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Abstract: We present a decomposition algorithm to solve a multi-léseje scale quadratic programming problem with stochastic
parameters in the objective functions. In the first phaséhefsplution algorithm and to avoid the complexity of this lgem, the
stochastic nature of the problem is converted into the edgmt crisp problem. In the second phase, Taylor seriesnwoeed with

a decomposition algorithm to obtain the optimal solution tfiis problem. An illustrative example is discussed to dest@te the
correctness of the proposed solution method.
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1 Introduction deterministic equivalent in the decision making context.
Decision problems of chance-constrained or stochasti Then, the objective functions of decision makers (DMs)
P Yocated at different hierarchical levels are converted int

cpimizalon s hen e coficients of o1 9P fzzy goas by inoducing an imprecise aspraton eve
S o ’ .. to each of them to make decision in an uncertain enviro-
extent, are of probabilistic quantities. In most real life nment
problems in mathematical programming, the parameters : .
are considered as random variableg]. I'n [6], Pramanik et al. used the fuzzy 'goal progra-
Multi-level programming techniques were developed mming approach to solve chance constralned'quadratlc
to solve decentralized problems with multiple decision- Pi-€vel programming problem. Chance constraints were
makers in hierarchical organization, where each unit Orconve(ted into equ|\{alent detgrmlnlstlc constraints ey th
rescribed distribution functions. The quadratic mem-

department independently seek its own interest, but i hio functi f lated b ina the individual
affected by the actions of other units through externalitie 2€'SNIP functions were formuiatéd by using the individua
best solution of the quadratic objective functions subject

[3,4,5,6,7]. . N .
In large scale programming which closely describeto the equivalent deterministic constraints.

and represent real world decision situations, various fact ~ After the publication of the Dantzig and Wolfe deco-
ors of the real world system should be reflected in theMPosition method 11, numerous subsequent works on
description of the objective functions and constraints,Multi-objective large scale and multi-level large scale-pr
These objective functions and constraints involve manydramming problems were carried 0ag[13)].
parameters and experts may assign them different values Osman et al. 13] presented a method for solving a
[8,9]. special class of large scale fuzzy multi-objective integer
Notable studies have been carried out in the area oproblems depending on the decomposition algorithm.
stochastic multi-level programming problems. 180]  Furthermore, Abo-Sinna and Abou-Elenin extended the
Kumar and Baran presented a fuzzy goal programmingechnique for order preference by similarity ideal solatio
(FGP) procedure for solving multilevel programming pro- (TOPSIS) to resolve large scale multiple objective progra-
blems (MLPPs) having chance constraints in hierarchicamming problems involving fuzzy paramete8.[
decision organizations. The proposed approach converted Benzi et al. P] developed and compared multilevel
the chance constraints of a problem into their respectivaalgorithms for solving large scale bound constrained
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nonlinear problems via interior point methods. It shows [Third Level
how a multilevel continuation strategy can be used to

obtain good initial guesses for each nonlinear iteration. A Max Fs = AgX+ }XT Lax, 3)
minimal surface problem is used to illustrate the various %6
approaches.

. wherexz, ..., Xn solves.
Sultan et al. 14] presented an algorithm to solve a Toeeoim

three-level large scale linear programming problem in
which the objective functions at every level are to be
maximized. An algorithm for solving a three-planner
model and a solution method for treating this problem arewhere
suggested. It attempted to optimize the problem separa-
tely at each level as a large scale programming problem

Subject to
xeG, (4)

G = {ap1x1 + agaXe + aomXm < by,

using the Dantzig and Wolfe decomposition method. dixy q Egl’
Therefore, it handled the optimization process through a 2%2 G = b2’
mAm = Mm,

series of sub problems that can be solved independently.
Currently, the challenging task for academic research

is to address large-scale complex optimization problem% . RM

under various uncertainties. Therefore, investigatioms o flljﬁction

the development of chance-constrained multi-level IargqeveI objective function, respectively,L1,Lo,Ls) are

scalle pr:Qgrammlng problem are rethuwed. iti-level | mx mreal matrices contain random stochastic coefficient
n this paper, an attempt to solve a multi-level large and(Aq, Ag, Ag) are 1x mmatrices.

