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Abstract: A numerical approximation of the initial-boundary system of nonlineaehlyplic equations based on spectral collocation
method is presented in this article. A Chebyshev-Gauss-Radau collof@tGR-C) method in combination with the implicit Runge-
Kutta scheme are employed to obtain highly accurate approximations to thitorezl problem. The collocation points are the
Chebyshev interpolation nodes. This approach reduces this probleivéssystem of nonlinear ordinary differential equations which
are far easier to be solved. Indeed, by selecting a limited number of atlonodes, we obtain an accurate results. The numerical
examples demonstrate the accuracy, efficiency, and versatility of ttheche
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1 Introduction One of the more accurate numerical methods is
spectral method. Spectral methods have emerged as a
powerful techniques used in applied mathematics and

In the last decades, partial differential hyperbolic syste scientific computing to numerically solve linear and
has a wide range of physical applications such ashonlinear differential equations 28J-[26], integral

viscoelastic phenomenal]f[6] and plants control €quations 27-[30], integro-differential equations
systems’ models 7]. Hyperbolic systems have been [31]-[34], function approximation and variational
studied in many articles analytically and numerically. problems 85]-[38]. The main idea of spectral methods is

Finite element methods have been used 8h[[L1] to to put the _solution of the problem as a sum _of ce_rtain
numerica"y solve different examp|es of hyperbo“c basis functions and then to choose the coefficients in the

system. While, finite volume method base on curvedsum in order to minimize the difference between the exact
manifold wave propagation algorithmlg], diagonally ~ solution and approximate one as well as possible. The
imp"cit-exp"cit Runge-Kutta time-marching a|gorithm choice of test functions divided spectral methods into
[13], ADER scheme 14] have been used in the study of three well-known types, namely, the GalerkBeJ-[42],
numerical solution for hyperbolic system types. tau [43]-[45] and collocation methodstf]-[48]. Spectral
Numerical solution based on improved collocation method has an exponential convergence rate,
predictor-corrector method has been discussed3hfpr ~ Which is very useful in providing highly accurate
solving hybrid fuzzy differential equations. Moreover, solutions to nonlinear differential equations even using a
many researchers have used spectral methods for solvingnall number of grids. In contrast, finite-difference and
many types of hyperbolic models, see for exampl-[  finite-element methods yield only algebraic convergence
[20]. Also, many analytical method have been introducedrates. Also it has became increasingly popular for solving
to obtain exact solutions for hyperbolic models, see forfractional differential equationg}f]-[51].

examples?21,22].
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The widely applicable, efficiency, and high accuracy The set of Chebyshev polynomials forms a complege
are the more advantages of the collocation method. Du@rthogonal system, and

to these advantages of spectral collocation method when ce o
compared with other numerical methods, many studie I B =1, _ _ >
about this method have been introduced. In this wa j'Tk”W == 0, k#j, =2 G=1 k=1

Chebyshev collocation methods were proposed for ©)

solving linear and nonlinear ordinary differential

equations $2] and fractional order differential equations

[53]. Meanwhile, numerical treatments based on3 Chebyshev spectral collocation method

Chebyshev collocation method for some partial

differential equations are introduced in54[55,56]. The main objective of this section is to present the

Moreover, Chebyshev collocation methods wereC-GR-C method to numerically solve the system of

introduced for numerically solving integral equatiosg,[  nonlinear hyperbolic equations.

58] and integro-differential equation§9, 60]. Firstly, we are interested in using the C-GR-C method to
In the present paper, we numerically solve two transform the following partial differential equations

hyperbolic systems of first order which can be formulated(PDESs) into system of ordinary differential equations

as the propagation of shallow water waves and the(SODES)

Brusselator model of the chemical reaction-diffusion ou(y,t) au(y.t)

models. In fact, we treat with these problems in two steps. . .

+nu(y,t)v(y,t) =0,

The first one, C-GR-C method is used to reduce the ot oy

hyperbolic system of first order to a system of first order ov(y.t) ov(y.t) UVt = O 4
ordinary differential equations in time. Implicit ot ay TUYIVLE =5,
Runge-Kutta scheme is employed to obtain numerical (y,t) € [AB] x [0, T],

solution for the mentioned system of first order ordinary
differential equations in time. To the best of our Wheren is a constant, with the boundary-initial conditions

knowledge, there are no results on C-GR-C method for WAL =gi(t), VAL =g(t), te[0T],

solving the hyperbolic system of first order which we will (5)
be discussed in this paper. u(y,0) = fi(y), v(y,0)=fa(y), y€I[AB]

The outline of this paper is arranged as follows. We  Ngy, suppose the change of variables
present some properties of Chebyshev polynomials inthg — _2_y , AB uly,t) = r(xt), viy,t) = s(xt),

