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Abstract: A numerical approximation of the initial-boundary system of nonlinear hyperbolic equations based on spectral collocation
method is presented in this article. A Chebyshev-Gauss-Radau collocation(C-GR-C) method in combination with the implicit Runge-
Kutta scheme are employed to obtain highly accurate approximations to the mentioned problem. The collocation points are the
Chebyshev interpolation nodes. This approach reduces this problem to solve system of nonlinear ordinary differential equations which
are far easier to be solved. Indeed, by selecting a limited number of collocation nodes, we obtain an accurate results. The numerical
examples demonstrate the accuracy, efficiency, and versatility of the method.
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1 Introduction

In the last decades, partial differential hyperbolic system
has a wide range of physical applications such as
viscoelastic phenomena [1]-[6] and plants control
systems’ models [7]. Hyperbolic systems have been
studied in many articles analytically and numerically.
Finite element methods have been used in [8]-[11] to
numerically solve different examples of hyperbolic
system. While, finite volume method base on curved
manifold wave propagation algorithm [12], diagonally
implicit-explicit Runge-Kutta time-marching algorithm
[13], ADER scheme [14] have been used in the study of
numerical solution for hyperbolic system types.
Numerical solution based on improved
predictor-corrector method has been discussed in [15] for
solving hybrid fuzzy differential equations. Moreover,
many researchers have used spectral methods for solving
many types of hyperbolic models, see for examples [16]-
[20]. Also, many analytical method have been introduced
to obtain exact solutions for hyperbolic models, see for
examples [21,22].

One of the more accurate numerical methods is
spectral method. Spectral methods have emerged as a
powerful techniques used in applied mathematics and
scientific computing to numerically solve linear and
nonlinear differential equations [23]-[26], integral
equations [27]-[30], integro-differential equations
[31]-[34], function approximation and variational
problems [35]-[38]. The main idea of spectral methods is
to put the solution of the problem as a sum of certain
basis functions and then to choose the coefficients in the
sum in order to minimize the difference between the exact
solution and approximate one as well as possible. The
choice of test functions divided spectral methods into
three well-known types, namely, the Galerkin [39]-[42],
tau [43]-[45] and collocation methods [46]-[48]. Spectral
collocation method has an exponential convergence rate,
which is very useful in providing highly accurate
solutions to nonlinear differential equations even using a
small number of grids. In contrast, finite-difference and
finite-element methods yield only algebraic convergence
rates. Also it has became increasingly popular for solving
fractional differential equations [49]-[51].
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The widely applicable, efficiency, and high accuracy
are the more advantages of the collocation method. Due
to these advantages of spectral collocation method when
compared with other numerical methods, many studies
about this method have been introduced. In this way,
Chebyshev collocation methods were proposed for
solving linear and nonlinear ordinary differential
equations [52] and fractional order differential equations
[53]. Meanwhile, numerical treatments based on
Chebyshev collocation method for some partial
differential equations are introduced in [54,55,56].
Moreover, Chebyshev collocation methods were
introduced for numerically solving integral equations [57,
58] and integro-differential equations [59,60].

In the present paper, we numerically solve two
hyperbolic systems of first order which can be formulated
as the propagation of shallow water waves and the
Brusselator model of the chemical reaction-diffusion
models. In fact, we treat with these problems in two steps.
The first one, C-GR-C method is used to reduce the
hyperbolic system of first order to a system of first order
ordinary differential equations in time. Implicit
Runge-Kutta scheme is employed to obtain numerical
solution for the mentioned system of first order ordinary
differential equations in time. To the best of our
knowledge, there are no results on C-GR-C method for
solving the hyperbolic system of first order which we will
be discussed in this paper.

The outline of this paper is arranged as follows. We
present some properties of Chebyshev polynomials in the
next section. Section 3 is devoted to develop the C-GR-C
method for solving the hyperbolic system of first order.
Some numerical examples are proposed in Section 4 to
show the accuracy of our method. In the last section, we
present some observations and conclusions.

