n, that is,
Lu (t1) = F (t1, u0 (t1)). Again, if l = 2, then
(Lu)j (t2) = fj (t2, u1 (t2)), j = 1, 2, · · · , n, that is,
Lu (t2) = F (t2, u1 (t2)). In the same manner, we can
discover the following general pattern form:
Lu (tη) = F (tη, uη−1 (tη)). Since{ti}

∞
i=1 is dense on

[0, 1], then for eachs ∈ [0, 1], there exists subsequence
{

tηj

}∞

j=1
, such thattηj → s asj → ∞. But since, we

have known thatLu
(

tηj

)

= F
(

tηj , uηj−1

(

tnj

)

)

.

Hence, letj → ∞, by the continuity ofF , we have
Lu (s) = F (s, u (s)). Hence,u (t) satisfies Eq.(28).
Also, since ψ̄ij (t) ∈ W [0, 1], then u (t) satisfies the
constraint conditions of Eq.(29). In other words,u (t) is
the solution of Eqs.(28) and(29). The application of the
uniqueness of solution yields that

u (t) =
∞
∑

i=1

n
∑

j=1

Bijψ̄ij (t).

Let εη = ||u− uη||W , whereu (t) and uη (t) are
given by Eqs.(35) and(37), respectively. Then using the
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expansionsu (t) =
∞
∑

i=1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉

W
ψ̄ij (t) and

uη (t) =
η
∑

i=1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉

W
ψ̄ij (t), one can write

ε2η =
∞
∑

i=η+1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉2

W
and

ε2η−1 =
∞
∑

i=η

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉2

W
. Clearly, εη−1 ≥ εη,

and consequently{εη}
∞
η=1 are decreasing in the sense of

the norm ofW [0, 1]. By Theorem3.3, we know that
∞
∑

i=1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉

W
ψ̄ij (t) is convergent. Thus,

ε2η =
∞
∑

i=η+1

n
∑

j=1

〈

u (t) , ψ̄ij (t)
〉2

W
→ 0 or εη → 0 as

η → ∞.

5 Application and numerical simulations

In order to solve the DASs of IICs numerically on a
computer, the system is approximated by a discrete one
and the continuous functions are approximated by finite
arrays of values. Anyhow, to demonstrate the simplicity
and effectiveness of the proposed method, numerical
solutions for three different DASs of IICs is constructed
using the RKHS method. Results obtained by the
proposed method are compared systematically with some
other well-known methods and are found outperforms in
terms of accuracy and generality.

By generating the finite direct sum between the spaces

W 1
2 [0, 1] ,W 1

2 [0, 1] ,W
1

2 [0, 1] ,W
2k
2 [0, 1] and merge the

kernel functionsR{1}
t (s) , R

{1}
t (s) , R

{1}

t (s) , R
{2,k}
t (s)

in one vector space that satisfying the corresponding IICs,
we can directly obtain the exact and the numerical
solutions by applying the following algorithm.

Algorithm 5.1 To approximate the solutionuη (t) of u (t)
for Eqs.(28) and(29), we do the following steps:

Input: The interval [0, 1], the integersη, the kernel
functionsRt (s) , rt (s), the differential operatorL,
and the functionF .

Output: Numerical solutionuη (t) of u (t) at each grid
points in the independent interval[0, 1].

Step 1:Fixedt in [0, 1] and sets ∈ [0, 1];
If s ≤ t, set

Rt (s) = [R
{2,k1}
t,1 (s) , · · · ,

(

R
{1}
t,1

)

(p+1)th
(s) ,

· · · ,
(

R
{1}
t,1

)

nth
(s)]T ;

Else setRt = [R
{2,k1}
t,2 (s) , · · · ,

(

R
{1}
t,2

)

(p+1)th
(s) ,

· · · ,
(

R
{1}
t,2

)

nth
(s)]T ;

For i = 1, 2, ..., η and j = 1, 2, · · · , n, do the
following:

Setti = i−1
η−1 ;

Setψi,j (ti) = Ls [Rti (s)]s=ti ;

Output: the orthogonal function systemsψi,j (ti).
Step 2:For l = 2, 3, ..., η andk = 1, 2, ..., l, do Algorithm

(3.1) for l andk;
Output: the orthogonalization coefficientsµijlk.

Step 3:For l = 2, 3, ..., η−1 andk = 1, 2, ..., l−1, do the
following:

Setψij (ti) =
i
∑

l=1

j
∑

k=1

µ
ij
lkψlk (ti);

Output: the orthonormal function systemψij (ti).

Step 4:SetBij =
i
∑

l=1

2
∑

k=1

µ
ij
lkfk (tl, ul−1 (tl));

Setui (ti) =
i
∑

i=1

n
∑

j=1

Bijψ̄ij (ti);

Output: the numerical solutionuη (ti) of u (ti).
Step 5:Stop.

