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Abstract: We present a decomposition algorithm to solve a multi-levellarge scale quadratic programming problem with stochastic
parameters in the objective functions. In the first phase of the solution algorithm and to avoid the complexity of this problem, the
stochastic nature of the problem is converted into the equivalent crisp problem. In the second phase, Taylor series is combined with
a decomposition algorithm to obtain the optimal solution for this problem. An illustrative example is discussed to demonstrate the
correctness of the proposed solution method.
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1 Introduction
Decision problems of chance-constrained or stochastic
optimization arise when certain coefficients of an optimi-
zation model are not fixed or known but instead, to some
extent, are of probabilistic quantities. In most real life
problems in mathematical programming, the parameters
are considered as random variables [1,2].

Multi-level programming techniques were developed
to solve decentralized problems with multiple decision-
makers in hierarchical organization, where each unit or
department independently seek its own interest, but is
affected by the actions of other units through externalities
[3,4,5,6,7].

In large scale programming which closely describe
and represent real world decision situations, various fact-
ors of the real world system should be reflected in the
description of the objective functions and constraints.
These objective functions and constraints involve many
parameters and experts may assign them different values
[8,9].

Notable studies have been carried out in the area of
stochastic multi-level programming problems. In [10]
Kumar and Baran presented a fuzzy goal programming
(FGP) procedure for solving multilevel programming pro-
blems (MLPPs) having chance constraints in hierarchical
decision organizations. The proposed approach converted
the chance constraints of a problem into their respective

deterministic equivalent in the decision making context.
Then, the objective functions of decision makers (DMs)
located at different hierarchical levels are converted into
fuzzy goals by introducing an imprecise aspiration level
to each of them to make decision in an uncertain enviro-
nment.

In [6], Pramanik et al. used the fuzzy goal progra-
mming approach to solve chance constrained quadratic
bi-level programming problem. Chance constraints were
converted into equivalent deterministic constraints by the
prescribed distribution functions. The quadratic mem-
bership functions were formulated by using the individual
best solution of the quadratic objective functions subject
to the equivalent deterministic constraints.

After the publication of the Dantzig and Wolfe deco-
mposition method [11], numerous subsequent works on
multi-objective large scale and multi-level large scale pro-
gramming problems were carried out [12,13].

Osman et al. [13] presented a method for solving a
special class of large scale fuzzy multi-objective integer
problems depending on the decomposition algorithm.
Furthermore, Abo-Sinna and Abou-Elenin extended the
technique for order preference by similarity ideal solution
(TOPSIS) to resolve large scale multiple objective progra-
mming problems involving fuzzy parameters [8].

Benzi et al. [9] developed and compared multilevel
algorithms for solving large scale bound constrained

∗ Corresponding author e-mail:emamo e@yahoo.com.

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090419


1818 O. E. Emam et. al. : A decomposition Algorithm for Solving Stochastic...

nonlinear problems via interior point methods. It shows
how a multilevel continuation strategy can be used to
obtain good initial guesses for each nonlinear iteration. A
minimal surface problem is used to illustrate the various
approaches.

Sultan et al. [14] presented an algorithm to solve a
three-level large scale linear programming problem in
which the objective functions at every level are to be
maximized. An algorithm for solving a three-planner
model and a solution method for treating this problem are
suggested. It attempted to optimize the problem separa-
tely at each level as a large scale programming problem
using the Dantzig and Wolfe decomposition method.
Therefore, it handled the optimization process through a
series of sub problems that can be solved independently.

Currently, the challenging task for academic research
is to address large-scale complex optimization problems
under various uncertainties. Therefore, investigations on
the development of chance-constrained multi-level large
scale programming problem are required.

In this paper, an attempt to solve a multi-level large
scale quadratic programming problem with stochastic
parameters in the objective functions based on a deco-
mposition algorithm is considered.

This paper is organized as follows: in Section 2 the
model of a multilevel large scale quadratic programming
problem with stochastic parameters in the objective
functions is formulated. In Section 3, the decomposition
method of large scale three-level linear programming pro-
blem is presented. An algorithm for solving a three-level
large scale quadratic programming problem (TLLSQPP)
with stochastic parameters in objective functions is
suggested in Section 4. In addition, a numerical example
is provided in Section 5 to clarify the results and the solu-
tion algorithm. Finally, conclusion and future works are
reported in Section 6.