scale quadratic programming problem with stochastic |, he above problem (1)—(4X is mx 1 are real

parameters in the objective functions based on a decoyetor variablesG is the large scale linear constraint set

mposition algorithm is considered. where,b = (bo,...,bm)T is (m+ 1) vector, andaoy, ...
This paper is organized as follows: in Section 2 the aom, 01, ... .dm ére (’:onstants. Y

model of a multilevel large scale quadratic programming ™Tperefore, the first level decision maker (FLDM) has

problem with stochastic parameters in the objective, . ingicating the first decision level choice, the second

functions is formulated. In Section 3, the decomposition;g,e| gecision maker (SLDM) and the third level decision

methqd of large scale three—!evel linear programming prosayer (TLDM) havexs, x4 andxs, xs indicating the second

blem is presented. An algorithm for solving a three-level 4o ision level choice and the third decision level choice,

large scale quadratic programming problem (TLLSQPP)respectively.

with stochastic parameters in objective functions is

suggested in Section 4. In addition, a numerical exampleDef'n't'on 1. For an G —

is provided in Section 5 to clarify the results and the solu-(g})I Iglgiven. by t%gLﬁSMl aégl’(;(f'(xil’ o ’ém)i

tion algorithm. Finally, conclusion and future works are (Xa,Xa| (X1 xm) € G}) given by thes’SLDM i? the

reported in Section 6. decision-making variable(xs,xs € Gz = {Xs,Xe|(X1,
...,Xm) € G}) is the Pareto optimal solution of the
TLDM, then (xi,...,Xm) is a feasible solution for the

2 Problem Formulation and Solution TLLSQPP with stochastic parameters in objective func-

Concept tions.

X1,-.-,Xm > 0.}

— R/(i = 1,2,3) are the first level objective
, the second level objective function, and thecthir

The three-level large scale quadratic programming probPefinition 2. If x* € R™is a feasible solution of the
lem (TLLSQPP) with stochastic parameters in the objec-T-LSQPP; no other feasible solutione G exist, such

tive functions may be formulated as follows: that F1(x") < Fi(x); sox" is the Pareto optimal solution
for the TLLSQPP with stochastic parameters in objective
[First Level functions.
1 The basic idea in treating the TLLSQPP with
MaxF; = Ajx+ EXT L1X, (1) stochastic parameters in objective functions is to convert
X1:X

the probabilistic nature of this problem into an equivalent
deterministic. In this case, the set of objective functions
can be rewritten in the deterministic form &:[

n n
) =3 axi+k 5 E(LY)
=1 =1

1
Max Pz = Agx+ 5XT Lox, ) I
G S SXEaP(Lx, r=12,....k  (5)
wherexs, . .. ,Xm solves; =1 2
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whereE (L) = mean ofL| and aZ(LG) = variance ofLj,

and ki,k5, are non-negative constants whose values M
indicate the relative importance of the mean and the )
for maximization. If

ki =k, =1, it is an indication that equal importance is
given to the maximization of the mean as well as the

standard deviation of the varia

standard deviation dIE.

3 Decomposition Algorithm for the
Three-Level Large Scale Linear
Programming Problem

The TLLSQPP with stochastic parameters in objective
functions can be understood as the following determi-

nistic TLLSQPP.
[First Level
1 T/
Max f1(X) = Arx—+ X L1X, (6)

wherexs, ..., Xn solves;

[Second Levél

1
Max f2(x) = Aox+ EXT L5X, (7)
wherexs, ..., Xm solves;
[Third Level
Max f3(x) = A X+ SXT Ly (8)
W6 56 3 — N3 2 3N

wherexz, ..., Xm solves.

Subject to
xeG. (9)

[Third Level

flax Hs(x), (13)

wherexz, ..., Xm solves.

Subject to
xeG. (14)

The three-level large scale linear programming problem is
solved by adopting the leader-follower Stakelberg
strategy combined with Dantzig and Wolf decomposition
method B, 11]. First, the optimal solution that is accept-
able to the FLDM is obtained using the decomposition
method to break the large scale problem into n-sub prob-
lems that can be solved directly.

The decomposition principle is based on representing
the TLLSLPP in terms of the extreme points of the sets
djx; <bj,x; >0,j=1,2,...,m To do so, the solution
space described by eadix; < bj,x; >0,j =1,2,...,m
must be bounded and closed.

