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Abstract: Contemporary computer theory is governed by the discretization of eamitproblems. Classical Turing machines (TMs)
are originally built to solve computation and computability problems, which regture is discreteness. However, even some simple
numerical calculations problems, e.g., iteration®ih generate difficulties to be described or solved by constructing a TM.pEipier
explores the computability of continuous problems by proposing a classntihuous Turing machines (CTMs) that are an extension
of TMs. CTMs can be applied to the standard for the precision of algorithirst, computable real numbers are precisely defined by
CTMs and their computations are regarded as the running of the CTMds@Troduce the coded recursive descriptions, machine
states, and operations with the characters of computer instructions imcessempared with usual computable continuous models.
Hence, they can precisely present continuous computations with thedfopmocesses. Second, the concepts of CTM computable
and CTM handleable are proposed. Moreover, the basic concepigspooxanation theory such as convergency, metric space, and
fixed-point inR" are defined in a new space CEM Finally, an iterative algorithm is shown by constructing a CTM to solve linear
equations.

Keywords: Computational mathematics, computer theory, continuous Turing mackalenumber computability, iteration.

1 Introduction analyze the computability of real numbers. Mazét [

N o ~ defines computable real functions by the proposed
The development of Computablllty theory in information sequence Computabmty Kreitz and Weihrauﬁh?l take
that depend on logical theory. These recursive function%omputab“ity by introducing type-2 theory of
are considered as the precise definitions of intuitiveeffectiveness (TTE), which is based on the theory of
algorithms []. Turing describes computations by a class representations and is an approach of computable

of mathematical machines (theoretical computers).analysis. Edalat §,9,10,11] studies computable real
usually called Turing machines (TMs). The machinesfynctions by domain theory.

precisely present the concept of computations with the

form of processes by introducing machine states and the Many constructive analysis methods are also
operations with respect to the characters of computeproposed. Moorel2] proposesu— hierarchy to interpret
instructions. TMs are equivalent to recursive functions.recursion theory on reals and constructs flowcharts of
Hence, computability problems are equivalent to Turingcontinuous time to handle real number computability and
computability P]. halting problems. Doraszelski and Satterthwaits] [

A theory is said to be an systematic approach if itsdefine computable real numbers by the established
deduction and reasoning depend on a standardarkov arithmetic. Blum, Cuckeet al. [14,15 analyze
mathematical model. Computations are model-basedhe computable problems of real numbers by constructing
processes in the solution of a given calculated problemreal-RAM models. However, the fact is that not all real
However, the existing TM computability theory cannot number computability that are described above are
properly presents computable real functions since TMsequivalent. For example, Banach-Mazur computability is
are discrete in essence3,ffl. Thereafter, some not equivalent to Markov computability for computable
mathematical models and approaches are developed t®al numbers 16]. On the other hand, the described
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theories and models are difficult to compatible with the Hybrid netset al[17,18] are proposed. These models do
classical model TMs. Hence, this paper attempts tonot means that the number of new models is increase in
construct a class of extension TM to deal with real the series of computational models. Its purpose is to
number computability. correctly and easily present, solve, and analyze a class of

Numerical analysis involves the methods for real continuous problems. A good approximation generally
number calculations. However, it does not considerproves very valuably to solve a complex problem.
computability problems. Different computational models Therefore, an approximate method is considered in TMs
can obtain inconsistent results on whether a real numbein this paper.
problems is computable. For example, a serious distortion Generally, continuous models are time-related.
or an entire wrong conclusion may be obtained if the realHowever, CTMs are regarded as time-independent. This
numbers computability is considered by TMs. Hence,section expands TMs to CTMs by introducing an example
discrete machines do not properly demonstrate reafor a non-output and two-type nondeterministic T
number computability. On the other hand, although the(Fig. 1(a)). FirstM; can be constructed by the following
theory of numerical analysis makes great achievements ilgorithm.
the past, its developments necessarily need a reliable
computable theory.

This paper begins with an extension from discrete  Algorithm for M; construction.
TMs to continuous TMs. Then, a class of autonomous ™ M1:=*Oninputw = w, wp: // w; andwy, represent
continuous Turing machines (CTMs) is proposed in Initialinputs of the two tapes, respectively.
section 2. The rationality by using CTMs to explore the DO { o :
computability of real numbers is considered in section 3,  StePL: I there is a 0" on taped, then move it to tape2 or
CTMs have mainly two strengths compared with the r‘fta'n, 'Itf'tr;]tapel '”,S‘, Tart‘don;”t‘ﬁn“er' 10 tabel
usual models. Firstly, the classic methods of TMs deal fe(ta:izr{ itin ?;gé;?naulrgnzgiw ,mairrl]g:ovel o fapeL or
with the computations of n_atural. numbers, the sets of }while .T.” //Notation .T. means that the logical condition
natural number, and the arlth_meucal fun_ct|ons. A CTM of the loop ‘while’ is always true. 0
covers continuous computations and include discrete
computations. Second, it is realistic and feasible sinee th

concept of computable is defined by constructing CTMs. According to the view of machine computations, a

An algorithm is said to be computable if a CTM can beé .haracter ‘0" inM; can be considered as a certain mount
constructed for a certain input to reach an output at finite

of resources. Hence, a single resource is represented by a
steps. ingle ‘0’ and | d b
. _ . gle and several resources are represented by
CTMs have simple structures, basic operations, anqyjsiple ‘0’ (0*) in My. TMs are theoretical models of
precise descriptions of computations in the form of

: . computers. In a real-world computer, the number of ‘0’
processes. A CTM series with respect to greater powe, ‘he represented as the amount of information. For
can be constructed by an iterative or recursive

. X example, a single ‘0’ can be interpreted &ibhformation
construction of CTMs. lIterative technology based on 4,4+ 00000’ as & information.

