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Abstract: For the first time, a three-parameter lifetime model, cattesl Weibull Rayleigh distribution, is defined and studiece W
obtain some of its mathematical properties. Some struguoperties of the new distribution are studied. The metbbthaximum
likelihood and least squares methods is used for estim#tiagnodel parameters and the observed Fisher's informatitnix is
derived. We illustrate the usefulness of the proposed mimglapplications to real data.
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1 Introduction Howlader B], Lalitha and Mishra 11] and Abd Elfattah
etal. [1].
In many applied sciences such as medicine, engineering
and finance, amongst others, modeling and analyzin . . . .
lifetime data are cr%cial. Several Iifetirr?e distributi)énsg. A ra_ndom vanableX is said to ha\_/e the Raylglgh
have been used to model such kinds of data. The qualig&'smpuﬁ!on (RD). W'.th parameterf if its probability
of the procedures used in a statistical analysis depen ensity function is given by
heavily on the assumed probability model or distributions. _82
Because of this, considerable effort has been expended in g(x) = 6xe 2" x>0, >0 )
the development of large classes of standard probabilit
distributions  along  with relevant  statistical
methodologies. However, there still remain many
important problems where the real data does not follow
any of the classical or standard probability models.

In this article we present a new generalization of the
Rayleigh distribution called the Weibull-Rayleigh
distribution. Rayleigh 16] derived it from the amplitude Weibull distribution introduced by Weibull2[]] is a
of sound resulting from many important sources. Thepopular distribution for modeling phenomenon with
Rayleigh distribution has a wide range of applicationsmonotonic failure rates. But this distribution does not
including life testing experiments, reliability analysis provide a good fit to data sets with bathtub shaped or
applied statistics and clinical studies. This distribotisa  upside-down bathtub shaped (unimodal) failure rates,
special case of the two parameter Weibull distributionoften encountered in reliability, engineering and
with the shape parameter equal to 2. The origin and othebiological studies. Hence a number of new distributions
aspects of this distribution can be found in SiddidLif][ modeling the data in a better way have been constructed
Hirano [7] and Howlader and Hossiar8]] Dyer and in literature as ramifications of Weibull distribution.
Whisenand 4] demonstrated the importance of this
distribution in communication engineering and Polovko = Marcelo et al. 13] introduced and studied in
[15] noted its importance in electrovacuum devices. generality a family of univariate distributions with two
Several authors have contributed to this model, namelyadditional parameters, similarly as the extended Weibull
Sinha and Howladerlg], Ariyawansa and Templetor2], (Gurvich et al. p]) and gamma (Zografos and

Xvhile the cumulative distribution function is given by

G(x,0)=1—e2¢ x>0,8>0. )

wheref denote the scale parameter.
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Balakrishnan, 2Q)) families, using the Weibull generator and
applied to the odds ratiq%x()x). The term "generator” f(x,a,B,0)

means that for each baseline distributiGhwe have a hx,a.B,¢) = R(x,a,B,{)
different distributionF. _
apy(x ) (G(x )"

If G(x) is the baseline cumulative distribution =

function(cdf) of a random variable, with probability (G(x )BJrl

density function(pdf) g(x) and the Weibull cdf B(G(x; ))

F(x,a,B) =1—e®" (for x > 0) with positive parameters = _—h(Xaf), (6)
a and B. Based on this density, by replacingwith (G(x))"

GX) (C(x) — ; ; .

W(G(X) = 1-G(x)). The cdf of Weibull- generalized respectively, whereh(x,{) = (ggxz))) The multiplying

distribution, say Weibull- G ( Wei- G for short) b1
distribution with two extra parametessand, is defined quantity% works as a corrected factor for the
X

by (Marcelo et al. 13
y( 1 hazard rate function of the baseline model. (1.3) can deal

) with general situations in modeling survival data with
1-G(xJ) various shapes of the hazard rate function.