Then by inserting the FLDM decision variable to the
SLDM in order to seek the optimal solution using Dantzig
and Wolf decomposition method.]], then the decom-
position method break the large scale problem into n-sub
problems that can be solved directly. Finally the TLDM
repeat the same action till the optimal solution is obtained
for his/her problem which is the optimal solution to the
TLLSLPP.

Theorem 1.The decomposition algorithm terminates in a
finite number of iterations, yielding a solution of the large
scale problem.

To prove theorem 1 above, the reader is referred to
[11].

4 An Algorithm

To solve a three-level large scale quadratic programming

problem using decomposition algorithms is a complexa solution algorithm to solve a three-level large-scale
problem. Taylor series can overcome this complexity byquadratic programming problem (TLLSQPP) with stoch-
obtaining polynomial objective functions equivalent to astic parameters in objective functions is described in a
quadratic objective functions. series of steps. The suggested algorithm can be summari-
) zed in the following manner:

oN05) i_123).

(Xj —x7) dx;

1

Hi() = i) = fi() +

J

M=

10 Step 1.DetermineE{L'} andVar{L},(i=1,2,...,m).
So the equivalent TLLSPP can be written as:
Step 2.Calculate
[First Level
MaxHj(x), (112)

X1.X2

n n
)= 3 arx+k Y OFE(LY)
wherexs, ..., Xm solves; j=1

=1

n
1
G Y EXJZGZ(LE)X, r=12...k
=

Step 3.Formulate the equivalent (TLLSQPP).

[Second Levél
MaxHa(x), (12)

X3: X4
wherexs, . .., Xm solves;
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Step 4. Convert problem (TLLSQPP) into (TLLSLPP) 5 Numerical Example
using Taylor series approach the transformation for the

FLDM, SLDM, and TLDM. To demonstrate the solution for the (STLLSQPP) the
R df () following problem is considered:
Hi(x) = fi(x z X)) g (i=1.2.3).
=1 i [First Level

Step 5.Formulate the FLDM problem, go to Step 6. Iylax Fi(x, 61) = Max(1+ 611)x§+ 921X%+x5+x6,
Step 6. Convert the master problem in terms of the \yherexs, x4, xs, %5 SOIVES:
extreme points of setjx; < bj,x; >0,j =1,2,3, Y

K [Second Levél
Step 7.Determine the extreme points= Y, ; BjkXjk, j =

1,2,3 using Balinski’s algorithm [15]. Max Fa(x 62) = Maxxy + (2+ 02)%3 + 62%2 + 2Xs,
Step 8.Setk =1. wherexs, Xg solves;

Step 9.Computezjx — cjx = CgB 1Pk — Cj, go to Step [Third Level
10 3 32 3 2
I\Xé[gex Fs(x,0°%) = I;él,gﬁxx1+ 2%3 + Oxe+ (65 + 1)xe.

Step 10.If z]-*k —Cj <0, then go to Step 11, otherwise, the

optimal solution has been reached, go to Step 16. Subject to

X X1+ Xo + X3+ Xg + X5+ Xg < 40,
Step 11.DetermineX|, associated with milﬁij*k_c]_kk}_ 1 X2+ X3+ X4+ X5+ Xg <

3x1 + X2 < 36,
Step 12.Bjx associated with extreme poiﬁ;k must enter Axz+ 2%, < 16,
the solution. -
X5 + 4xg < 20,
Step 13.Determine leaves variable. X1,X2,X3,Xa,X5,X6 > 0,

Step 14.The new basis is determined by replacing thewhere 6! are independent normal distribution with the
vector associated with leaving variable with the vectorfollowing means and variances:
Bjk, go to Step 15.