CTMs is considered in section 4, which demonstrates an - ggcong, a transformation is considered to divide each

approach to prove CTM-computable and to explain how.y ini6 k equal parts. This new TM is denoted bk and

to construct a CO”_‘P'eX machines. _Fmally, a typl_cal shown in Fig. 1(b). The world ‘block’ is assumed as an unit

example is given to illustrate real function computability ¢ o' in initial configurations. Each block is divided into

which can be regarded as a methodology to solve a clasg the new unit that is onk-th of block is called ‘piece’.

of computable problems. In section 5, we state the resultg example shown in Fig 1, the initial configuration of

of this paper. M; (Fig 1(a)) leads to the configuration W (Fig 1(b)) in
which the resources are expressed in pieces.

L . Generally, the transition functions of multiple
2 Extension: discrete TM to continuous TM nondeterministic Turing machine (MNTM) have the form

The simplest way for a TM to compute four arithmetic 5:Qx K 5 PQxkx{L,R S}
operations is that the representation of numbers only uses , , .
‘0’ [3], where notation ‘0’ is a character in the tape of Where Qs the set of stateS,is the tape alphabek,is the
TMs, which is distinguished with the numerical zero. NUmber of tapes, andlis power set. The expression
However, the representation method can I_ead' to Fhe 5(i.a1, - ,a) € P(qj.by, - by, L,....R),a.by €T
increase of storages. Importantly, by considering iteeati
computations, a self-iterative TM can difficultly be means that if the sate of a machinegjsand read-write
constructed since computations, e.g., iterations, cammot head 1 through k are reading symbals through a,
easily represented by integers. Many researchers makespectively. The machine goes to one of possible states
extensions from discrete models to continuous onesg; and writes symbols; throughby. Correspondingly,
where continuous automatons, continuous Petri nets, anttansition functions directs each head to move left, right,
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: and adding a piece to tape2. Hence, the evolved
00 [Jtapel apel Q—@ configurations can be expressed in blocks (integer) or in
C“"‘I\:“*' < : pieces (rational number ik is finite). Let Ci" be a

66 [t
ntroller
Yy (k) .y . . . . . .
OO0 M O00 tape2 configuration that is expressed in pieces Mf and
® C = Cik/k be the corresponding configuration that is
expressed in blocks iM;. Obviously, the computational

16

(a)

Evolve fgo00 % J0Ogon 9 [ 00g¢0 ] : )
configurations ’ processes dfl; are included in the processeshy.
" ¢, 000 0 ¢, 00 00g;0
forM, L 4 6 L 4 4 L d
(D
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Expressed P & _ tapes . . . .
in blocks F,kkm okl ku} [quklj} [qu 1 OO, [00¢: 0 . e . .
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Fig. 1: Transformation of a TM: (a) ordinary TMVI;, (b) The f"fwt that tran3|t_|0n functions of a k-type TM

transformed ordinary TMMX, represented for k=4, (c) state EX€CUte simultaneously is denoted (@0; --- &), where

graph ofMy, (d) evolve configurations fdvly, (€) implied evolve > 9j, -+, @nddc are transition functions from tapeo k,

configurations in Fig(d), and (f) evolve configurations faf. respectively. The structure ®¥, which can executé; k
times simultaneously, is shown in Fig. 2. The execution of
51 in My equals the execution @Bfoy - -- 6K) in MY. We
can change a way to describe transferred processes by

o . introducing some new notations. It facilitates to discuss
or to stay put. By considerinyl; as an example and its - {he extension from discrete TMs to continuous TMs.
state graph shown in Fig 1(c), its evolutions contain three

types of transition functions: Let [\ &\ -\ &) be a class of orderly executive
51 (G, 0,0) = (Gk+1,01,0,R R) sequences of transition functions.

O (o a,0) = (Gk-1,0,0,L,L),Va el Let [&9j---&] be a class of synchronized executive
& (%, 0,0) = (,0,00,S,9) sequences of transition functions.

Symbol O € I denotes that there has not a resource at Let [§]9 = [(§)?] be a class of special executive
corresponding positions on the tape, i.e., blank. Now, wesequences, which performance means that TM
considerMK with an strategy for the segmentation of implements transition functiond total a times
resources. Its transition functions are similar M.  Simultaneously and removes or addpiece resources in
However, let the scale of its evolutions be the unit of its tapes to produce a new configuration, wherés a
piece. For exampled, dm, and & in My are represented nhon-negative number.