: ) , B-AY T A-B
next section. Section 3 is devoted to develop the C-GR-Guhich will be used to transform problem)(5) into the
method for solving the hyperbolic system of first order. fo|jowing system in the classical intervdl-1, 1], for the
Some numerical examples are proposed in Section 4 t@pace variable, to directly implement the collocation

show the accuracy of our method. In the last section, Waynethod based on Chebyshev family defined-eh, 1],
present some observations and conclusions.

or(xt) 2 )

or(x,t
2 Some properties of Chebyshev polynomials Asx.) 2 asix) 5
_ _ ——( ) ~~ 4+ nr(x,t)s(x,t) =0, ©)
The well-known Chebyshev polynomials are defined on ot B-A" 0x
the interval[—1, 1] and can be determined with the aid of (x,t) € [-1,1] x [0, T},
the following recurrence formula: , - .
with the boundary-initial conditions
Tir1 () = 2T = T (), k=1,2,---, (L0 =g, s-1O=a®, tepld
where To(x) = 1 and Ti(X) = x. The Chebyshev r(x,0) = fa(x), s(x,0)=fa(x), xe[-1.1].
polynomials are satisfying the following relations Now, we outline the main steps of applying the
K C-GR-C method for solving system of nonlinear
Te(£1) = (£1)". (1) hyperbolic equations. In the Chebyshev collocation
1 method, the approximate solutions can be expressed as a
Let w(x) = , then we define the weighted space truncated Chebyshev series:
0 ==z g P
LZ as usual. The inner product and the normLgfwith N
respect to the weight function are defined as follows: r(xt) = zoaj (T (%),
]:
i ) . (8)
W= [uvooweddx,  [lulu= (Ui @) ) = 3 BiOTi(0)
-1 ]:
@© 2014 NSP
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and in virtue of )-(3), we deduce that In the proposed C-GR-C method the residual&)fi§
N set to zero atN of Chebyshev—Gagss-Radau points.
Moreover, the boundary conditiong)(will be enforced at
) / r(x ) w(x) Tj(x)dx, the collocation point-1. Therefore, adoptingl@)-(14),
-1 enable one to writeg)-(7) in the form:
L ©)
. / 2 N
4 () == (5=7) 3. Airi0) = ra(O)sn(0),
. (15)

. 2 XN
To evaluate the previous integrals accurately, we present  Sn(t) Z(Q)_Z)Bnis(t) —Nra(t)s(t),
the Chebyshev-Gauss-Radau quadrature. For any 1=

peSN(-1,1), where
¢ N ) =r(got),  S(t) = S t),
[ woge0gax= 3 anjobny.  (10) K1 N =T N
-1 1=

This provides a(2N) system of first order ordinary
differential equations in the expansion coefficieaft),
namely

whereSy(—1,1) is the set of polynomials of degree less
than or equal toN and xyj (0 < j < N) and o j
(0 < j < N) are the nodes and the corresponding
Christoffel numbers of the Chebyshev-Gauss-Radau
quadrature formula on the intervat 1, 1], respectively. In~ 2 N
accordance t02), the coefficientsa;(t) in terms of the ~ Tn(t) =— (m)(ZlAniri(t)JrAnofo(t)) —Nra(t)sa(t),
solution at the collocation points can be approximated by 1=

N

. 2
aj(t) = hlJ -iTi (XN, )TN T (XN ), =) :(ﬂ)(i;Bnis (©)+ Broso(t)) = AfnlD)sn(t)

N (11) (16)
1
bj(t) = o Z)Tj (XN, ) TN, S(XNi T).- This means that problen#)-(5) is transformed into the
li= following SODEs
Therefore, 8) can be rewritten as
S (3 L ) = — (=25 Aut(t)+ Aroro(0) — a(O(0)
_ ST T . . n(t) =—(5—%x ili ofo(t)) —Nrn )
0= 3 ( gohjT;(xN,.m<x>m.)r<xN.,.,t>, 5 A2
N N 1 c — ‘o _
s0t) = 3 (3 5 Ti0wa)Ty (0 ) sl (0 =(F=2)(2, B )+ Broso(t)) = Mfnlt)n).
i=0 “j=0""
(17)
Furthermore, if we differentiatel@) once, and evaluate it ) .
at all C-GR-C points, it is easy to compute the first spatialSUPIECt o the initial values
partial derivative in terms of the values at these collarati
points as rn(0) = f3(xun), S(0) = falxnn), N=1,--.N.
(18)

N
Fx(Xnnt) = ir (X t
x(Xn,n, ) i;Am (xn,is ), Finally, (17)-(18) can be rewritten into a matrix form of