Randomvariabld 6] | 6) | 6 | 67 | 62 | 63

Step 15.Setk = k+ 1, go to Step 9. Mean 1123|4511
Variance 4 9 | 16| 25| 16| 25

Step 16.If the SLDM obtain the optimal solution go to
Step 20, otherwise go to Step 17. Now the (TLLSQPP) with stochastic parameters in
the objective functions can be understood as the following
Step 17.Set(x1,x2) = (X[ ,%5) to the SLDM constraints, (TLLSQPP):
go to Step 18.
[First Leve|

Step 18.Formulate the SLDM problem, go to Step 8.
P P ¢ P Max fa(x, o) = I;{Ir%x4x§ + BX2 + X5 -+ X,
Step 19.1f the TLDM obtain the optimal solution go to

Step 22, otherwise go to Step 20. Wherexs, xa, Xs, Xe SOlves;

FOF S .S [Second Levél
Step 20.Set(Xq, X2, X3, Xa) = (X1, X5 ,X3,X;) to the TLDM

constraints, go to Step 21. M»‘;ﬁx fo(x, 62) = M%X)(l + 92+ 92+ 2Xs,
Step 21.Formulate the TLDM problem, go to Step 8. wherexs, X solves;

Step 22. (xL,x5,%5,%5, Xk, X ,...,x1)) is as an optimal [Third Level
solution for the three-level Iarge scale linear program-
ming problem, then stop. Max f3(x, 03) = Maxxy + 2Xp + X2 + TX.
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Subject to Subject to
X1 + X2 + X3+ X4+ X5+ X5 < 40, X3+ X4+ X5+ Xe < 4,
3X1 + X2 < 36, IX3+ 2X4 < 16,
4Ax3+ 2X4 < 16, X5+ 4%s < 20,
X5+ 4xg < 20, X3, X4,%5,Xe > 0.
X1,X2,X3,X4, X5, Xg > 0. The SLDM will repeat the same action as the FLDM till

. o the attainment of optimal solutionx3,x3,x3,x3) =
The 1st order Taylor polynomial series is used to convert(0 4,0,0), now set(xs XE) —(0.4) to thré %LSMSC)O(%)stra-
the quadratic function to linear function. Therefore, the /.~ ’ ’

ints.
(TLLSQPP) is written as: s

Finally, the TLDM's problem can be solved as

[First Level follows:
l;{l,%x Hi(x1, %) = Q{I_gzx8x1 + 20%2 + X5 + Xg — 24, MaxHz = I;{_’I,Qex 18x5 + 14xg + 56.
wherexs, X4, Xs, Xg Solves; Subject to
[Second Levél %5 +% <0,
X5+ 4xg < 20,
M’%XHz(Xg,M) = Maxxy + 183+ 18x4 + 2x5 — 26, Xe.%6 > 0.
wherexs, X solves; The TLDM will repeat the same action as the FLDM and
. the SLDM till the attainment of optimal solution
[Third Level (x.x§) = (0,0) So (XXX, x) =
(0,36,0,4,0,0) is the optimal solution for three-level
MaxHz(xs, Xs) = Maxxi + 2xp + 185+ 14x6 — 16. large scale linear programming problem, wheie =
. 696 H, = 46, andHz = 56.
Subject to
X1+ Xo+ X3+ X4 + X5+ X6 < 40, 6 Summary and Concluding Remarks
3x1+ Xz < 36, This paper presented a solution for multi-level large scale
4x3+ 2x4 < 16, guadratic programming problem with stochastic paramet-
ers in the objective functions based on a decomposition
X5+ 4% < 20, algorithm. In the first phase of the solution algorithm and
X1, %2, X3, X4, X5, Xg > O. to avoid the complexity of this problem, the stochastic
. nature of the problem was converted into the equivalent
The FLDM's problem is formulated as follows: crisp problem. In the second phase, Taylor series was
combined with a decomposition algorithm to obtain the
Max Hy (X) = Max8x; + 20xz + X5+ X6 — 24. optimal solution of this problem. Finally, a numerical
. example was given to clarify the results of this paper.
Subject to However, there are several points open for future
discussion, which should be explored and studied in the
xeG. area of stochastic multi-level large scale optimization
such as:
After 5 iterations the FLDM’s optimal solution is
obtained 1. A decomposition algorithm for solving stochastic
multi-level large scale integer quadratic programming
(xT, %5, x5 x5 xE xE) = (0,36,0,0,4,0). problem.
Now set(x1,x%2) = (0,36) to the SLDM constraints. 2. A decomposition algorithm for solving stochastic

multi-level large scale fractional programming problem.
Secondly, the SLDM’s problem can be solved as

follows: 3. A decomposition algorithm for solving stochastic
multi-level large scale mixed integer quadratic program-
Max Hy = l;élr%xl&(ﬁ 18x4+ 2x5 — 26. ming problem.
(@© 2015 NSP
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