by the following functions combinations: Fig. 3(a) shows a set of possible transitionsvafthat
are concerned with two block resources. In addition to
5;:{“‘k’“"““)(:(qlkﬁlf:&fz“ldsf%’ R\’;”:LZWW" single execution oy or &, multiple transitions by the
oI e R execution ofl&; \ &), [1]2, and[5,]? are also represented.
3+ (G {a,03,0) = (a1, {@, 0} O,L L), Va =1,2,+- k The possible transitions <NI'1‘ for k = 4 are shown in Fig.
8% (g k—a,a) = (guk—a+1,a—-1,S9),Va =12 k 3(b). M'l‘ contains many and finite multiple transitions,

o : . . e.g.,[61)3, [8]% and[5,]8. We apostrophe read-write head
By _con_szlderlng M. and its evolved _c_onflgura'qons and state alphabet;® for simplification. By observing
ShOW.” in Fig. 1(d),.the execution of transition functlép the execution of[&]3, its transition process can be
consists of removing a block from tapel and adding a !

block to tape2. Correspondingly, by consideerg and expressed in pieces as:

its evolved configurations shown in Fig. 1(f), the tapel [140] &P [O20
execution oféf consists of removing a piece from tapel tape {35 D] - {4 25}
@© 2014 NSP
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Or it can be expressed in blocks as:

tapel [0.25 1 0] @°® [0 05O
tape [0.75 0 O 1050

Furthermore, we can also describe in pieces as:

&
(57 3) —> (21 6)
or express in blocks as:

0.75

(1.25,0.75) ——> (0.5, 1.5)

tape2
A
2
2 12
(3]
S 3\
1
ar A
3
» tapel
0 1 ape
(a)
tape2
A
8
3}
4
\ f% » tapel i
0 2 lock) T 0 1 2-a2
8 (piece)

(©

Fig. 3: From discrete to continuous turing machine: (a) graph of

» tapel

configuration (2- a, a) at a moment, where is any real
number in the range [0,2] anf@ is called a transferred
guantity and satisfies the inequality 2a < 8 < 2.
Similarly, if there is an execution db;]", theny satisfies

0 <y < 2-a. Multiple executions taken a form of
[(62)P(81)9] are possible. TMsM; and MY discussed
above belong to MNTM in essence. The defined
machines are recognizerd pf languages in this paper if
there are not special remarks.

Lemma 1.Two-type nondeterministic TM Mhas an
equivalent five-type deterministic TMyM

Proof. The ideal is make mutual simulations betweén
and Mq. The fact thatM; simulatesMy is simple since
deterministc TM M; is an special case of
nondeterministic TMMy and we only needs to construct a
nondeterministic computational branchhfy.

On the other hand, ¥4 is constructed to simulatdy,

Mg needs trying all possible branches of nondeterministic
computations oM;. The machineMly can be established
by constructing five tapes. As shown in Fig. 4, we assume
that every tape has a particular function. Tape 1 and 2 are
similar to the tapes itM;. They contain constant strings
that copy from the initial inputs of;. Tape 3 and 4 are
simulation tapes that maintain a copy from the tapes of
M;j for a branch of its nondeterministic computations. The
data in tape 3 and 4 contain evolved configurations at the
branch. The function of tape 5 is to generate the address
string wagqressOf Nondeterministic computational branches
from the length one to length infinite, constantly.

Let 2* be an infinite set of all address strings, which
contains all possible branches of nondeterministic
computations. Any address string consists of finite kinds
of alphabets, which are connected with the number of
states. By considerindylq, its address strings consist of
three kinds of alphabets ‘1’, ‘2’, and ‘3’, which come
from the subscripts of the three stateshéf (Fig. 1(c)).

2* is countable according to Cantor’'s theory since the
number of strings in some certain length is finite and the
union of denumerable countable sets is a countable set.

A list of >* can be constructed by writing down all

resource tranlfi.tionl oy in Figure 1(a), (b) graph of resource gtrings of length zero, length one, length two and so on.
transition ofMy in Figure 1(b) for k=4, and (c) graph of resource Tha ‘total number of address strings can be expressed as

transition ofM?’, for k — oo,

S 1%, 3" We can easily make a mapping from any string

to n € N. Not all the address strings are valid. For
example, address string ‘212’ is valid, which represents

The number of possible multiple transitions becomethat the current state i) which configuration is
infinite if k tends to infinity. These transitions can be displayed in tape 3 and 4. The next stategisthat is
denoted by an segment of a line between (2,0) and (0,2pbtained by executingn, wheredn, is stored in controller
shown in Fig. 3(c). For example the description of the of Mg. Then, the finally state i that is obtained by

following transition

(2—a,a) [i]i 2—a+B,a-p),

executing storedd;. The process can be denoted by

[8m\&1] . L
01 > (p. However, address string ‘233’ is invalid

since there not exists a transition function in the process
from stateqs to gz in Fig. 1(c). The existence of invalid

implies that the configurations (2 o,a) and  strings is reasonable since they can be considered as null
(2—a+ B,a—PB) are expressed in pieces. Transition addresses. Proved process is just a constructive process,
function &, can be executedB times from the we construciMy as follow:
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Algorithm for My construction:

TM Mg:="On inputw = wy, y, W3, Wy, W :

stepl: Initial tape 1 and 2. Check correctnessaf wy.
Tape 3 to 5 stay empty.

ste2: Generate a strin@yqggressin tape 5 according to
the rule of the increase of string lengths.

step3: Check the validity oto,gq4ressby checking
transition functional grid in controller. o,qgressis valid,
go tostepd, else go testep?.

stepd: Copy the data in tape 1 and 2 to tape 3 and 4,
respectively. Simulate the transition of states from the first

alphabet ofwagdressto the last one. Go tetepR.” O
X q; 0 0 OJ Md 0 0 0O ' '
input tape2 Controller tapes simulation
tapes v tapes
¢ 00 000

tapeS
1H2H3#1 #1281 3821 #---#33R1 1 1#---#1238

address tape

Fig. 4: Structure of five-type deterministMy.