2 Some properties of Chebyshev polynomials

The well-known Chebyshev polynomials are defined on
the interval[−1,1] and can be determined with the aid of
the following recurrence formula:

Tk+1(x) = 2xTk(x)−Tk−1(x), k = 1,2, · · · ,

where T0(x) = 1 and T1(x) = x. The Chebyshev
polynomials are satisfying the following relations

Tk(±1) = (±1)k
. (1)

Let w(x) =
1√

1− x2
, then we define the weighted space

L2
w as usual. The inner product and the norm ofL2

w with
respect to the weight function are defined as follows:

(u,v)w =

1∫

−1

u(x)v(x)w(x)dx, ‖u‖w = (u,u)
1
2
w . (2)

The set of Chebyshev polynomials forms a completeL2
w-

orthogonal system, and

‖Tk‖w = hk =

{
Ck
2 π, k = j,

0, k 6= j,
C0 = 2, Ck = 1, k ≥ 1.

(3)

3 Chebyshev spectral collocation method

The main objective of this section is to present the
C-GR-C method to numerically solve the system of
nonlinear hyperbolic equations.
Firstly, we are interested in using the C-GR-C method to
transform the following partial differential equations
(PDEs) into system of ordinary differential equations
(SODEs)

∂u(y, t)
∂ t

+
∂u(y, t)

∂y
+ηu(y, t)v(y, t) = 0,

∂v(y, t)
∂ t

−∂v(y, t)
∂y

+ηu(y, t)v(y, t) = 0,

(y, t) ∈ [A,B]× [0,T ],

(4)

whereη is a constant, with the boundary-initial conditions

u(A, t) = g1(t), v(A, t) = g2(t), t ∈ [0,T ],

u(y,0) = f1(y), v(y,0) = f2(y), y ∈ [A,B].
(5)

Now, suppose the change of variables
x = 2

B−A y + A+B
A−B , u(y, t) = r(x, t), v(y, t) = s(x, t),

which will be used to transform problem (4)-(5) into the
following system in the classical interval,[−1,1], for the
space variable, to directly implement the collocation
method based on Chebyshev family defined on[−1,1],

∂ r(x, t)
∂ t

+(
2

B−A
)

∂ r(x, t)
∂x

+ηr(x, t)s(x, t) = 0,

∂ s(x, t)
∂ t

− (
2

B−A
)

∂ s(x, t)
∂x

+ηr(x, t)s(x, t) = 0,

(x, t) ∈ [−1,1]× [0,T ],

(6)

with the boundary-initial conditions

r(−1, t) = g3(t), s(−1, t) = g4(t), t ∈ [0, t]

r(x,0) = f3(x), s(x,0) = f4(x), x ∈ [−1,1].
(7)

Now, we outline the main steps of applying the
C-GR-C method for solving system of nonlinear
hyperbolic equations. In the Chebyshev collocation
method, the approximate solutions can be expressed as a
truncated Chebyshev series:

r(x, t) =
N

∑
j=0

a j(t)Tj(x),

s(x, t) =
N

∑
j=0

b j(t)Tj(x),

(8)

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 2, 535-544 (2014) /www.naturalspublishing.com/Journals.asp 537

and in virtue of (2)-(3), we deduce that

a j(t) =
1
h j

1∫

−1

r(x, t)w(x)Tj(x)dx,

b j(t) =
1
h j

1∫

−1

s(x, t)w(x)Tj(x)dx.
(9)

To evaluate the previous integrals accurately, we present
the Chebyshev-Gauss-Radau quadrature. For any
φ ∈ S2N(−1,1),

1∫

−1

w(x)φ(x)dx =
N

∑
j=0

ϖN, jφ(xN, j), (10)

whereSN(−1,1) is the set of polynomials of degree less
than or equal toN and xN, j (0 ≤ j ≤ N) and ϖN, j
(0 ≤ j ≤ N) are the nodes and the corresponding
Christoffel numbers of the Chebyshev-Gauss-Radau
quadrature formula on the interval[−1,1], respectively. In
accordance to (2), the coefficientsa j(t) in terms of the
solution at the collocation points can be approximated by

a j(t) =
1
h j

N

∑
i=0

Tj(xN,i)ϖN,i r(xN,i, t),

b j(t) =
1
h j

N

∑
i=0

Tj(xN,i)ϖN,i s(xN,i, t).

(11)

Therefore, (8) can be rewritten as

r(x, t) =
N

∑
i=0

( N

∑
j=0

1
h j

Tj(xN,i)Tj(x)ϖN,i

)
r(xN,i, t),

s(x, t) =
N

∑
i=0

( N

∑
j=0

1
h j

Tj(xN,i)Tj(x)ϖN,i

)
s(xN,i, t).