Fxa,B,{) = / aBth-le o gt

0

1.1 Mathematical Properties.

g6 B
:1—e{ G[GW} }, xeRa,B >0, (3)
By using the power series for the exponential function, we

where G(x;) is a basline cdf, which depends on a ©Ptain

parameter vector{. The corresponding family pdf (G0 2 q)igi : iB
becomes o (%) :iZ;( il!)a (GG()EX?) e
(G(x ,Z))B‘l Substituting from 7) into (4), we get
(X a B Z) = aBg(X Z) (G(X))ﬁJrl f(X,UHB,Z) _ aBg(XuZ)
_a[8x0)1P @ (—1)iat (G(x;7))PIHV1
xe{ %) } xeRa,B>0. (4) XiZj( i!) ((G((X)))zmlm ' (®)

A random variableX with pdf (4) is denoted byX Using the generalized binomial theorem we have
«~ Wei — G(a,,{). The additional parameters induced 1 G(x 2~ Bi+1+D)

by the Weibull generator are sought as a manner to 1~ (X Z)]
furnish a more flexible distribution. Ifg = 1, it _ B(i+1) +J+1)G 2)i
corresponds to the exponential-generator. An 20 JI[‘ (i+1)+1) (%)
interpretation of theVei — G family of distributions can

be given as follows (Cooray3] in a similar context. Let  Inserting @) in (8) , theWei — G density function is
Y be a lifetime random variable having a certain ® o

continuous G distribution. The odds ratio that an f(x):ZjZOoq,jg(x;Z)( x, ¢ ))PHDH=L - (10)
individual (or component) following the lifetim& will i=0j=

die (failure) at timex is E; Consider that the variability where
of this odds of death is represented by the random (—1) o Br (BGi+1)+j+1)
variableX and assume that it follows the Weibull model W=

ijir (Bi+1)+1)
The paper is outlined as follows. In Section 2, we define

with scalea and shapg. We can write

G(x) the cumulative, density and hazard functions of the
Pr(Y <x) =Pr(X < G—)=F(x,a,B,Z), Weibull Rayleigh (WR) distribution. In Section 3, we
(x) introduced the statistical properties include, quantile

S ) function, skewness and kurtosig, moment and moment
which is given by 8). The survival and hazard rate generating function. The distribution of order statisies

functions of theNei — G family are given by expressed in Section 4. The least squares and weighted
least squares estimators are introduced in Section 5.
{74@;5)}[‘} Finally, Maximum likelihood estimation of the
R(x,a,B,{)=1-F(x,a,B,{) =€ e 1] (5)  parametersis determined in Section 6.
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2 The Weibull-Rayleigh Distribution

In this section we studied the three parameter Weibull
Rayleigh(WR) distribution. UsingG(x) andg(x) in (10)

to be the cdf and pdf ofl) and @). The cdf of the Weibull
Rayleigh distribution is given by

(o#5)"

—ale2” -1
Fx,a,3,0)=1—e x>0, (11)
The corresponding pdf of tH&R distribution is given by

B
()

(12)
Figuresl and? illustrates some of the possible shapes of
the pdf and cdf of Weibull-Rayleigh distribution for
selected values of the parametat$ and@, respectively.

B-1 —a

f(x,a,B,0) = aBGxegx2 (egx2 — 1) e
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Figg 1. The pdf function’s of various Weibull-
Rayleigh  distributions  for values of parameters:
a = 02;04;06;08;1;2;3; ap = 25 6 =
2.5; b)3 = 05;08;1;15;2;25;35, 6 = 25;
¢)B = 0.1;05;08;1;15;2;25, 6 = 05, d)p =

0.1;05;0.8;1;15;2;25, 6 = 1;15;2;253;35;45 with
color shapes purple, blue, orange, red, green, pink and,blac
respectively.