Lemma 2 Five-type deterministc TM M has an
equivalent single-type deterministic TMyM

Proof. The ideal is make mutual simulations betwédn
and Mgq. The fact thatMy simulatesMgq is simple. We
only use any one of the tape My that can simulate the
single-tape oMgy. The ideal is to show how to simulate

Mg,

BOOCIBCI L1 CIBCI0CIBOC] (OB 1424+ #1238+ -+

single tape

Fig. 5: Structure of single-type deterministitsg with a snapshot
in Fig. 4.

Lemma 3.Two-type nondeterministic TM Mhas an
equivalent single-type deterministic TM;M

Proof. By Lemma 1 and 2, we have the conclusion. [J

Lemma 4.Two-type nondeterministic TM ‘1Mhas an
equivalent single-type deterministic TI\/Q\/I

Proof. Two-type TM M'l‘ can be expressed bk2ype TM

M‘f with an unit of pieces, which is denoted by Fig. 2. We
assume that the unit dligg is also expressed in pieces. By
considering the R-type structure oM'l‘ shown in Fig. 2,
according to Lemma 3, the computations in the two tapes
of any level are equivalent to the computationshj.
Hence, the computations ofk2ype M‘l‘ equal the
computations ok Mgq machinesMgd can be constructed
by combining the resources of the corresponding
positions of k Msg machines , where resources are

Mg with Msg. Fig. 5 illustrates that single tape can be usedexpressed in blocks. Henddf is equivalent tavi&,. O
to represent five tapeblsy simulates the functions dily
by storing their information on its single tape, where we | emma 5Single-type deterministic TM f has an

use symbol ‘B’ as a delimiter to separate different equivalent single-type deterministic TMyM
work-spaces. Tape symbol with a smal’ ‘above it is

used to mark the position of the head on the tape. Theseroof. The fact that¥, simulatesMsq can be achieved by
new symbols have been added to the tape alphabet. 'Qetting the parametéc = 1. Using Mgg t0 simulateMgd

other words Msq contains virtual work-spaces and heads
we construcMgq as follow:

Algorithm for Mgq construction:

TM Mgq:="On input w = Baw BapBwsB ayBaws - - - :

stepl: Mgq puts its tape into the format and the formatted
tape contain8000BUOIOBOOOBIOOB. -

ste2: Mgq scans its tape from the left first ‘B’ in order to
determine the symbols under the virtual heads. T¥ign
update its tape according kdy’s transition functions.
step3: WhenMgq moves virtual heads to the right onto
another ‘B’. It means that the corresponding heatVgf
has been moved onto the blank portion of the tape. Then,
it continuous the simulation as before.” O

"needs little changes about the inputdviafy. A new wider
range delimiter is increased to separate piece work-groups
(a piece work-group equals five original work-spaces,
which is shown in Fig. 5). Th& piece work-groups are
combined by copying the initial data tdgq total k times
to its single type in order of priority. Then, simulation can
be achieved by changing the unit of blocks into pieces
and the extended transition functions. O

Corollary 1. Two-type nondeterministic TM Mhas an
equivalent two-type nondeterministic TMfM

Proof. By lemma 3, 4 and 5, we have the conclusiorn]

Theorem 1Single-type deterministic TM ) has an
equivalent single-type deterministic TM;M
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Proof. MZ, can be constructed by, if k tends infinite.  Definition 3.HALTrm = {(MK,w) | MK is a TM that the
We have its equivalent machimdsg by Lemma 4, where length of its computational history is finite or its
the number of work-spaces tends infinite. Hence, thecomputational history is convergent

mutual simulations between them are enabled. Of courseT o . .
the length of the single tape Mgy is necessarily infinite heorem_Z.TM Mo has an equivalent smglle-.tape
andMgq is a non-haltable TM in general sense. Note thatdete”’n'n'StIC TM Mdinary (ordinary means that it is a

machine halt in general sense equals classical TM Balt [ naltable TM).

4]. The concept corresponds to machine halt at the sensproof. The fact thak tends infinite means that the number
of convergence of computational histories. For example, &f tapes tends infinite in unit piece. If the computational
machine is a non-haltable machine if the number thistory of Mr‘;"alt is Convergent’ its approxima‘[e
resource divisions tends infinite. It has not acceptive anctomputations allows that there exists a reasonable léngth
rejective states in general sense since these states canmgit computational history for transition functions at the
be achieved within a finite time. However, machine halt in sense of convergency. The evolution Mﬁ"alt achieves
convergent meaning of computational histories is toterminal states and the machine outputs approximate
illustrates some important problems in CTMs. L computational results if the number of state transitions
Theorem 1 guarantees that the division of resourcegomes td.
does not increase the power of TMs. |mp0rtant|y, any ™ By using Theorem 1, we can find a Sing|e_tape
with resource division has an equivalent ordinary TM no geterministic TMMsg and make the length of its tape
matter how many tapes it has and it is deterministic ortends infinite. The single-tape is divided into infinite
nondeterministic. This equivalency necessarily satisfiessumber of work-groups. Actually, it is just attach the

maqhine non-haltable in theoretica_l sense. Actually, thelongitudinalk tapes iV, to the single-tape dfsg such
equivalency cannot be guaranteed in real-world hardwarghat M is equivalent (s VI
environments. For example, infinite division of resources  |n this case, if the computational history b, is

is not possible by the bit restriction of computers. convergentMsgq is haltable. The haltablilsy at the sense
Hence, a more general situations should beof convergency is denoted B¥lordinary- Hence,Mordinary
considered. For example, we deal with the machines thaand le.loalt have the same Computationa| results. 0

are similar toMgy, which can machine halt in general . _
sense. These machines can achieve acceptive or rejectiJd€orem 3Mg has not an equivalent TM §4,.