2 Problem Formulation and Solution
Concept

The three-level large scale quadratic programming prob-
lem (TLLSQPP) with stochastic parameters in the objec-
tive functions may be formulated as follows:

[First Level]

Max
x1,x2

F1 = A1x+
1
2

xT L1x, (1)

wherex3, . . . ,xm solves;

[Second Level]

Max
x3,x4

F2 = A2x+
1
2

xT L2x, (2)

wherex5, . . . ,xm solves;

[Third Level]

Max
x5,x6

F3 = A3x+
1
2

xT L3x, (3)

wherex7, . . . ,xm solves.

Subject to
x ∈ G, (4)

where

G = {a01x1+ a02x2+ a0mxm ≤ b0,

d1x1 ≤ b1,

d2x2 ≤ b2,

dmxm ≤ bm,

x1, . . . ,xm ≥ 0.}

Fi : Rm → R,(i = 1,2,3) are the first level objective
function, the second level objective function, and the third
level objective function, respectively,(L1,L2,L3) are
m×m real matrices contain random stochastic coefficient
and(A1,A2,A3) are 1×m matrices.

In the above problem (1)–(4),x is m × 1 are real
vector variables,G is the large scale linear constraint set
where,b = (b0, . . . ,bm)

T is (m + 1) vector, anda01, . . . ,

a0m,d1, . . . ,dm are constants.
Therefore, the first level decision maker (FLDM) has

x1,x2 indicating the first decision level choice, the second
level decision maker (SLDM) and the third level decision
maker (TLDM) havex3,x4 andx5,x6 indicating the second
decision level choice and the third decision level choice,
respectively.

Definition 1. For any(x1,x2 ∈ G1 = {x1,x2|(x1, . . . ,xm) ∈
G}) given by the FLDM and (x3,x4 ∈ G2 =
{x3,x4|(x1, . . . ,xm) ∈ G}) given by the SLDM, if the
decision-making variable(x5,x6 ∈ G3 = {x5,x6|(x1,

. . . ,xm) ∈ G}) is the Pareto optimal solution of the
TLDM, then (x1, . . . ,xm) is a feasible solution for the
TLLSQPP with stochastic parameters in objective func-
tions.

Definition 2. If x∗ ∈ Rm is a feasible solution of the
TLLSQPP; no other feasible solutionx ∈ G exist, such
that F1(x∗) ≤ F1(x); so x∗ is the Pareto optimal solution
for the TLLSQPP with stochastic parameters in objective
functions.

The basic idea in treating the TLLSQPP with
stochastic parameters in objective functions is to convert
the probabilistic nature of this problem into an equivalent
deterministic. In this case, the set of objective functions
can be rewritten in the deterministic form as [2]:

fr(x) =
n

∑
j=1

ar jx j + kr
1

n

∑
j=1

x2
jE(L

r
j)

+kr
2

√

n

∑
j=1

1
2

x2
jσ2(Lr

j)x, r = 1,2, . . . ,k, (5)
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whereE(Lr
j) = mean ofLr

j andσ2(Lr
j) = variance ofLr

j,
and kr

1,k
r
2, are non-negative constants whose values

indicate the relative importance of the mean and the
standard deviation of the variableLr

j for maximization. If
kr

1 = kr
2 = 1, it is an indication that equal importance is

given to the maximization of the mean as well as the
standard deviation ofLr

j.

3 Decomposition Algorithm for the
Three-Level Large Scale Linear
Programming Problem

The TLLSQPP with stochastic parameters in objective
functions can be understood as the following determi-
nistic TLLSQPP.

[First Level]

Max
x1,x2

f1(x) = A1x+
1
2

xT L′
1x, (6)

wherex3, . . . ,xm solves;

[Second Level]

Max
x3,x4

f2(x) = A2x+
1
2

xT L′
2x, (7)

wherex5, . . . ,xm solves;

[Third Level]

Max
x5,x6

f3(x) = A3x+
1
2

xT L′
3x, (8)

wherex7, . . . ,xm solves.

Subject to
x ∈ G. (9)

To solve a three-level large scale quadratic programming
problem using decomposition algorithms is a complex
problem. Taylor series can overcome this complexity by
obtaining polynomial objective functions equivalent to
quadratic objective functions.

Hi(x)∼= f̂i(x) = fi(x
∗
i )+

n

∑
j=1

(x j −x∗i j)
∂ fi(x∗i )

dx j
,(i = 1,2,3).

(10)
So the equivalent TLLSPP can be written as:

[First Level]
Max
x1,x2

H1(x), (11)

wherex3, . . . ,xm solves;

[Second Level]
Max
x3,x4

H2(x), (12)

wherex5, . . . ,xm solves;

[Third Level]
Max
x5,x6

H3(x), (13)

wherex7, . . . ,xm solves.