Using RKHS algorithm, taking ti = i−1
η−1 ,

i = 1, 2, ..., η in uη (t) of Eq. (37), generating the
reproducing kernel functionsrt (s) , Rt (s) on [0, 1], and
applying Algorithms 3.1 and 5.1 throughout the
numerical computations; some graphical results, tabulate
data, and numerical comparison are presented and
discussed quantitatively at some selected grid points on
[0, 1] to illustrate the numerical solutions for the
following DASs of IICs. In the process of computation,
all the symbolic and numerical computations are
performed by using MAPLE13 software package.

Example 5.1Consider the following differential equation:

u′1 (t) = tu1 (t)− u2 (t) + et, (45)

subject to the integral condition:

u1 (0) =
1
∫

0

su1 (s) , (46)

simultaneously with the following algebraic equation:

u1 (t) + e−tu2 (t) = t+ et, (47)

subject to the initial conditions:

u2 (0) = 0. (48)

Here,t ∈ [0, 1], whilst the exact solutions areu1 (t) = et

andu2 (t) = tet.

Example 5.2 Consider the following set of differential
equations:

{

u′1 (t) = u1 (t)− u23 (t) ln (u1 (t)) + 1,

u′2 (t) = u23 (t) + u−1
3 (t) eu2(t) − (t+ 1)

3

2 ,
(49)

subject to the integral conditions:
{

u1 (0) =
∫ 1

0 e
−su1 (s) + 1,

u2 (0) =
∫ 1

0 su2 (s) + 4−1,
(50)
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Table 1 Numerical values of the dependent variablesuη1 (t) anduη2 (t) in Example 5.1.

t u1 (t) uη1 (t) u2 (t) uη2 (t)
0 1 0.999999999983888 0 0

0.16 1.173510870991810 1.173510870931385 0.187761739358690 0.187761739302131
0.32 1.377127764335957 1.377127764127835 0.440680884587506 0.440680884556301
0.48 1.616074402192893 1.616074401628453 0.775715713052589 0.775715713003221
0.64 1.896480879304951 1.896480879219793 1.213747762755169 1.213747762024998
0.80 2.225540928492467 2.225540928101454 1.780432742793974 1.780432742279523
0.96 2.611696473423117 2.611696473135761 2.507228614486193 2.507228614240745
1 2.718281828459045 2.718281827751456 2.718281828459045 2.718281828229471

Table 2 Numerical values of the dependent variablesuη1 (t), uη2 (t), anduη3 (t) in Example 5.2

t uη1 (t) uη2 (t) uη3 (t)
0 2.718281826327278 −0.000000001895396 1

0.16 3.189933270319385 0.148419981604011 0.928476685564841
0.32 3.743421374024469 0.277631731955104 0.870388271788553
0.48 4.392945675887708 0.392042080909051 0.821994930830145
0.64 5.155169487518942 0.494696207847439 0.78086879917688
0.80 6.049647411643256 0.587786639485744 0.745355983124897
0.96 7.099326989961757 0.672944426438238 0.714285679827479
1 7.389056036977788 0.693147127060917 0.707106780485565

Table 3 Numerical values of the dependent variablesuη1 (t), uη2 (t), uη3 (t), anduη4 (t) in Example 5.3.

t |uη1 (t)− u1 (t)| |uη2 (t)− u2 (t)| |uη3 (t)− u3 (t)| |uη4 (t)− u4 (t)|

0 6.77393774 × 10−8 2.81688636 × 10−8 5.95128789 × 10−7 1.90495767 × 10−7

0.16 3.04644408 × 10−8 4.97586606 × 10−8 7.35618057 × 10−7 2.92327896 × 10−7

0.32 7.02482980 × 10−8 1.00492597 × 10−8 2.34717390 × 10−8 7.87919454 × 10−7

0.48 2.87288290 × 10−7 3.82075576 × 10−8 4.87564335 × 10−7 1.20484809 × 10−8

0.64 6.02059218 × 10−8 1.42838984 × 10−8 1.21798967 × 10−8 3.35573115 × 10−7

0.80 1.36113692 × 10−7 4.67986424 × 10−7 2.60534860 × 10−8 2.96273934 × 10−8

0.96 3.50745738 × 10−7 1.35392753 × 10−7 9.61230455 × 10−9 5.17649545 × 10−9

1 1.06582351 × 10−7 3.86098600 × 10−7 0 0

simultaneously with the following algebraic equation:

ln−2 (u1 (t)) + 2 sinh (u2 (t))u
2
3 (t) = 1, (51)

subject to the initial conditions:

u3 (0) = 1. (52)

Here,t ∈ [0, 1], whilst the exact solutions areu1 (t) =

et+1, u2 (t) = ln (t+ 1), andu3 (t) = (t+ 1)
− 1

2 .