states. The judgments of these states should based on tlfﬂ?oof By using Theorems 1 and 2, we only need to proof
length Of CC.’”TP“.“".‘“OY“"" h'St‘?“e.S. since  any SImplethatMsd is not equivalent tdordinary- Msg Cannot achieve
computation is infinite ik tends infinite. In other words, acceptive or rejective states sindésy cannot ensure

we _cl:_(r)]nsuljer t_helapprom{n?te C?Lc.u:at'on}m;ii_M. I machine halt. HoweveMqginary has terminal states by
'de ¢ %SS'C?hcompl];'_ a 'OT_a IS ?f[yho 'I?M HIS usua chonsidering the approximation. Henceélsy cannot
considered as the contigurations of the 1 V. HOWEVET, Wgimjate the terminal states Morginary: Actually, Msgq

real . number is tacked, any .configuration may hgs acan be regarded as the limiting state of the computations
infinite length. Hence, classical computational history ¢ Morginary. They are not equivalent in the sense of
cannot be applied to describe the dynamic behavior of theconvergeni/:e of computational history 0

:]—.M with _rc;al numbers. Hence, a class of compuéanonal Theorems 1 and 2 guarantee the rationality of the
istory with respect to state transitions is proposed. extension from TMs to CTMs such that CTMs can be

Definition 1.A string denoted byo, = ijk - -- is said to be formally de.fined. In this paper, singlg—tape deterministic
a computational history if the string composed of the CTMs (ordinary CTMs) and the ordinary CTMs at the
subscripts of the existent states, where every two adjacerii€nse of convergence in computational history are

characters i and | represents that the machine restoresdefined. The former are models of computational theory
the computation path from statetm g. for real numbers and the latter are theoretical models of

real functional approximation. Other classes of CTMs are
In this case, the computational history of an equivalentto them.
non-haltable TM is a string with infinite length, even if . ) ) u
the TM has finite states. For example, the states an&Pef'[‘l',f/'lO” 4,_'{,6‘\/'” ordinary CTM is a 7-tuple(Q, >, I", 6%,
transitions shown in Fig. 1(c) can generate computatiorHll Gaccep qu}?C!)' where
history with infinite length. Obviously, the length of 1. QIS afinite and non-empty set of states.
computational histories is finite if the machines are 22 iSthe setofinputalphabets. It comes frém and

haltable since the states of them are necessarily achiev& exPressed in blocks.
acceptive or rejective states. 3.7 =2U{§,A0, -} is the set of tape alphabets,
where ‘" is a symbol of work-space delimiter,A” is a

Definition 2.A computational history of Klis said to be  symbol of virtual head, andC™)’ is blank.

convergent if there exists an absolute difference between 4. 3%: QxI — Qx I x {L,R S} is the transition
the output of M and another output of Kiwith the length  function, wheren is transfer quantity that is defined as a
| of computational history, which is less than any given  positive rational number.
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5. O, Gogeps Ore act € Q are the initial state, acceptive ~ configuration of Mrtm} and E={(C", 59, (C"))|

cept. ; i %
state and rejective state, respectively. _ _ 38
Cqu ) (Ciq')’ € V,C —> C/} are sets of vertexes and edges

If we have a CTM and want to construct a CTM respectively, wheré(:?j)’ is a suCcessor Ofi(&'

algorithm with the form ‘0’ that is similar to ‘0’ in TM,
we only need to guarantee thatof the CTM comes from The CEG for CTMM® (M® comes fromMK) is
the rangg0, 1] (a subset oR ;). a is defined as a positive r (M 1)
rational number since any transfer quantity of transition
functions is stored in the controllers of CTMs with the
form of data table. In other words; is a fixed value and configuration is denoted by = [2 # 0%, where gy

is not a \_/ariable. Hence, the cont_inuity of CTMs are means tha€y is just in the statey;, the number of both
ensut;ed since the data of computations of CTMs are real;jeg of #’ represents the total amount of the resources in
numbers. the two tapes. The range of changing of therR s

shown in Fig. 6. The infinite configurations and state
transition processes can be expressed in simple form with
finite elements (vertex, edge, and arc). The initial

Definition 5.,A haltable CTM at the sense of
computational history convergency is a 7-tuple,