(13) 2N system of first order ODEs with their vectors of initial

Sc(Xnn,t) = iBnis(XN,iyt)7 n=0,1,---,N, values:
= w(t) = F(t,r(t),s(t)),
where w(0) =1, .
N 4 where
Ay = %ETJ (XN,) OxTj (Xn,n) TN
J; (14) W(t) = [Fa(t), F2(t), ..., N (1), 51(1), 5(1), ..., 5n(1)]T,

1
Bri= —Tj(%n,i)0Tj(Xnn) TNi-
" J;)hj PR f=[fa0.1),- -, B3ON), Faxna), - Falxan)]T,
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and Table 1: Absolute errors for problen2@).
(x,t) n=28 n=10
_ My M3 My Mz
F(t,u(t)) = [R(t,u(t)), Rt u(t), ... A (t,u(t)), (—1,00) | 1.9910 7 | 1.9910 7 | 55010 ¥ | 55010
T (—0.8,0.1) | 83810°° | 9.0410°% | 7701010 | 277108
Gi(t,u(t)), Go(t,u(t)),....Gn(t,u(t))] ", (-0.6,02) | 66110 8 | 1.0L10 7 | 41110 ® | 49910 8
Where (—0.4,0.3) | 1.6010 7 | 27910 7 | 4.0410°% | 285108
(-0.2,0.4) | 297.10°% | 23110 % | 3.1010°° | 1.1910°
(0.0,05) | 635108 | 388107 | 11110 7 | 364108
(0.2,06) | 335108 | 1.6410 % | 460108 | 3.0510°°
Fa(t, u(t)) ra(t))— (0.4,0.7) | 947108 | 435107 | 452108 | 87510°
(t,u(®) = ZLA”' )+ Avoro(t)) (20) [ (06,08) | 29810 ° | 15710 7 | 89910 ° | 29810°
(0.8,09) | 302108 | 1.3010 7 | 200108 | 164108
’7“1( )Sn (1.0,1.0) | 9.0110°° | 431107 | 38810°¢ | 173108
2 N Table 2: Maximum absolute errors for probler2)
Gn(t,u(t)) =(=—— Bnhis(t)+B t)) —nrn(t)sa(t). ; '
nlt, () =(g=5)( 3 B (1) + Broso(t)) — nra(t)sn(1) e "
(21) 4 | 547x10% [ 1.93x10°?
8 | 1.99x10°7 | 431x 1077
The system of first order ODE49) can be solved by 12 | 1.10x10°7 | 477x10°8
implicit Runge-Kutta scheme.
4 Numerical results respectively. Moreover, the maximum absolute error is
given by
In this section, two examples are considered to show the .
' ; ; ; M; = Max{E V(y,t)eD )
accuracy of the algorithm presented in the previous ! {Ealy )_ (1) 0,71}, (26)
section. The results obtained, reveal that the present Mz = Max{Ez(y;t) :¥(y;t) € D x [0, T]}.

method is very effective and convenient.

Example 1. We now consider the inhomogeneous
nonlinear system

Absolute errors olu(y,t) andv(y,t) related to 22)-(24)
are introduced in Tabl& using C-GR-C method with two
choices ofN. Moreover, maximum absolute errors of

du(y,t) du(y,t) u(y,t) and v(y,t) related to 22)-(24) are introduced in
vy, t) "~ +u(y,t)—1=0, Table2 using C-GL-C method with various choices f
ot ay when compared with the exact solutior24]. The
ov(y,t) ALY 0_1-0 (22)  approximate solutions(x,t) andV(x,t) of problem @2)
ot —uy.t) ay —Vint)-1=0, with N = 12 are displayed in Figd and2, respectively.
(y,t) € [~1,1] x [0, 1], While, in Figs.3 and'4, we present the absolute errors
E1(x,t) and Ex(x,t) with N = 12. Moreover, we plotted
with the boundary-initial conditions the approximate solutiongx,t) andv(xt), and the exact
solutions u(x,t) and v(x,t) in Figs. 5, 6, 7 and 8,
u(o,t) =et, v(ot)=¢, respectively, with values of parameters listed in their
y (23) captions. Also wee see that the approximate and exact
uy,00=¢, v(y,00=e". solutions are coincided for different valuestair x.
The exact solutions of Eqs22) are Example 2.We consider the homogeneous linear system
u(y.t) =" vint) =", (24) oulyt) _ ovivt) _ o
ot ay 27)
The difference between the measured or inferred value of dv(y,t) du(y,t)
approximate solution and its actual value (absolute error) ot ay =0, (»t)e[-3,3x[0,1],

given by

El(yat) = ‘u(yvt) - G(y’t”a EZ(yvt) = ‘V<y7t> —V(y,t)|,
(25)  u(0,t) = cosHt) +sinh(t), v(0,t) = cosht) —sinh(t),

where u(y,t)(v(y.t)) and G(y,t)(V(y,t)) are the exact U0 =€, V(y,0)=e".
solution and the approximate solution at the pdint), (28)

with the boundary-initial conditions
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Fig. 2: The approximate solutiov(x,t) for example 1 aN = 12. Fig. 4: The absolute errde,(x,t) for example 1 aN = 12.
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Fig. 5: The approximate solution(x,t) and the exact solution
u(x,t) fort =0.0, 0.5 and 10 for example 1 aN = 12.