Example 5.3 Consider the following set of singular
differential equations:






(t− 1)u′1 (t) = (t− 1)u2 (t)−
√

1− u23 (t) + cos t,
t (t− 1)u′2 (t) = t (t− 1)u1 (t) + u23 (t)u

−2
4 (t)

− u−2
4 (t) + 1,

(53)
subject to the integral conditions:

{

u1 (0) =
∫ 1

0 (−s)u1 (s) + e−1,

u2 (0) =
∫ 1

0 4e
su2 (s)−

(

e2 + 1
)

,
(54)

simultaneously with the following set of singular algebraic
equations:















sinh (t)u1 (t)− cosh (t)u2 (t) + sin−1 (u4 (t))
= −t+ 0.5π − 1,

tu2 (t)− tan−1
(

u−1
3 (t)u4 (t)

)

= t cosh (t)u2 (t) + t− 0.5π,
(55)

subject to the purely conditions:

{

u3 (1) = sin (1) ,

u4 (1) = cos (1) .
(56)

Here,t ∈ [0, 1], whilst the exact solutions areu1 (t) =
sinh (t), u2 (t) = cosh (t), u3 (t) = sin (t), andu4 (t) =
cos (t).

For the conduct of proceedings in the solutions for the
last examples, it requite the expansion rules for the kernel
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functionsR{2,k}
t (s) whenk (s) = s, k (s) = e−s, k (s) =

−s, andk (s) = 4es, respectively. As a special case and
without the loss of generality we are finding the rules of
R

{2,k}
t (s) whenk (s) = s. To do so, we need to find the

coefficientsai (t), bi (t), andc (t) in

R
{2,s}
t (s) =



















a1 (t) + a2 (t) s+ a3 (t) s
2

+a4 (t) s
3 + c (t) s5

120 , s ≤ t,

b1 (t) + b2 (t) s+ b3 (t) s
2

+b4 (t) s
3 + c (t) s5

120 , s > t.

(57)

Anyhow, by solving the following sets of algebraic
equations by using Maple13 software package:

R
{2,s}
t (0) =

∫ 1

0 sR
{2,s}
t (s)ds,

R
{2,s}
t (0) + ∂3sR

{2,s}
t (0) + c (t) = 0,

∂1sR
{2,s}
t (0)− ∂2sR

{2,s}
t (0) = 0,

∂2sR
{2,s}
t (1) = 0,

∂3sR
{2,s}
t (1) = 0,

∂qsR
{2,k}
t (t+ 0)− ∂qsR

{2,k}
t (t− 0) = 0, q = 0, 1, 2,

∂3sR
{2,k}
t (t+ 0)− ∂3sR

{2,k}
t (t− 0) = −1.

(58)
the mentioned unknown coefficients can be obtained as
follows:

a1 (t) = − 21
1952 t

5 + 105
976 t

3 − 105
488 t

2 − 105
244 t−

173
488 ,

a2 (t) =
7

976 t
5 − 35

488 t
3 + 35

244 t
2 − 87

122 t−
105
244 ,

a3 (t) =
7

1952 t
5 − 35

976 t
3 + 35

488 t
2 − 87

244 t−
105
488 ,

a4 (t) = − 7
3904 t

5 + 35
1952 t

3 − 35
976 t

2 − 35
488 t+

803
2928 ,

b1 (t) = − 21
1952 t

5 + 803
2928 t

3 − 105
488 t

2 − 105
244 t−

173
488 ,

b2 (t) =
7

976 t
5 − 35

488 t
3 − 87

244 t
2 − 87

122 t−
105
244 ,

b3 (t) =
7

1952 t
5 − 35

976 t
3 + 35

488 t
2 + 35

244 t−
105
488 ,

b4 (t) = − 7
3904 t

5 + 35
1952 t

3 − 35
976 t

2 − 35
488 t+

105
976 ,

c (t) = 21
976 t

5 + 105
488 t

3 + 105
244 t

2 + 105
122 t+

315
244 .

(59)
Our next goal is to illustrate some numerical results of

the RKHS solutions of the aforementioned DASs of IICs
in numeric values. In fact, results from numerical analysis
are an approximation, in general, which can be made as
accurate as desired. Because a computer has a finite word
length, only a fixed number of digits are stored and used
during computations. Next, the agreement between the
exact and the numerical solutions is investigated for
Examples 5.1 and 5.2 at varioust in [0, 1] by computing
the numerical approximating of their exact solutions for
the corresponding equivalent equations as shown in
Tables 1 and 2, respectively. Whilst, in Table3 the
absolute difference between the exact values and the

values obtained using the RKHS are tabulated for
Example 5.3.

6 Concluding remarks

The reproducing kernel algorithm is a powerful method
for solving various linear and nonlinear differential
systems of different types and orders. In this study, we
introduce the reproducing kernel approach to enlarge its
application range. It is analyzed that the proposed method
is well suited for use in DASs of IICs for ordinary
differential equations of volatile orders and resides in its
simplicity in dealing with those conditions. However, the
RKHS method does not require discretization of the
variables, it provides the best solution in a less number of
iterations and reduces the computational work. Numerical
experiments are carried out to illustrate that the present
method is an accurate and reliable analytical technique
for treating DASs of IICs. It is worth to be pointed out
that the RKHS method is still suitable and can be
employed for solving other strongly linear and nonlinear
systems of differential equations.
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