Subject to
x ∈ G. (14)

The three-level large scale linear programming problem is
solved by adopting the leader-follower Stakelberg
strategy combined with Dantzig and Wolf decomposition
method [8,11]. First, the optimal solution that is accept-
able to the FLDM is obtained using the decomposition
method to break the large scale problem into n-sub prob-
lems that can be solved directly.

The decomposition principle is based on representing
the TLLSLPP in terms of the extreme points of the sets
d jx j ≤ b j,x j ≥ 0, j = 1,2, . . . ,m. To do so, the solution
space described by eachd jx j ≤ b j,x j ≥ 0, j = 1,2, . . . ,m
must be bounded and closed.

Then by inserting the FLDM decision variable to the
SLDM in order to seek the optimal solution using Dantzig
and Wolf decomposition method [11], then the decom-
position method break the large scale problem into n-sub
problems that can be solved directly. Finally the TLDM
repeat the same action till the optimal solution is obtained
for his/her problem which is the optimal solution to the
TLLSLPP.

Theorem 1.The decomposition algorithm terminates in a
finite number of iterations, yielding a solution of the large
scale problem.

To prove theorem 1 above, the reader is referred to
[11].

4 An Algorithm

A solution algorithm to solve a three-level large-scale
quadratic programming problem (TLLSQPP) with stoch-
astic parameters in objective functions is described in a
series of steps. The suggested algorithm can be summari-
zed in the following manner:

Step 1.DetermineE{Li
j} andVar{Li

j},(i = 1,2, . . . ,m).

Step 2.Calculate

fr(x) =
n

∑
j=1

ar jx j + kr
1

n

∑
j=1

x2
jE(L

r
j)

+kr
2

√

n

∑
j=1

1
2

x2
jσ

2(Lr
j)x, r = 1,2, . . . ,k.

Step 3.Formulate the equivalent (TLLSQPP).
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Step 4. Convert problem (TLLSQPP) into (TLLSLPP)
using Taylor series approach the transformation for the
FLDM, SLDM, and TLDM.

Hi(x)∼= f̂i(x) = fi(x
∗
i )+

n

∑
j=1

(x j −x∗i j)
∂ fi(x∗i )

dx j
,( j = 1,2,3).

Step 5.Formulate the FLDM problem, go to Step 6.

Step 6. Convert the master problem in terms of the
extreme points of setsd jx j ≤ b j,x j ≥ 0, j = 1,2,3.

Step 7.Determine the extreme pointsx j =∑
k j
k=1 β jkx̂ jk, j =

1,2,3 using Balinski’s algorithm [15].

Step 8.Setk = 1.

Step 9.Computez jk − c jk = CBB−1Pjk − c jk, go to Step
10.

Step 10.If z∗jk −c∗jk ≤ 0, then go to Step 11; otherwise, the
optimal solution has been reached, go to Step 16.

Step 11.DetermineX̂ jk associated with min{z∗jk − c∗jk}.

Step 12.B jk associated with extreme pointX̂ jk must enter
the solution.

Step 13.Determine leaves variable.

Step 14.The new basis is determined by replacing the
vector associated with leaving variable with the vector
B jk, go to Step 15.

Step 15.Setk = k+1, go to Step 9.

Step 16.If the SLDM obtain the optimal solution go to
Step 20, otherwise go to Step 17.

Step 17.Set(x1,x2) = (xF
1 ,x

F
2 ) to the SLDM constraints,

go to Step 18.

Step 18.Formulate the SLDM problem, go to Step 8.

Step 19.If the TLDM obtain the optimal solution go to
Step 22, otherwise go to Step 20.

Step 20.Set(x1,x2,x3,x4) = (xF
1 ,x

F
2 ,x

S
3,x

S
4) to the TLDM

constraints, go to Step 21.

Step 21.Formulate the TLDM problem, go to Step 8.

Step 22. (xF
1 ,x

F
2 ,x

S
3,x

S
4,x

T
5 ,x

T
6 , . . . ,x

T
m) is as an optimal

solution for the three-level large scale linear program-
ming problem, then stop.