[] and the hazard rate function is

B-1
h(x,a,B,0) = aBoxe?* (e%X2 - 1) .
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Fig. 2 The cdf function’s of various
Weibull-Rayleigh distributions for values of
parameters: a = 0.2;0.4;0.6;0.8;1;2;3;a)8 =
2560 = 25bpB = 05,08;1,;15;2;25;3506 =
25;c)B = 01;05;08;1;15;2;25,6 = 05d) =

0.1;05;0.8;1;15;2;25,0 1;15;2;253;35;45 with
color shapes purple, blue, orange, red, green, pink and,blac
respectively.

3 Statistical Properties

In this section we study the statistical properties ofwig
distribution, specifically quantile function, skewnesslan
kurtosis, moments and moment generating function.

3.1 Quantile Function and Smulation

We present a method for simulating from thWWR
distribution. The quantile function corresponding fid

%In 1+ <7_'n(;_u))ﬁl (13)

Simulating theT EF random variable is straight forward.
Let U be a uniform variate on the unit intervéDd, 1).
Thus, by means of the inverse transformation method, we
consider the random variab¥egiven by

Figure 3 illustrates some of the possible shapes of the

hazard function of Weibull-Rayleigh distribution for
selected values of the parametat$ and@, respectively.

EIn
6

X — 1+ <7_'n(;_“))§1, (14)
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Fig. 3 The
Weibull-Rayleigh

hazard function’s of
distributions for values

various

statistical analysis, especially in applications. It can b
used to study the most important features and
characteristics of a distribution (e.g., tendency, disioer,
skewness and kurtosis).

Theorem 3.1. If X hasWR(6, 3, a), then ther, moment
of X is given by the following

W= 5 S a1

i,]=0k=

or(1+5)

2. (15)
Z[ﬁ}lﬁ

Proof.

We start with the well known definition of theth
moment of the random variabl&X with probability
density functionf (x) given by

u = /x'f(x)dx.
0

arameters: a = 0.2;04;06;08;1;2;3a = T .
2.57 6 = 25bB = 0.5;0.8;1;15;2;25;3.52% _ Substituting from {) and @) into (10) we get
25,c)B = 01;05;08;1;15;2;25,6 = 05d)B =
0.1;05;08;1;15;2;25,0 = 1;15;2;253;35;45 with , © 0 N 1 8y2 0,2 B(i+1)+j—1
color shapes purple, blue, orange, red, green, pink andk,blac Hr = EO%OMG/X e? [1—9 2 } dx,
respectively. i=0j= 0

(16)

Settingu = 1/2 in (14), it follows the mediarM of X
In2\ #

1+ (”—) ] .
a

3.2 Skewness and Kurtosis

2
M=,|=In
6

since 0< 1— e*gxz < 1 for x > 0, the binomial series
. _9,21B(+D)+j-1 |
expansion 01{1— e 2% } yields

aXZ} Bi+D+-1 &

[1—e*? (_1)k(ﬁ(i+l&+jfl)efkgx2’

k=
17)
thus we get

00

; i i o ; o _ 0,2
In thl_s subsectpn we present the shortcomings of the = (_1)k(B(|+1&+J l)aq,je/x”’le (k+1)§x dx,
classical kurtosis measure are well-known. There are i %o

many heavy tailed distributions for which this measure is
infinite. So, it becomes uninformative precisely when it let
needs to be. The Bowley’s skewness (1962) is based on

quartiles
Qo.75—2Qo.5+ Qo.25

S< =
Qo.75— Qo.25
And the Moors’ kurtosis (1998) is based on octiles

_ Qo.s75— Qo.625— Qo.375+ Qo.125

Qo.75— Qo.25

WhereQ(.) represents the quantile function.

Ku

3.3 Moments

In this subsection we discuss thig, moment forWR

0
(18)
(k+1)9x% =t,we get

: (19)

where

which completes the proof.