(szvr’_éav qlv_qlgllcl\élepb qlr_e”j\{elct% where [5]2
1. Q is a finite and non-empty set of states. !
2.2 isthe set of input alphabets. It comes fri@m and | [31]° 6]
is expressed in blocks. [2#0] """, [2-a#a]Z " [Jo#2]"
3. =2U{#,Ad,---} is the set of tape alphabets, 1 4
where ‘¢’ is a symbol of work-space delimiter,A’ is a 0] [é]z—a ~
symbol of virtual head, and™’ is blank. [0,]7 '™ [0, 17
4.0 QxI — QxTI x{L,RS} is the transition a 2-a
function, wherex is transfer ql{Jantity}that is defined as a [1 #l]q:l [9,] [9.] [o#2]"
positive rational number.
5. 0h, Qaccept dreject € Q is the initial state, acceptive [T
state and rejective state when the length of computational
history is m, respectively. Fig. 6: CEG for CTMMS> (M¥,k — o0, MK is shown in Fig. 1(b))

The lengthm follows the hardware restrictions or the
computational precision demands. By considering )
Definitions 4 and 5, the machin®4, is an ordinary CTM However, the moments when different classes of
andM?,, is a haltable CTM at the sense of convergency. transition functions are executed are only recorded as the

A configuration of CTMs is similar to that in TMs, Vertexes of the CEG. The weights on arcs means transfer
which contains three items: the current state, tapequalities executed according to transition functions. The
contents, and head position. It is represented by the stringmount of configurations in any two adjacent vertexes
contents are ‘u’ and ‘v’ and the current head position is CEGs for CTMs are as follows:
the first symbol of ‘'v’. Any symbol in ‘u’ and ‘v’ comes
fromR,.

A configuration is a description of computations of a
TM at some moment. The number of configurations in a
haltable TM is finite. However, any change of states may
contain infinite configurations in a CTM by the influence
of the continuous. Hence, the configurations in TMs does
not suit to represent the evolution of the computations in .
CTMs. 3 CTM computable functions

Importantly, state graphs cannot express computations ) ) )
of CTMs in detail. Hence, the concept of configuration A CTM computes a function by adding the inputs of the
evolution graphs (CEGs) is proposed to better describdunction to its tape and halting with the outputs of the
and analyze the configuration change of CTMs. Usingfunction on the same tape at the sense of computational
CEGs to describe some special CTMs without history convergency.
considering the complex CTM construction algorithms is
hence available.

—Infinite configurations are expressed by finite vertexes.

—The transition function grid in detail from the graph
can be obtained.

—The state graphs by folding vertexes and arcs
according to superscript of vertexes can be obtained.

Definition 7.A function f: i1\, = Z&ry is a CTM
computable function if some CTMs for every inpwtsan
Definition 6.The CEG of a CTM(McTm,Cgt) is a  halt with just (f(w))* on its tape at the sense of

digraph CEG(Mctm,C) =(V, E), where @ means the ~ computational history convergency, whergf(w))*
initial  configuration of Mty, V={CG| G is a denotes precise values or theoretical values.
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Definition 8.A function f: 2%y — Z&rw is @ CTM  According to transition directions (the directions of grcs
handleable function if some CTMs for every inputs canin Fig. 7, the CTMMgypstractCan achieve terminal states in
halt with the unique finite length computational history its limits. Although(f(w))* as a CTM piecewise function
(f(w))™ on its tape by approximation, wheie (w))™ has two possible values —r, and 0, it will halt with just
denotes the approximate values of length m ofthe value of f(w))* onits tape. Hence, functiohis CTM
computational history. computable according to Definition 7.

The ‘unique’ in Definition 8 lies on hardware
restrictions or approximate precisions. CTM computable

functions contain classic TM computable functions since (0,1
the terminal states of TMs are special situations of the | [3]° 31 ¢
limiting forms of CTMs. Discrete characteristics of TMs [rl#rz]"o_‘> 7 -atr, —a]"" r - rz#o]‘f"
make them to achieve the terminal states in finite times. g

Any CTM computable function is necessarily a CTM [5,]" 9,
handleable function by Definition 7 and 8. In other words, [S] [o#r, —n]* [, — et
any CTM computable function can find an approximation oA 5 2
function in certain hardware restriction. Verse is not frue |—2,[0#0]‘1wfm

The purpose to define CTM handleable functions is to

describe the numerical and function approximation Fig. 7: Configuration evolution graph @T Msypstract
problems inR,. For example, by considering iterative

methods for matrix eigenvalues calculation, it may

possible for a computer to get an approximate value buta o, the latter. A TM can get its machine coded

precise value. Computers are hardware limited. It Caljescription < TM > and can make computations for

machine halt through the ‘overflow’. However, the .,qed description of other machines by self reference and
computations of the theoretical machine CTM is platform yoqrsion theorem 3] in classic computation theory.

irrelevant , which may not lead to machine halt since thecTyms can also get coded descriptions by similar

length of computational history may be infinite. ~ methods. A CTM computable function is a class of
Hence, we cannot to say that the computationalyansiormation of CTM coded descriptions. For example,
processes of eigenvalues are CTM computable since thg cTm computable functiori takes an inputo =< M >

machine cannot halt in precise value, and we cannot alsgnq returns another coded descriptiarM’ >, which is
to say it is not CTM computable since computations 5

always access to precise value. Consequently, th&eptasf:<M >-—><M’>, whereM’ andM recognize
definition of CTM handleable is necessary. If a function is the same language but locate on different configurations.
CTM handleable, its limiting evolved states are CTM Therefore, whether a function is CTM computable can be
computable. The concept is special occurs in CTMs andProved by constructing a CTM to compute it and
not appear in TMs, which will consider in detail in next returning unique coded strings at the sense of
section. computational history convergency.