(12)

Furthermore, if we differentiate (12) once, and evaluate it
at all C-GR-C points, it is easy to compute the first spatial
partial derivative in terms of the values at these collocation
points as

rx(xN,n, t) =
N

∑
i=0

Anir(xN,i, t),

sx(xN,n, t) =
N

∑
i=0

Bnis(xN,i, t), n = 0,1, · · · ,N,

(13)

where

Ani =
N

∑
j=0

1
h j

Tj(xN,i)∂xTj(xN,n)ϖN,i,

Bni =
N

∑
j=0

1
h j

Tj(xN,i)∂xxTj(xN,n)ϖN,i.

(14)

In the proposed C-GR-C method the residual of (6) is
set to zero atN of Chebyshev-Gauss-Radau points.
Moreover, the boundary conditions (7) will be enforced at
the collocation point−1. Therefore, adopting (12)-(14),
enable one to write (6)-(7) in the form:

ṙn(t) =− (
2

B−A
)

N

∑
i=0

Aniri(t)−ηrn(t)sn(t),

ṡn(t) =(
2

B−A
)

N

∑
i=0

Bnisi(t)−ηrn(t)sn(t),

(15)

where

rk(t) = r(xN,k, t), sk(t) = s(xN,k, t),

k = 1, · · · ,N, n = 1, · · · ,N.

This provides a(2N) system of first order ordinary
differential equations in the expansion coefficientsa j(t),
namely

ṙn(t) =− (
2

B−A
)(

N

∑
i=1

Aniri(t)+An0r0(t))−ηrn(t)sn(t),

ṡn(t) =(
2

B−A
)(

N

∑
i=1

Bnisi(t)+Bn0s0(t))−ηrn(t)sn(t).

(16)

This means that problem (4)-(5) is transformed into the
following SODEs

ṙn(t) =− (
2

B−A
)(

N

∑
i=1

Aniri(t)+An0r0(t))−ηrn(t)sn(t),

ṡn(t) =(
2

B−A
)(

N

∑
i=1

Bnisi(t)+Bn0s0(t))−ηrn(t)sn(t).

(17)

subject to the initial values

rn(0) = f3(xN,n), sn(0) = f4(xN,n), n = 1, · · · ,N.

(18)

Finally, (17)-(18) can be rewritten into a matrix form of
2N system of first order ODEs with their vectors of initial
values:

ẇ(t) = F(t,r(t),s(t)),
w(0) = f,

(19)

where

ẇ(t) = [ṙ1(t), ṙ2(t), . . . , ṙN(t), ṡ1(t), ṡ2(t), . . . , ṡN(t)]
T
,

f = [ f3(xN,1), . . . , f3(xN,N), f4(xN,1), . . . , f4(xN,N)]
T
,

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


538 E. H. Doha et al: A Chebyshev-Gauss-Radau scheme For Nonlinear Hyperbolic...

and

F(t,u(t)) = [F1(t,u(t)),F2(t,u(t)), . . . ,FN(t,u(t)),

G1(t,u(t)),G2(t,u(t)), . . . ,GN(t,u(t))]
T
,

where

Fn(t,u(t)) =− (
2

B−A
)(

N

∑
i=1

Aniri(t)+An0r0(t))−

ηrn(t)sn(t),

(20)

Gn(t,u(t)) =(
2

B−A
)(

N

∑
i=1

Bnisi(t)+Bn0s0(t))−ηrn(t)sn(t).

(21)

The system of first order ODEs (19) can be solved by
implicit Runge-Kutta scheme.

4 Numerical results

In this section, two examples are considered to show the
accuracy of the algorithm presented in the previous
section. The results obtained, reveal that the present
method is very effective and convenient.

Example 1. We now consider the inhomogeneous
nonlinear system

∂u(y, t)
∂ t

+ v(y, t)
∂u(y, t)

∂y
+u(y, t)−1= 0,

∂v(y, t)
∂ t

−u(y, t)
∂v(y, t)

∂y
− v(y, t)−1= 0,

(y, t) ∈ [−1,1]× [0,1],

(22)

with the boundary-initial conditions

u(0, t) = e−t
, v(0, t) = et

,

u(y,0) = ey
, v(y,0) = e−y

.

