Appl. Math. Inf. Sci.11, No. 3, 643-648 (2017) %N =) 643

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110302

On Optimal Coefficient in Augmented Lagrangian
Method for Saddle Point Problem

Felicja Okulicka-Dhzewska

Faculty of Mathematics and Information Sciences, Warsaweéysity of Technology, ul Koszykowa 75, 00-662 Warsaw,dpol

Received: 6 Nov. 2015, Revised: 26 Feb. 2017, Accepted: 2 2047
Published online: 1 May 2017

Abstract: The optimal coefficient in the augmented Lagrangian metloodHe Saddle Point Problem is found. As the criterion the
minimum of the condition number of the diagonal block is tak€he application of the commonly used preconditionersiireg the
proper approximations of the inverse of this block and of$lcbur's complement. The condition number plays the impontale in
the calculation of such approximations. The result confittnesexperimental value of the coefficient commonly used énathgmented
Lagrangian technique.
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1 Introduction consolidation problem.

The block factorization
The Saddle Point Problem (SPP) appears in many areas.
Let H; andH; be finite-dimensional Hilbert spaces with A D I o\ /A 0 | A-1D
inner product denoted by (.,.). The abstract generalized (B —C) = <BA1 |) <0 _C_BAlD) <0 | >
nonsymmetric saddle point problem is formulated as the
set of equations with the block operatr

is commonly used to solve block equations. A very
G (XY= (AD) (X\_(h (1)  important part of the method is the calculation of the
y B-C/ \y fa Schur’'s complemens = —C — BA1D. Computing the
inverse is costly and often ill-conditioned. Additionally
The symmetric SPP is presented in many papers in thenany preconditioning techniques are based then on
following form: approximatingS* and A~%. Two classes of iterative
methods are commonly used for solving large SPP:
A BT x\ _[(f1\ (A BT x\ _ (f1 2 Uzawa algorithm and Krylov methods. For Krylov
B-C/) \y)  \f,)\B-C) \y)]  \f solvers the condition number and the distribution of the
eigenvalues play a role in the speed of convergence. The
where f; € Hy , f, € Hy are givenx € Hy, y € Hy, are  preconditioning is applied to change the spectrum of the
unknownsA : Hi — Hj is linear, symmetric and positive system for more convenient for the Krylov solvers.
definite, C : H, — Hy is linear, symmetric and Several block preconditioners were introduc@g6[16,
semipositive definiteB: H; — Hy andD : Hy — Hy are  18,19,22,25,27] specially for the saddle point problem.
linear mapsB' : H, — Hj is B's adjoint. In the paper the The most popular of them are built using the Schur’s
spaces argd; = R™" andH, = R™Mwith m< n. complement. An augmented Lagrangian technique can be
The problems in which such a structure appears can besed to improve the numerical propertieg df1) block A
the following [2]: computational fluid dynamics, elasticity which can be possibly singular or ill-conditioned. Let us
problems, mixed (FE) formulations of Il and IV order recall the idea of this method. L&Y be an x n matrix.
elliptic PDEs, linearly constrained programs, weighted Multiplying the second block-row of system)(by BTW
least squares (image restoration), FE formulations ofand adding the resulting equation to the first block
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equation, we obtain another saddle point problem: the one from the Theore@can be obtained for one row
matrix B using the results presented if 11].
A+B'WB D-B'WC\ (x| _ (f1+B"WHf
B —C y - fa ’

2 Theoretical analysis
A+B'WB D-B'WC :
where Gy = B —C - The new linear |, the paper we consider the case with matrix symmetric
system has the same solution and may be easier to sold € R™": A= AT and positive definiteB € R™", n>m
using existing methods. For methods that rely on thewith full rank: rank(B) = m. Let
Schur's complement there may be one very important -
benefit: even if the origingll, 1) block A was singular or Ay=A+yB'B (5)
ill-conditioned, the (1,1) block A + B"WB of the
modified linear system3], may be nonsingular, positive
definite and has a small condition number. The
augmented Lagrangian technique has been studied by 1
several authors9[10,12,15]. In [12] the specific choice S=-C-BA/D. 6)

C =0 andW = yI (wherey is a scalar) was considered e aim is to find the upper bound of the condition number
which leads to the following system:
Ka(Ay) = ||Ayl[2- [IA, 2.