CTM computable has two meanings: usual arithmetic ~ Coded descriptions can greatly enhance the described
operations on reals and the transformations of machin@bility of machines. For example, if we proof that a
coded descriptions. On the former, the inputs can achiev€omplex functiong = 3, (R—ri),RVri € R is CTM
(not approximation) the outputs according to the computable, we only need to proof function
computations of CTMs at the sense of convergency. For]cl < T, >f>< ri—rp > is CTM computable (the
example, we construct a CTM that takes an input.qnclusion is proved by the construction MEupstruc),
<Tyf2>Trgr e R, and returngy —r». Note that the then we proof the function f, <
substraction is assumed as true substraction: 5
=Ty I1> 15 Msubstruct , Msubstruce >=>< Msubstrucll + Msubstruce > is

rl_rzz{ = CTM computable (it is easily to construdl,qgq Since
0 f<rz adding and subtraction are similar). Finally, we construct
Let Meupstractb€ @ CTM that can do this work. Its CEG can coded functionp :< f1, f, >. If there exists a CTM with

be shown in Fig. 7, where € (0,max(r1,r2)) and related the inputs of< fy, f2 > that can outputs the unique string
transition functions are as follows: by the transition functions ofp, function ¢ is CTM

computable.
55 (G, mN) = (g1, M—1,n—1,RR) me (0,ry),ne Actually, substraction of real is CTM computable,
(0,r2] addition is the opposite of the operation of subtraction,
and multiplication is the result of continuous additions.
& : (Gk,0,n) = (Creject; 0,0,R,R) ne€ (0,rz—r1] Hence, functionp is CTM computable. There are many
works that are not CTM computable. Divergent iterative
03 : (Ok, M, 0) = (Qaccept 1 —r2,0,L,L) me (0,ry —ry] process is an example.
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Algorithm for CTM M¢1 construction:
Mapping reducible at the sense of CTMs is  CTMM¢:=“Oninputw=x:
considered whcih can extend the proof directions of CTM  Output x, then accept.” u
computable.

Definition 9.CTM < Ma > is mapping reducible to CTM

< Mg >, written < Ma ><m< Mg >, if there is a CTM e assume such a CTM is existent and is denoted by
computable function f>¢r, — Zer) such that forevery ¢, The mapping fromf, to f; is clearly exist by their
w, geometric meanings such that for ang [0, ], we have

AP / I
< Mj, ' >input 0= < Mg, (@) >input f(w) <M}y, Y Sinput y>< Mi, fa(y)’ >input ()

The functionf is called the reduction from machine
< Mp > to < Mg >, where the meaning of
< Mjp, @ >input  is that the coded machine Ma >
computes the stringw (w can be a function) and
generates a new stririg’ on its tape wher< M > halt at .
the sense of computational history convergendj.and 4 lterative technology based on CTMs
Ma locate in different configurations but recognize the
same language. The concept of iterations appears in computational

Actually, Definition 9 is recursive. It is possible to mathematics and the theory of programming. Almost all
construct a CTM to compute or decide a reductionalhigh-level programming languages support iterations. The
function f. For example,< Ma > and < Mg > in solution of many mathematic approximation problems
Definition 9 may be the machines to computing anotherneeds iterations. However, iterations It are not TM
reductional functions. If a CTM computable problem is computable. In real-world, computers can handle
reducible to another problem, which is proved if the approximate and iterative computationsiinHence, TMs
original problem is CTM computable. The following should have an ability to do and do better the works since
theorem can illustrates this ideal. TMs are a class of platform-independent theoretical

models. However, their description abilities do not match
Theorem 4Let < Ma > and < Mg > be machines to ysual computers. It is unreasonable that TMs are models
compute functions;fand %, denoted as< Ma, f1 > and  of this class of computations. The proposed CTMs are the
< Ma, f2 >, respectively. Functionifis CTM < Ma > expansions of TMs, which can deal with these issues.
computable if< Ma ><yn< Mg > and < Mg > is CTM  Therefore, the computable properties of iteration
computable. problems under CTMs are discussed in this section,
which can as a classical example of CTM applications.

The process of iteration in numerical calculations is
considered. It takes an initial point and an iterative
formula. Then, let the obtained solution be the next initial
point and the process keeps iteration until the fixed point
is approximated. The computation ends when the adjacent
approximative solutions satisfy a precision requirement.

This section introduces CTM to compute the iteration

Then, functionf,(y) = coqy), y € [0,7] is also CTM
computable according to Theorem 4.

Proof. We assume thak Mg, fp > is CTM < M >
computable and functiofi is the reduction fromx Ma >
to < Mg >. We construct a new CTMN to compute
< Ma, f1 > such that machin®&l can halt with just code
<< Mg, f3 >*> on its tape.

Algorithm for CTM N construction:

CTM N:="On inputw =< Ma, f1 >: problems of system linear equations, which can make
stepl: According to reductional functiof, we have better understanding for the significance of CTM

f (w) =< Mg, f, >. Run machine< Mg, f, > and output computable compared with considering simple iteration
<< Mg, f5 >*> if < Mg, f, > machine halt at the sense problems. The key problems to prove iteration

of limit. computability is that the concept of convergence and a
step2: Run machine< M > with the input type of fixed-point theorem can be described by CTMs.
<< Mg, f5 >*> and output whatever M > outputs.” On the former, we define n-dimensional real value vector

as the input of CTMs. All these CTMs constitute a space.
Then, the concepts of distance, convergence can be
Obviously, if < Ma ><m< Mg > and fz is CTM < defined. On the latter, we can use CTM recursion theorem

Mg > computable, therf; is Ma computable. O to get the definitions.