Based on Theorem (3.1) the measures of variation,

distribution. Moments are necessary and important in anyskewness and kurtosis of theR(x; a, 0, 3) distribution
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can be obtained according to the following relation

cv=,/HB_q
H1

1s(@) — 3pa(@) 2(@) + 2153 @)

CS= 3 and
[1a2(0) — E(9)] 2
ok — Ha(@) — 4a(9)s(9) + 61 (@) a(@) — 3p(@)
(k2() — p2(9)]°
Theorem 3.2.

The moment generating function WR distribution is
given by

(20)

Proof.

We start with the well known definition of tHd(t) of
the random variabl&X with probability density function
f(x) given by

My (t) = / & fwr(X)dx
0

QI

20:—' X fwr(X)dx =

r=

tr
ﬁ“r

>

2t Or(1+5
— & jk ( 2)r- (21)
= r! 2 2 1+2
{9(k+1)}

which completes the proof.

4 Distribution of the order statistics

whereF (x,¢) and f(x, ¢) are the cdf and pdf of th&/R
distribution given by 11), (12), respectively, and(.,.) is
the beta function, since@F (x, ¢) < 1, forx > 0, by using
the binomial series expansion df— F(x, ®)]""", given
by

n—r

1-Fx o))" =5 (0" Fx o), 23
[ DY (J)[ 1

we have

n—r

)= (=0 (") Fxo) I (x, @),
X JZO ( J )[ X 0)] X

(24)
substituting from {1) and (2) into (24), we can express
the ks, ordinary moment of they, order statistics,, say
E(XX,) as a liner combination of thik, moments of the
WR distribution with different shape parameters.
Therefore, the measures of skewness and kurtosis of the
distribution of X, can be calculated.

Ther, order statistic for Weibull Rayleigh distribution

is given by

0,2 62 \F1t
_ apoxez” w(ezx 71>
il ®) =g n—r+1) {1‘9

" |:ea<eg><zl>l3] n+B—r (egxz B 1)3_1'

The pdf of the smallest order statisk¢1) is

B-1
fin(X ¢) =nap oxe?* (egx2 — ]_)

e

n+p-1

In this section, we derive closed form expressions for the

pdfs of ther, order statistic of th&VR distribution, also,

and the pdf of the largest order statisi¢n) is

the measures of skewness and kurtosis of the distribution

of thery, order statistic in a sample of sinefor different
choices of n;r are presented in this section.

X1,X2,...,Xn be a simple random sample froWR
distribution with pdf and cdf given byl() and (2),
respectively. Let X(1),X2),...,X; denote the order

statistics obtained from this sample. We now give the

probability density function oK.n, say fr.n(x, @) and the
moments ofX..n ,r = 1,2,....n. Therefore, the measures
of skewness and kurtosis of the distribution of ¥aq are
presented. The probability density function Xf., is
given by

1 r—
frn(X, @) = m [F(%9)] !

X [1_F(X7¢)]n_r f(X,¢) (22)

Let

-1
fan(X, @) = naﬁexegxz (egxz _ 1)’3

. {()] ﬁ {Lea(egle)ﬂ]

5 Least Squares Estimators

In this section we provide the regression based method
estimators of the unknown parameters of the Weibull
Rayleigh distribution, which was originally suggested by
Swain, Venkatraman and Wilsorlg] to estimate the
parameters of beta distributions. It can be used some other
cases also. Suppo¥g, Xy, ..., X, is a random sample of

(© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2132 F. Merovci, 1.

Elbatal: Weibull Rayleigh Distribution: They and Applications

sizen from a distribution functiorG(.) and suppose);
i=12,...
method uses the distribution &(Y;;)). For a sample of
sizen, we have

i

E (G(Xs)))

n+1’
V(O00) =

i(n—j+1)

Cov (G(Xqi)),G(Xj))) = (n+1)2(n+2)

fori<j,

see Johnson, Kotz and BalakrishnatQ][ Using the

,n denotes the ordered sample. The proposed

9Q _
96

B-1 —a
e

« xe2%0 (e% - 1)
The estimates of the parameters are obtained by equating
the above equations to zero. Although the proposed

estimators cannot be expressed in closed form, they can
be obtained through the use of an appropriate numerical

solution algorithm.