5 Numerical Example

To demonstrate the solution for the (STLLSQPP) the
following problem is considered:

[First Level]

Max
x1,x2

F1(x,θ 1) = Max
x1,x2

(1+θ 1
1)x

2
1+θ 1

2x2
2+ x5+ x6,

wherex3,x4,x5,x6 solves;

[Second Level]

Max
x3,x4

F2(x,θ 2) = Max
x3,x4

x1+(2+θ 2
3)x

2
3+θ 2

4 x2
4+2x5,

wherex5,x6 solves;

[Third Level]

Max
x5,x6

F3(x,θ 3) = Max
x5,x6

x1+2x2+θ 3
5 x2

5+(θ 3
6 +1)x2

6.

Subject to

x1+ x2+ x3+ x4+ x5+ x6 ≤ 40,

3x1+ x2 ≤ 36,

4x3+2x4 ≤ 16,

x5+4x6 ≤ 20,

x1,x2,x3,x4,x5,x6 ≥ 0,

where θ i
j are independent normal distribution with the

following means and variances:

Random variable θ 1
1 θ 1

2 θ 2
3 θ 2

4 θ 3
5 θ 3

6
Mean 1 2 3 4 5 1

Variance 4 9 16 25 16 25

Now the (TLLSQPP) with stochastic parameters in
the objective functions can be understood as the following
(TLLSQPP):

[First Level]

Max
x1,x2

f1(x,θ 1) = Max
x1,x2

4x2
1+5x2

2+ x5+ x6,

wherex3,x4,x5,x6 solves;

[Second Level]

Max
x3,x4

f2(x,θ 2) = Max
x3,x4

x1+9x2
3+9x2

4+2x5,

wherex5,x6 solves;

[Third Level]

Max
x5,x6

f3(x,θ 3) = Max
x5,x6

x1+2x2+9x2
5+7x2

6.
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Subject to

x1+ x2+ x3+ x4+ x5+ x6 ≤ 40,

3x1+ x2 ≤ 36,

4x3+2x4 ≤ 16,

x5+4x6 ≤ 20,

x1,x2,x3,x4,x5,x6 ≥ 0.

The 1st order Taylor polynomial series is used to convert
the quadratic function to linear function. Therefore, the
(TLLSQPP) is written as:

[First Level]

Max
x1,x2

H1(x1,x2) = Max
x1,x2

8x1+20x2+ x5+ x6−24,

wherex3,x4,x5,x6 solves;

[Second Level]

Max
x3,x4

H2(x3,x4) = Max
x3,x4

x1+18x3+18x4+2x5−26,

wherex5,x6 solves;

[Third Level]

Max
x5,x6

H3(x5,x6) = Max
x5,x6

x1+2x2+18x5+14x6−16.

Subject to

x1+ x2+ x3+ x4+ x5+ x6 ≤ 40,

3x1+ x2 ≤ 36,

4x3+2x4 ≤ 16,

x5+4x6 ≤ 20,

x1,x2,x3,x4,x5,x6 ≥ 0.

The FLDM’s problem is formulated as follows:

Max H1(x) = Max
x1,x2

8x1+20x2+ x5+ x6−24.

Subject to

x ∈ G.

After 5 iterations the FLDM’s optimal solution is
obtained

(xF
1 ,x

F
2 ,x

F
3 ,x

F
4 ,x

F
5 ,x

F
6 ) = (0,36,0,0,4,0).

Now set(x1,x2) = (0,36) to the SLDM constraints.

Secondly, the SLDM’s problem can be solved as
follows:

Max H2 = Max
x3,x4

18x3+18x4+2x5−26.

Subject to

x3+ x4+ x5+ x6 ≤ 4,

4x3+2x4 ≤ 16,

x5+4x6 ≤ 20,

x3,x4,x5,x6 ≥ 0.

The SLDM will repeat the same action as the FLDM till
the attainment of optimal solution(xS

3,x
S
4,x

S
5,x

S
6) =

(0,4,0,0), now set(x3,x4) = (0,4) to the TLDM constra-
ints.

Finally, the TLDM’s problem can be solved as
follows:

Max H3 = Max
x5,x6

18x5+14x6+56.

Subject to

x5+ x6 ≤ 0,

x5+4x6 ≤ 20,

x5,x6 ≥ 0.

The TLDM will repeat the same action as the FLDM and
the SLDM till the attainment of optimal solution
(xT

5 ,x
T
6 ) = (0,0) So (xF

1 ,x
F
2 ,x

S
3,x

S
4,x

T
5 ,x

T
6 ) =

(0,36,0,4,0,0) is the optimal solution for three-level
large scale linear programming problem, whereH1 =
696, H2 = 46, andH3 = 56.