(23)

The exact solutions of Eqs. (22) are

u(y, t) = ey−t
, v(y, t) = e−y+t

, (24)

The difference between the measured or inferred value of
approximate solution and its actual value (absolute error),
given by

E1(y, t) = |u(y, t)− ũ(y, t)|, E2(y, t) = |v(y, t)− ṽ(y, t)|,
(25)

where u(y, t)(v(y, t)) and ũ(y, t)(ṽ(y, t)) are the exact
solution and the approximate solution at the point(y, t),

Table 1: Absolute errors for problem (22).
(x, t) n = 8 n = 10

M1 M2 M1 M2

(−1,0.0) 1.99.10−7 1.99.10−7 5.50.10−10 5.50.10−10

(−0.8,0.1) 8.38.10−8 9.04.10−8 7.70.10−10 2.77.10−8

(−0.6,0.2) 6.61.10−8 1.01.10−7 4.11.10−8 4.99.10−8

(−0.4,0.3) 1.60.10−7 2.79.10−7 4.04.10−8 2.85.10−8

(−0.2,0.4) 2.97.10−8 2.31.10−8 3.10.10−8 1.19.10−9

(0.0,0.5) 6.35.10−8 3.88.10−7 1.11.10−7 3.64.10−8

(0.2,0.6) 3.35.10−8 1.64.10−8 4.60.10−8 3.05.10−9

(0.4,0.7) 9.47.10−8 4.35.10−7 4.52.10−8 8.75.10−9

(0.6,0.8) 2.98.10−8 1.57.10−7 8.99.10−8 2.98.10−8

(0.8,0.9) 3.02.10−8 1.30.10−7 2.00.10−8 1.64.10−8

(1.0,1.0) 9.01.10−8 4.31.10−7 3.88.10−8 1.73.10−8

Table 2: Maximum absolute errors for problem (22).
N M1 M2

4 5.47×10−3 1.93×10−2

8 1.99×10−7 4.31×10−7

12 1.10×10−7 4.77×10−8

respectively. Moreover, the maximum absolute error is
given by

M1 = Max{E1(y, t) :∀(y, t) ∈ D× [0,T ]},
M2 = Max{E2(y, t) :∀(y, t) ∈ D× [0,T ]}. (26)

Absolute errors ofu(y, t) and v(y, t) related to (22)-(24)
are introduced in Table1 using C-GR-C method with two
choices of N. Moreover, maximum absolute errors of
u(y, t) and v(y, t) related to (22)-(24) are introduced in
Table2 using C-GL-C method with various choices ofN,
when compared with the exact solution (24). The
approximate solutions̃u(x, t) and ṽ(x, t) of problem (22)
with N = 12 are displayed in Figs.1 and2, respectively.
While, in Figs.3 and 4, we present the absolute errors
E1(x, t) and E2(x, t) with N = 12. Moreover, we plotted
the approximate solutions̃u(x, t) andṽ(x, t), and the exact
solutions u(x, t) and v(x, t) in Figs. 5, 6, 7 and 8,
respectively, with values of parameters listed in their
captions. Also wee see that the approximate and exact
solutions are coincided for different values oft or x.

Example 2.We consider the homogeneous linear system

∂u(y, t)
∂ t

− ∂v(y, t)
∂y

= 0,

∂v(y, t)
∂ t

+
∂u(y, t)

∂y
= 0, (y, t) ∈ [−3,3]× [0,1],

(27)

with the boundary-initial conditions

u(0, t) = cosh(t)+sinh(t), v(0, t) = cosh(t)−sinh(t),

u(y,0) = ey
, v(y,0) = e−y

.

(28)
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Fig. 1: The approximate solutioñu(x, t) for example 1 atN = 12.

Fig. 2: The approximate solutioñv(x, t) for example 1 atN = 12.

Fig. 3: The absolute errorE1(x, t) for example 1 atN = 12.

Fig. 4: The absolute errorE2(x, t) for example 1 atN = 12.
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Fig. 5: The approximate solutioñu(x, t) and the exact solution
u(x, t) for t = 0.0, 0.5 and 1.0 for example 1 atN = 12.
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Fig. 6: The approximate solutioñu(x, t) and the exact solution
u(x, t) for x = 0.0, 0.2 and 0.4 for example 1 atN = 12.
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Fig. 7: The approximate solutioñv(x, t) and the exact solution
v(x, t) for t = 0.0, 0.5 and 1.0 for example 1 atN = 12.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