(29)

expectations and the variances, two variants of the least

squares methods can be used.

Method 1 (L east Squares Estimators)

The least square estimators (LSES) are obtained b 'St”bUt'O”

minimizing

n

2

N
(G(Xm _#1) , (25)

with respect to the unknown parameters. Therefore in case 09)

of WR distribution the least squares estimatorsrof and

6, sayad, <, ELSE,and §LSE. respectively, can be obtained
by using (1) and @5), we have the following equation

0,2 B 2

n —a (e2 (i) — 1> i
l1-e
n+1

Qa.p.0)= 3

To minimize equationZ6) with respect tax, 3,and 6, we

, (26)

6 Maximum likelihood and Fisher's
information matrix

In this section we determine the maximum likelihood
estimates(MLEs) of the parameters of th&VR(x, ¢)
from complete samples only. Let
1,X2,...,Xn be a random sample frold ~ WR X, 1)
with observed valuegs, Xo, ..., Xn and let¥ = (a B 6
be the vector of the model parameters. The Iog I|keI|hood
function of @) when is defined as

n e n
=nloga +nlogB +nlogf + § logx + = $ X2
2192,

LB é"’g (b 1) -a ; 1" @

DifferentiatingL(¢) with respect to each parameterf3,

and 6 and setting the result equals to zero, we obtain
maximum likelihood estimates. The partial derivatives of
L(¢) with respect to each parameter or the score function
is given by:

differentiate with respect to these parameters, whichdead Un(¢) = <ﬂ7 %, %)
to the following equations da dB 08
5 where a0 . ;
n RS oe _n 932 _ _
a_Q:Z e a(ez 1) P .Zi{ez 1} - 31)
da i= n+1 1=
0.2 \B ¢ n Q1 0,2
—afez¥ -1 — = — log(ezX —1
x (eg)ﬂ'z—l)ﬁe a(e5F-1) : 27) B B o )
n
_ 8¢ _ 4P 8¢ 1] _
ai; [e? 1} log [e? 1} =0, (32)
5 <
99 _5 1—e70'(ezXI 71) __ and
03 i= n+1 0 1 n 2 N Xze?X‘
b (4 R A Py
X _
xa(e’za 2 1) aB L, e 0 . B 1 Y s
xlog(eﬂ —1), (28) _Tizixie [e - } (33)
(@© 2015 NSP
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The MLE of the parameters, 3, and 8, sayd, B and  wherez, is the upper 108 percentile of the standard

6 are obtained by solving the following normal distribution.

equationsy, N % = 09 = 0.There is no closed form UsingRwe can easily compute the Hessian matrix and
solution to ‘these equations, so numerical technique mudfS inverse and hence the standard errors and asymptotic
be applied. For the three parameters Weibull Rayleighconfidence intervals.

distribution WR(x;a,3,0). If all the second order We can compute the maximized unrestricted and
derivatives exist. Thus we have the inverse dispersiorrestricted log-likelihood functions to construct the
matrix is given by likelihood ratio (LR) test statistic for testing on some the
Weibull-Rayleigh sub-models. For example, we can use
_ o — the LR test statistic to check whether the
a a \Lﬂa \L@ \LOQ Weibull-Rayleigh distribution for a given data set is
B |~NI| B || Vea Ves Vpe : statistically superior to the Weibull distribution. In any
6 6 Voa  Veg Vee case, hypothesis tests of the typlg : A = Ap versus

(34) Ho : A # 6y can be performed using a LR test. In this
case, the LR test statistic for testirtdy versusH is

Vaa Ve Vae w = 2(¢(6;x) — £(A0;X)), whereA and Ao are the MLEs
Vi=—E| Vga Vgg Vao (85)  under Hy and Hq, respectively. The statistiaw is
Vea Ve Ves asymptotically (a1 — o) distributed asy?, wherek is
where the length of the parameter vectbrof interest. The LR
2L . test rejectsHo if w > xZ,, wherexg, denotes the upper
Vaa = 3= g2 100y% quantile of thex? distribution.
L n