A+yB™B D\ (x\ _ (fi+yB"f, @
B 0 72 fa ' As the blockA is positive definite we have the following
inequality for||.|| norm:

with y > 0. The appropriate Schur complent is calculated
by the following formula:

The cas&V = yI with y = ||A||2/||B" B||2 may often force
the norm of the matriXA to be of the same magnitude as
the norm of the added terBI' B. This in turn may cause a
significant difference in the spectrum and the condition
number of the matri¥y, = A+ yBTB in comparison taA.
The convergence rate of the augmented Lagrangia
algorithm is calculated for symmetric case tt4]. The
Uzawa algorithm for non-symmetric case is analyzed in
[1]. The condition number of the matriR, has been L
analyzed in 10,15. There is no analytical way of A = B LetUTLX = Da andVTBX = Dg where the
determining the optimal value of but y = ||A||/||B||? . .
worked well in the examples presented 8)12. For an ~ MatricesU_andV are orthogonal and the matriX is
augmented Lagrangian approach the preconditioners arfgvertible. Thus

1Ayll2 = |A+yBTB|[2 < [|All2+VI[B"Bl2.  (7)

To analyze the dependency BA, ||z on y the GSVD
[13,20,21] is used. AsA is the symmetric and positive
rqlefinite matrix, it has a Cholesky decomposition i.e. there
exists an upper triangular matrix with strictly positive
diagonal elements, such that= AT = LTL. Let us make
the singular value decomposition (GSVD) of the matrix

applied and analyzed by several autho4ss[8,23,24). L=UDaX"1 and B=VDgX 1
No condition which guaranties the good numerical )
properties ofA, was given. In [26] the forms ofDa andDg were given. Let us recall

In the paper the optimal value of is calculated the main theorem fron2f.

theoretically. We will estimate the upper bound of the Thegrem 1([26], Theorem 1.1)

condition number of the blocld,. The real condition Let Qe R¥*" have orthonormal columns. Partition Q
number can be much smaller. in the form

In the first section the analysis of the condition number of

the blockAy is presented and the main theorem is proved.

Then the numerical examples are described. In the Q.1 |

examples the condition numbers of thg and the Q= [Ql] m (I+m=Kk)
appropriate  Schur's complements are compared for 2

different y. The condition numbers of the Schur's

complements for equation®)(and @) depend on the Then there are orthonormal matrices & R'*!,
condition number ofA or A, appropriately. The last part V € R&-D*&=1) and X € R™" such that

contains the similar problem of updating the singular

values of the matriA with the appended roa scaled by

A _ U0l [Q] y_ [UQiX
the paramete(Ba). The problem is recalled aftef ], oV Q V QX

(BAa> is analyzed. It is shown that the result similar to 1.1>n,m>n
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C n
_ 1 1 1
I max 27 2) < 25 MaX iy <
s | n sy Max(.1)-max(d. 1) < 35 - [IDa Y[z [IDgl 2
0 m-—n

whereDg in the pseudoinverse & Thus:

_ 1
C 01 m ||(D&+yD3) || Sma)‘(m)
0 I n—m '
0 0 [—n
1 1
—————— -—- < 5= |IDA 2" [IDgl2 ©)
.S 0 | m =2 Ve
30<n m>n From @) and @) the condition numbekz(Ay) = ||Ay]|2-
- c 0 71 | ||A, |2 calculated in the norrii.||2 has the upper bound
______ ___ depending ory:
> 0 | T T 1
0 ' n—I K2(Ay) < 5—=([|All2+1[B" Bl|2)|X][2]|X"||2]| DA 2] |DE[2-
L O 0O | m—n \/—
4.1<n, m<n Finally the upper bound of the condition numlae(A) is

the function:

_ 1
I I talAy) < Const (Al + Y[BTB2) = 0(y) (10)
S 0 0 k—n
0 0 | n—I whereConst= 1-||X]|2-|[XT|2-[[Dx*||2-||DL]|2 does not
. . . .. dependory.
Here C and S are nonnegative diagonal matrices satisfying

> @ Theorem 2The minimum value of the upper bound of the
C+S=1 condition number of the matrikz(Ay) = k2(A+ yBTB)
If the rank ofA is less tham andA has full rank we have: in the augmented Lagrangian method is obtained for the

coefficienty = %

Da— <CA 0 ) _ <dlag(c.)mxm 0 )
0 l(n-mx(n-m) 0 n—m) x (n-m) ProofThe bound of the condition number is the function

and of ywritten by (10). The derivative of it is the following:

Dg = (33 0) (dlag( )m><m 0)

Cn and Sz are diagonal matrices satisfying
CACa+SiSs = 1. Then the matrbd, = L'L+yB'Bcan  Thuse/(y) = 0= yp = Loz,

3 1
@'(y) =Const (—y 2 -||All2+y 2-|[B"B||2).

be calculated in the following  way: 1BBIl2
Ay = X TDAUTUDAX"! + yX~TDVTVDgX ! =
X~T(D% + yD3)X 1 and for the inverse of\, we obtain
e o e e v 2.1 Case study for full rank8
_ - - TB is inverti i
Ayl = X (D3 + yD3) " 1XT. (8)  Inthis caseB B is invertible because it has full rank. As