Fig. 7: The approximate solutiom(x,t) and the exact solution
v(x,t) fort = 0.0, 0.5 and 10 for example 1 aN = 12.
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Fig. 6: The approximate solution(x,t) and the exact solution
u(x,t) for x= 0.0, 0.2 and 04 for example 1 aN = 12.

Fig. 8: The approximate solutio®(x,t) and the exact solution
v(x,t) for x= 0.0, 0.2 and 04 for example 1 aN = 12.
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Table 3: Absolute errors for problen®().

(x,t) n=10 n=12
Ml M2 Ml M2

(—3,00) | 389105 | 38910 5 | 6.4310 7 | 6.4310 '

(—25,0.1) | 34010° | 35010°° | 6.40.10 7 | 9.2510 '

(—2,02) | 21010°° | 15310°° | 53810 7 | 2.09.10 7

(-15,03) | 1.2110° | 2.8610°° | 7.8610 | 4.36.10 '

(-1,04) | 31410° | 41710° | 11210 7 | 3.27.10° 7

(0.0,05) | 31910° | 46910° | 6.7810 7 | 6.6410 '

(1,06) | 3.1810° | 48910° | 45010 7 | 3.36.10 /

(15,07) | 1.9510° | 1.7910°° | 7.07.10 7 | 1.79.10°°

(2,08) | 1.7810° | 3.1810°° | 42910 7 | 1.0210°©

(25,09) | 49110° | 32710° | 1.0210° | 517107

(3,1.0) | 80810° | 20210°° | 1.41.10 % | 6.4410°7

Table 4: Maximum absolute errors for probler7).
N M1 M

4 [ 651x10 1 [ 865x10° 1
8 | 1.63x10°3 | 1.83x 1073
12 | 6.43x10°7 | 1.69x 107

Fig. 10: The approximate solutiou(x,t) for example 2 aN =
14.

]

Fig. 9: The approximate solutioa(x,t) for example 2 aN = 14.

Fig. 11: The absolute errdg; (x,t) for example 2 aN = 14.

The exact solutions of EQRT) are

u(y,t) = &cosht) +eYsinht), v(y,t) = e Ycosht) — e’sinh(t). The approximate solutiongi(x,t) and V(x,t) of
(29) problem @7) at N = 12 are displayed in Fig® and 10,
Absolute errors ofu(y,t) andv(y,t) related to 27)-(29) respectively. While, in Figsll and 12, we present the
are introduced in Tabld using C-GR-C method with two absolute error&; (x,t) andEx(x,t) atN = 12. Moreover,
choices ofN in the interval[—3,3]. Moreover, maximum we plotted the approximate solutiomgx,t) and V(xt),
absolute errors aii(y,t) andv(y,t) related to 22)-(24) are  and the exact solutiong(x,t) andv(x,t) in Figs. 13, 14,
introduced in Table} using C-GL-C method with various 15 and 16, respectively, with values of parameters listed
choices ofN. in their captions. Also wee see that the approximate and
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Fig. 12: The absolute errdey(x,t) for example 2 aN = 14. Fig. 14: The approximate solutioti(x,t) and the exact solution
u(x,t) for x= 0.0, 0.3 and 06 for example 2 aN = 14.
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Fig. 13: The approximate solutioti(x,t) and the exact solution
u(x,t) fort = 0.2, 0.6 and 10 for example 2 aN = 14. Fig. 15: The approximate solutiowi(x,t) and the exact solution
v(x,t) fort = 0.2, 0.6 and 10 for example 2 aN = 14.

the exact solutions are coincided for different values$ of

orXx. Gauss-Radau-collocation points and approximating
directly the solution using the Chebyshev polynomials.
The numerical results given in the previous section

5 Conclusion demonstrate the good accuracy of this algorithm.
Moreover, The algorithm introduced in this paper can be

In this paper, we have proposed a numerical algorithm towell suited for handling general linear and nonlinear

solve the nonlinear hyperbolic system of first order usingpartial differential equations with initial-boundary
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Fig. 16: The approximate solution(x,t) and the exact solution
v(x,t) for x=0.0, 0.3 and 06 for example 2 aN = 14.
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