Ve g2 T g

n
L Z(el/zexiz_l)ﬁ (ln (el/zexiz_l))z 7 Application
I=
2L n x;4el/26%° In this section we compare the results of fitting the
Voo =557 = gz~ (B-1) Z 1/4 el/zT Weibull-Rayleigh, Exponentiated Weibull,
) Beta-Weibull(L2]) and Weibull distribution to the data
20% 4.1/20% 20% set studied by Meeker and Escobar (1998, p. 383))[
ag (el/ " _1) Bxiftel/20x (Bel/ ! _1) which gives the times of failure and running times for a
4 Zi (e1/29x.-2 _ 1)2 sample of devices from a eld-tracking study of a larger
. system. At a certain point in time, 30 units were installed
Vg = %L _ (e1/26x.-2 _ 1)5 In (el/zexiz _ 1) in normal service conditions. Two causes of failure were
oadp i; observed for each unit that failed: the failure caused by an
) B , accumulation of randomly occurring damage from
22L 10 (el/zexi — 1) B x;2et/20% power-line voltage spikes during electric storms and
= 3590 2 Z SA/20%7 _ 1 failure caused by normal product wear. The times are:
= 2.75,0.13,1.47,0.23,1.81,0.30,0.65,0.10, 3.00, 1.73,
%L n )qzel/ze"i2 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93,
VBo = 3p58 ~ _Zl/zel/zT.z_l 0.88,2.47,0.28, 1.43,3.00, 0.23, 3.00, 0.80, 2.45, 2.66.
- 8 The variance covariance matriA)~! of the MLEs
o n (el/zgxiz—l) x,261/20%% K, under the Weibull-Rayleigh distribution for data set is
> i; 26x7 ] computed as
- (B In (e1/29’v‘2 - 1) n 1) 0.012 Q001 —0.040

I(A)"t=| 0001 Q007 —0.044
—0.040-0.044 0364
By solving this inverse dispersion matrix these solutions
will yield asymptotic vanance and covariances of theseThys, the variances of the MLE ofr B and 0 is

ML estimators for @8 and 6 . Using @5, we  var(&) = 0.012var(3) = 0.007 andvar(8) = 0.364
approximate 10Q — V)% confidence intervals foo,3  Therefore, 95% confidence intervals far and 6 are

and@ are determined respectively as [0.060,0.490,[0.122,0.462 and [0.379,2.745
R — — N — respectively. We plot the profile likelihood of in Figure
G:I:Z%/ Vaa,B:I:Z%/\/Vﬁ , ande:l:z%/\/Ve)g, 4,
@© 2015 NSP
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Table 1: The ML estimates, standard error and Log-likelihood
and LSE estimates for data set

Model ML Est. St. Err. LL LSES
Weibull G=0275 0.109 35.400 0.628
Rayleigh B=0292 0.086 0.039
6=1562 0.603 1.561
Beta G —6.104 0.003 39.562 1.595
Weibull B=0205 3.179e-06 0.045
4=0.149 0.029 6.793
b=8114 3.932 3.933
Exponentiated a =0.314 0.024 39.463 0.032
Weibull B=5877 0.199 5.885
6=0.156 0.029 0.038
Weibull G —=0449 0.115 46.158 0.133
B=1265 0.204 0.055

-40

-80 -60

Profile log-likelihood for alpha

-160 -140 -120 -100

0.0 0.5 1.0 15 2.0

alpha

Fig. 4: The profile log-likelihood function ofr for the data set.

In order to compare the two distribution models, we
consider criteria like —2¢, AIC (Akaike information
criterion)and AICC (corrected Akaike information
criterion) for the data set. The better distribution
corresponds to smaller2/, AIC and AICC values:'

2k(k+1)

AIC =2k—2 —_—
C 2 n—-k—1’

and AICC=AIC+
where k is the number of parameters in the statistical
model,n the sample size antlis the maximized value of
the log-likelihood function under the considered model.