A is the Hermitian matrix and positive definite, it has a
The inverse of the diagonal matri®2 + yD3 can be Cholesky decomposition i.e. there exists an lower

calculated very easily as follows: triangular matrix L, with sTtrictIyTpositive diagonal
elements, such thaA = A" = L'L. Applying the
dia 1 0 Woodbury formula:
(0} +yD3) " = <( g g mem )
0 |(n—m)x (n-m) (A+ucv) l=Al_Alyclt+valu)ival
Let us notice that to Ayt = (LTL+ yB"B)~* we have two equations:
1 —1pT —1pT\—1pa-1_ A-1
24y > 2 708 At +yA BT (1+yBA BT IBAT L =AY (11)
and 1 1 1

A+ ;(BTB)‘lLT(I + L;/(BTB)‘lLT)‘lL;/(BTB)‘l =
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1

= ;(BTB)‘l. (12)

Notice, that the matricegA—1BT (I + yBA"1BT)"1BA™ 1)
and +(B"B)"'LT(I + L3(B"B)"'LT)"'LL(BTB) ! in

(11)) and @2) are positive definite foy > 0. Thus from
(11) and @2) we have two inequalities (se&7]):

- - - 1 -
1Ay Hl2 < [IA72, IIAylllzéy-ll(BTB) 2. (13)

Next, from (L3) the bounds of the norm oA;l are
obtained:

1
A2 < —1/|IAY 2] [(BTB) 1|2 <
1A, W\/II [[2/[(BTB) 1]

1. . 1 _
< U2+ JIIBTE)l2). (14)
Basing on {) and ({3) the upper bound of the condition
number ofA is represented by the following function of

V.

1
Ko(Ay) < =/ I1A-1]|2-[|(BTB)~2 - (||AI| + VI[BB]l2).
VY
(15)
Let denote:

1
®(y) = —-Cons - (||Al| +y||BB||2)-

VY
whereCong = +/[|A-1||2-[|(BTB)1||»

Theorem 3Let us assume that™® has full rank. The

(16)

Table 1: Results for the condition nhumbers of diagonal block
Ay for m= 10, n = 3. A'is the Hilbert matrix. Herexx(A) =
1.6025 103, k»(S) = 2.8755 10%, k2(B) = 2.9281,yp = 0.2677,
K2(Ay) = 2.5306- 10°, k2(Sy,) = 1.00.

y 0 0.1 Yo = 0.2677
K2(Ay) 1.602%+13 17826+08 25306+ 08
K2(Sy) 2.875%+04 10000 10000

y 0.5 0.7 10

K2(Ay) 3.69342+08 4731%+08 6311%+08
K2(Sy)  1.0000 10000 68413+ 08
y 11 13 15

K2(Ay) 7.903k+08 8966%+08 1109%+09
K2(Sy)  1.0000 10000 10000

3 Numerical experiments

We present the comparison of the condition number of the
diagonal blockkz(Ay) = k2(A+ yBTB) in the augmented
Lagrangian method for the saddle point problem for
different coefficienty. Numerical tests were done in
MATLAB with machine precision round off ~ 1016
Examplesl, 2 show that we can improve the condition
numbers of the block, and of the Schur’s complement.
Both examples are constructed in such way that the block
A is ill-conditioned and matrixB"B can improve the
condition number of the block,. In Example3 we have
the opposite situation - the condition number &f is
bigger than that ofA asA is the Hilbert matrix and is

minimum value of the upper bound of the conditionthe Pascal matrix.

number of the diagonal block,(Ay) in the augmented

Lagrangian method is obtained for the coefficient

A

o= 8T

ProofThe proofis similar as in the TheorenThe bound
of the condition number is the function gfwritten by
(15). The derivative of it is the following:

1 3 1
@'(y) 5 Cong- (—y 2 -||Al2+y 2.(|BTBl[2).

Thus
A2
|IBTBJI2
RemarkThe following facts can be noticed:
1]|v-BB|l2 = [|All2,

@'(yp) =0 Yo =

2.the upper bound for the condition number fgrhas
the following value:
K2(Ay) <
i VIIA 2 [[(BTB)l2- (||All2+ y0[BTB|[2) =
=2-/|IAl2-[[(B"B) [z [|All2- [|(BTB)[]2 =
Kz(A) . Kz(BTB).

Example IFor generating the matricé§m x m), B(m x
n) and we used the followiny]ATLAB code:

H=hi | b(m); A=H,

B=rand(mn);
HereH (mx m) is the Hilbert matrix:
1 -
H = (hij), hij = T i,j=1,...,m

The results are presented in Table 1.