E
x
a

c
t
a

n
d

a
p

p
r
o

x
im

a
te

s
o

lu
ti
o

n
s

v
�

H0.4,tL

vH0.4,tL

v
�

H0.2,tL

vH0.2,tL

v
�

H0.0,tL

vH0.0,tL

Fig. 8: The approximate solutioñv(x, t) and the exact solution
v(x, t) for x = 0.0, 0.2 and 0.4 for example 1 atN = 12.
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Table 3: Absolute errors for problem (27).
(x, t) n = 10 n = 12

M1 M2 M1 M2

(−3,0.0) 3.89.10−5 3.89.10−5 6.43.10−7 6.43.10−7

(−2.5,0.1) 3.40.10−5 3.50.10−5 6.40.10−7 9.25.10−7

(−2,0.2) 2.10.10−5 1.53.10−5 5.38.10−7 2.09.10−7

(−1.5,0.3) 1.21.10−5 2.86.10−5 7.86.10−7 4.36.10−7

(−1,0.4) 3.14.10−5 4.17.10−5 1.12.10−7 3.27.10−7

(0.0,0.5) 3.19.10−5 4.69.10−5 6.78.10−7 6.64.10−7

(1,0.6) 3.18.10−5 4.89.10−5 4.50.10−7 3.36.10−7

(1.5,0.7) 1.95.10−5 1.79.10−5 7.07.10−7 1.79.10−6

(2,0.8) 1.78.10−5 3.18.10−5 4.29.10−7 1.02.10−6

(2.5,0.9) 4.91.10−5 3.27.10−5 1.02.10−6 5.17.10−7

(3,1.0) 8.08.10−5 2.02.10−5 1.41.10−6 6.44.10−7

Table 4: Maximum absolute errors for problem (27).
N M1 M2

4 6.51×10−1 8.65×10−1

8 1.63×10−3 1.83×10−3

12 6.43×10−7 1.69×10−6

Fig. 9: The approximate solutioñu(x, t) for example 2 atN = 14.

The exact solutions of Eqs. (27) are

u(y, t) = eycosh(t)+ e−ysinh(t), v(y, t) = e−ycosh(t)− eysinh(t).
(29)

Absolute errors ofu(y, t) and v(y, t) related to (27)-(29)
are introduced in Table3 using C-GR-C method with two
choices ofN in the interval[−3,3]. Moreover, maximum
absolute errors ofu(y, t) andv(y, t) related to (22)-(24) are
introduced in Table4 using C-GL-C method with various
choices ofN.

Fig. 10: The approximate solutioñv(x, t) for example 2 atN =
14.

Fig. 11: The absolute errorE1(x, t) for example 2 atN = 14.

The approximate solutions̃u(x, t) and ṽ(x, t) of
problem (27) at N = 12 are displayed in Figs.9 and10,
respectively. While, in Figs.11 and 12, we present the
absolute errorsE1(x, t) andE2(x, t) at N = 12. Moreover,
we plotted the approximate solutions̃u(x, t) and ṽ(x, t),
and the exact solutionsu(x, t) andv(x, t) in Figs. 13, 14,
15 and16, respectively, with values of parameters listed
in their captions. Also wee see that the approximate and
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Fig. 12: The absolute errorE2(x, t) for example 2 atN = 14.
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Fig. 13: The approximate solutioñu(x, t) and the exact solution
u(x, t) for t = 0.2, 0.6 and 1.0 for example 2 atN = 14.

the exact solutions are coincided for different values oft
or x.

5 Conclusion

In this paper, we have proposed a numerical algorithm to
solve the nonlinear hyperbolic system of first order using
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Fig. 14: The approximate solutioñu(x, t) and the exact solution
u(x, t) for x = 0.0, 0.3 and 0.6 for example 2 atN = 14.
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Fig. 15: The approximate solutioñv(x, t) and the exact solution
v(x, t) for t = 0.2, 0.6 and 1.0 for example 2 atN = 14.

Gauss-Radau-collocation points and approximating
directly the solution using the Chebyshev polynomials.
The numerical results given in the previous section
demonstrate the good accuracy of this algorithm.
Moreover, The algorithm introduced in this paper can be
well suited for handling general linear and nonlinear
partial differential equations with initial-boundary
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Fig. 16: The approximate solutioñv(x, t) and the exact solution
v(x, t) for x = 0.0, 0.3 and 0.6 for example 2 atN = 14.

conditions. We note that the algorithm presented here can
be applied based on Legendre, Jacobi polynomials or
others polynomials to general linear and nonlinear partial
differential systems.
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