6 Summary and Concluding Remarks

This paper presented a solution for multi-level large scale
quadratic programming problem with stochastic paramet-
ers in the objective functions based on a decomposition
algorithm. In the first phase of the solution algorithm and
to avoid the complexity of this problem, the stochastic
nature of the problem was converted into the equivalent
crisp problem. In the second phase, Taylor series was
combined with a decomposition algorithm to obtain the
optimal solution of this problem. Finally, a numerical
example was given to clarify the results of this paper.

However, there are several points open for future
discussion, which should be explored and studied in the
area of stochastic multi-level large scale optimization
such as:

1. A decomposition algorithm for solving stochastic
multi-level large scale integer quadratic programming
problem.

2. A decomposition algorithm for solving stochastic
multi-level large scale fractional programming problem.

3. A decomposition algorithm for solving stochastic
multi-level large scale mixed integer quadratic program-
ming problem.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1822 O. E. Emam et. al. : A decomposition Algorithm for Solving Stochastic...

References

[1] O. Emam, A Parametric Study on Multi-Objective Integer
Quadratic Programming Problems Under Uncertainty, Gen.
Math. Notes, 6 (2011) 49–60.

[2] S. Rao, Engineering Optimization: Theory and Practice,
Fourth Edition, 2009.

[3] O. Emam, Interactive approach to bi-level integer multi-
objective fractional programming problem, Applied Mathe-
matics and Computation, 223 (2013) 17–24.

[4] H. Katagiri, K. Kato, and T. Uno, Bilevel Linear Program-
ming Problems with Quadratic Membership Functions of
Fuzzy Parameters, Proceedings of the International Multi-
conference of Engineers and Computer Scientists, 2 (2013)
13–15.

[5] M. S. Osman, M. A. Abo-Sinna, A. H. Amer, and O. E.
Emam, A multi-level non-linear multi-objective decision-
making under fuzziness, Applied Mathematics and Computa-
tion, 153 (2004) 239–252.

[6] S. Pramanik and D. Banerjee, Chance constrained quadratic
bi-level programming problem, International Journal of
Modern Engineering Research, 2 (2012) 2417–2424.

[7] S. Pramanik, D. Banerjee, and B. Giri, Chance constrained
linear plus linear fractional bi-level programming problem,
International Journal of Computer Applications, 56 (2012)
34–39.

[8] M. A. Abo-sinna and Abou-El-Enin, An interactive algori-
thm for large scale multiple objective programming problems
with fuzzy parameters through TOPSIS approach, Yugoslav
Journal of Operations Research, 21 (2011) 253–273.

[9] M. Benzi, E. Haber, and L. R. Hansson, Multilevel algorithms
for large scale interior point methods in bound constraint
optimization, Technical Report, Emory University, Atlanta,
2006.

[10] M. Kumar and B. Baran, Fuzzy Goal Programming Appro-
ach to Chance Constrained Multilevel Programming Probl-
ems, International Journal of Advanced Computer Research,
3 (2013) 193–200.

[11] G. Dantzig and P. Wolfe, The decomposition algorithm for
linear programs, Econometrics, 9 (1961) 767–778.

[12] T. Abou-El-Enin, on the solution of a special type of
large scale integer linear vector optimization problems with
uncertainty data through TOPSIS approach, Applied Mathe-
matical Sciences, 4 (2010) 3095–3105.

[13] M. S. Osman, O. M. Saad, and A. G. Hasan, Solving
special class of large scale fuzzy multi objective integer linear
programming problems, Fuzzy Sets and Systems, 107 (1999)
289–297.

[14] T. Sultan, O. Emam, and A. Abohany, A decomposition
algorithm for solving a threelevel large scale linear program-
ming problem, Applied Mathematics and Information
Science, 5 (2014), 2217–2223 .

[15] M. Balinski, An Algorithm For Finding All Vertices of
Convex Polyhedral Sets, SIAM Journal, 9 (1961) 72–88.

Osama Emam
is an associate professor
of information systems,
Faculty of Computers
and Information, Helwan
University. His research
interest is in the multi-level
optimization field.

Sherif Kholeif
is an assistant professor
of information systems,
Faculty of Computers
and Information, Helwan
University. His research
interests include several
fields such as Web application
security, intelligent
agents, and data mining.

Safaa Magdy Azzam
is an assistant
of information systems,
Faculty of Computers
and Information, Helwan
University. Her research
interests are in the multi-level
large scale optimization field.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	Problem Formulation and Solution Concept
	Decomposition Algorithm for the Three-Level Large Scale Linear Programming Problem
	An Algorithm
	Numerical Example
	Summary and Concluding Remarks