The LR test statistic to test the hypothesks 6 = 2
versusHs : 8 # 2 for data set isv = 21.498 > 3.841 =
X005 SO We reject the null hypothesis.

Table 2: The AIC and AICC of the models based on data set

Model -2LL AIC AlCC
Weibull-Rayleigh 70.818 76.818 77.741
Beta-Weibull 79.124 87.124 88.266
Exponentiated Weibull  78.926 84.926 85.849
Weibull 92.316 96.316 96.760

Tablel shows parameter MLEs to each one of the two
fitted distributions for data set , Tabl2shows the values
of —2log(L), AIC and AICC values. The values in Table
2, indicate that the Weibull-Rayleigh is a strong
competitor to other distribution used here for fitting data
set. A density plot compares the fitted densities of the
models with the empirical histogram of the observed data
(Fig. 5). The fitted density for the Weibull-Rayleigh
model is closer to the empirical histogram than the fits of
the Weibull models. Figures (Fig). shows fitted P-P plots
for WR and W distribution for data set.

0.8
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0.6

EW
— W

Density
0.4

0.2

I

\

~
\\

0.0

T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

Data set

Fig. 5: Estimated densities of the models for data set.

8 Simulated data

In this subsection, we provided an algorithm to generated
a random sample from the WR distribution for the given
values of its parameters and sample siz€he simulation
process consists the following steps:

Step 1.Seh, and® = (a, 3, 0).
Step 2.Set initial valug® for the random starting.
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Fig. 7. P-P plots for fitted Weibull-Rayligh for data set.
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Step 3.Sef = 1.
Step 4.Generatd ~ Uniform(0,1).

Step 5.Update® by using the Newton’s formula such as

Step 6.1f| X2 — x* |< &, (very small, > 0 tolerance limit).

Step 7.1f| X2 — x* | > &, then, sek® = x* and go to step 5.

X — x0 _ (Fe(x)—u)

fo(x)

x=x0

Then,x* will be the desired sample frof(x).
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Fig. 8: Empirical, fitted WR, EW and Weibull cdf of the data set.

Step 8.Repeat steps 4-7, fpe=1,2,...,n and obtained
X1,X2,...,Xn.

Using the above algorithm, we generated a sample of size
30 from WR distribution for arbitrary values of
a=0.16=02and8 = 0.3. The simulated sample is

given by

0.01104553, 1.19916946, 1.72627166, 2.56539179
3.90112825, 6.59243391, 6.92991903, 7.03972818
7.14544040, 7.21187387, 7.41519680, 7.61834438
7.88554924, 8.00112815, 8.12042859, 8.25349064
8.91914020, 9.08167062, 9.13663588, 9.22711659
9.34932672, 9.52258078, 9.58550171, 9.74824898
9.83652106, 10.0859061, 10.4792932, 10.5071468
10.5493757, 11.4408300.

The maximum likelihood estimates  with

corresponding confidence intervals are calculated based
on the simulated sample. The MLEs ¢#,[3,0) are
(0.075, 0.206, 0.304) respectively. The asymptotic
confidence intervals for(a,3,8) are obtained as
(0.002~0.147), (0~0.450, and (0~0.679
respectively.

Empirical, fitted WR cdf and PP of the simulated data
are given in (Fig9) and (Fig.1)

9 Conclusion

Here, we propose a new model, the so-called the
Weibull-Rayleigh distribution which extends the Weibull
distribution in the analysis of data with real support. An
obvious reason for generalizing a standard distribution is

(© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2136 NS 2 F. Merovci, |. Elbatal: Weibull Rayleigh Distribution: They and Applications

‘ be used quite effectively to provide better fits than the
Bodfof distances Weibull distribution.
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