Example Z-or generating the matricégm x m), B(m x
n) we used the followindATLAB code:
a=200*ones(m 1) ; b=-100*ones(m 1, 1);

A=di ag(a) +di ag(b, 1) +di ag(b, -1);

B=rand(mn);
Alis tridiagonal:
2 -1
-1 2 -1
A(mx m) = 100- R ,
-1 2 -1
-1 2

mxm
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Table 2: Results for the condition numbers of diagonal blégk 4 Eigenvalues of a matrix modified by a rank
for m= 2000,n = 2000.A is tridiagonal. Herex;(A) = 1.6228 one matrix

108, k2(S) = 5.5904- 102, k»(B) = 2.0593 10P, yp = 3,9991-

4 _ . — . =
104, ko(Ay,) = 1.2981- 10%, Kka(S,) = 2.0803 1P, K2(X) In [7,11] the similar problem is presented - the singular

158489 value decomposition is updated when the row is
y 0 ¥ =3999k—04 05 . A
appended. LeA € R™", m>n, A= < T) andA; the
K2(Ay) 16228406 12981+ 04 18697%+ 04 a
K2(Sy) 55904+12 20803+ 06 1670G+ 07 matrix: Ay = ATA. We are interested in the solution of the
following eigenvalue problem: given a symmetric matrix
y 0.8 10 11 AlT with  known eigensystem A; = QDQ',
Ka(A,) 22723+04 2511%+04 26258+ 04 2 Q A %Tb_bTIB _Ci‘lcmzta Tt?"es eilogtﬁg;snyﬁzm b:f
K2(S) 1.043&+07 83502+ 06 75911+ 06 1=\ 4 0 p P y
2 simplified making an observation that
A1+ pb™b = Q(D + pzZ')Q", whereb = Qz Thus, if
v 14 = 26 C =D+ pzZ = XDXT is the orthogonal decomposition
K2(Ay) 2.9504+04 3257C+04 4150%e+ 04 of D+BzzT then the orthogonal decomposmon,@{ is
K2(Sy) 5.964%+06 4911%4 06 32116+ 06 = QDQ" whereQ = QX. Let us assume that we are

worklng with ann x n problem for which no deflation is
possible. We consider the problem whére- diag(d;), d

are distinct for all, z= (21 ... zn)T andz # 0 for alli.

In [11] Golub has shown that in the above situation the
eigenvalues of C are the zeros ofw(A), where

Table 3: Results for the condition numbers of diagonal block
Ay for m= 10, n = 10. A is a Pacal matrix. Heray(A) =
4.1552-10%, k»(S) = 1.7894- 1018, k,(B) = 1.6025- 10'3, and

z .

Yo = 21001 W(A) = 1+pZJ 1@ A Let us denote the eigenvalues
y 0 15 10000 of C by dp < dy < ..<dn In[7] it is proved that
K2(Ay) 4.1552+09 4073%+09 28916+09 d = d + pui where ZJ M =1, and 0< i < 1.
K2(S) 17894418 6084%+16 6436%+15 Moreoverdl < dl < d2~< d2 <. <dn< d'n if p>0and

d<di<dyy<..<dh<dhy |f p < 0. Let us scale the
y o =21001 30000 40000 vector a by B. Let us notice that|dy| = [|D||2,
Ko(Ay) 3.258+09 4041%e+09 5072409 = ||a||2 >0, ¢ = [[D||"*. Then the condition number
K2(Sy) 14267%+15 21323+14 9301&+13 of Ap = ATA+ B2aa’ has the following bound for

p=0:
y 50000 60000 70000 . . ~

K2(A13) = K2(Cg =D 2'2) =kK2(Dg) =

Ko(A,) 6.1205+09 715462+09 81688+ 09 2(Ap) = K2(Cp = D+ PPz 2) = K2(Dp)
K2(Sy) 1.738%+14 10884+14 8041%+13 |d~n| |dn+B2PIJn|

T |d1+l329l11|
- |ID||2+ B?||al|3 < 1

- 2
The results are presented in Table 2. In this case the 2y/B2ppady — 2y/pach B

experimentalp is very small. We have the similar function as in the Theor2mith y =
B2. The minimum of the bound of the condition number

of Ka(Agg) = Ka(Cp) is reached fofo = Y102 — Az,

llall2 llall2

(IIDll2+ B2/[al13)

Example 3-or generating the matricégm x m), B(m x
n) we used the followindMATLAB code:

5 Conclusion

A=pascal (n);

B:Ei I b( m§ : ) The analysis presented in the paper is the argumentation
for the practice. The results are obtained for|ttj& norm.

The choice of the norm is the open question.
The results are shown in Table 3. The function pascal(n)

returns the Pascal matrix of ordera symmetric positive
define matrix with integer entries taken from the Pascal’sR
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