An example of the proof for CTM computable by using It is necessary to ensure convergence and fixed-point
reduction is proposed. By considering a functifaiix) = theorem. If the computations of a CTMliteration are
X, X € [-1,1], we construct CTMVIf; as follow: convergence and satisfy the fixed-point theorem, the

Obviously, f; is a CTM computable function. Let iteration process is CTMVieration handleable. Its limit
another function befy(y) = cody), y € [0, which  case is CTM Mieration computable. Otherwise, the
computable property is not clear and the work of iteration process is neitheMieration COmputable nor
constructing a CTM to compute ‘cos’ is also complicated. Mieration handleable.
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Theorem 5(Recursion theorem in CTM) Let T be a CTM Theorem 6(Fixed-point theorem in CTM) Let CTM be
that computes a function:ti1y x Z&ry — 2w then  a complete metric space, < My, w >€ CTMgn, CTM <
there exists a CTM U that computes a functiarsii,, — Mr, w > possesses unique fixed-point such that
Z&rm for everyw, such that <M. W >—< M, <M, 0" >>
u(w) =t(<U,w>) The proof is abbreviated since it is similar to that of the
fixed-point theorem in mathematic.

This section introduces an example of solving a linear
system equation

The proof is is abbreviated since it is similar to the
recursion theorem in TMs 3[. Recursion theorem
indicates that CTMs can output the descriptions of

themselves and continuous perform a computation by n .

these descriptions. Hence, any complex CTM can be D aiXj=b,i=12...n

described by recursive coded methods. Theorem 5 is the =1

basis of the following definitions. by constructing a CTMMieration t0 compute it. The
‘@’ is used to denote a possible string in a CTM. For equation can be denoted by the form

any X = (x1,Xg,...,%)) € R", there exists a CTMV that n

takes w = x1X2...X, as the input, which is written as =S (&) —aij)xj+b,i=12....n

< M, w >. All of these CTMs constitute a new complete i
space that is calle@T Mgn Space.

The concept of distance @T Mgn Space is similar to
Euclidean distance. For any stringg = x3X2...x, and

1

If m; = & — ajj is hold, the iterative scheme can is
represented as

Wy = Y1Y2...Yn, We can obtaink M, w; >, < M, >€ Wy O “ .
CTMgn. The distance inCTMgn space is defined as X = ijxj tb,i=12....n
follows: =1
(<M, >, <M, >) =< Msqrt, < k=0,1,2,...
g oo R s The CTM Mieration Can be constructed recursively by
Msuni=1 to n)» < Msquare < Msub, Xi —¥i >>>>. Theorem 5. Firstly, we constru€tT My, (it is similar to

Msubstrac) to computem;j. SecondCT Mgy is constructed

to computemjxgk). Finally, CT Msymis introduced to deal
p(<M, @ > <M, >) = with z'j‘:lmjxgk) +b;. MachineMiteration can be executed
by inputting the coded descriptions GfT Mgy, CT Myyp,

CT Msum and their corresponding inputs on the tapes of
It is easy to prove that they satisfy distance axioms. Miteration- Fig- 8 shows the structure dfiteration.

Definition 10Let CTMw» be a metric space and Proposition literative computation to solve system
<M, >, n=12... be CTMs in CTMn space. A linearequations is CTM handleable if it satisfies Theorem

If x,y € R, we have the distance

< Mab5,< Msub,X7y>> .

CTM < M, w, > is convergent te< M, >, written as 6 (Fixed-point theorem in CTM).
i M M Proof. If the iterative computation does not satisfy
A, <M, 0h >=< M, >, fixed-point theorem, then the computation may divergent
_ within two situations. First, the computational history
if p(<M,h > <M,w>) < M,0> may be finite by embedding a controllable CTM such that

Miteration Can machine halt at a given length. However, the
fact violates the meaning of approximation.

Second, many convergent values lead to different
approximate values, which can generate different
computational histories. Hence, the iterative computatio
is not CTM handleable by Definition 8. The proposition is

Definition 11.Let CT M be a metric space. Function
< Mt,w >: CTMgn — CT Mgn is a CTM with the ability
of contraction (it is similar to the contraction operator in
mathematic) if 3 0, 0 < 86 < 1

V <M, >,<M,wp >€ CT Mgn, we have

Mr, < M Mr,< M < proofed. o . B
P Mr, <M, @ >>, <Mr, <M, @ >>) < Actually, if the iterative computation satisfies
< Mmnu, 8 #0(< M, @y >, < M, oy >) > fixed-point theorem, related results are necessarily

convergent, uniqueness, and reasonable approximation.
Definition 12.Let CT Mkn be a metric space< Mr, w >: According to algorithm 6, if halting judgment conditi@n
CTMgn — CTMgn. CTM < M, w* > is called the fixed- is given, Mieration iS necessarily machine halt and the
point of < Mr,w >, if there exists a CTM< M, w* >¢€ length of the unique computational history is finite.

CT Mgn such that According to Definition 8 (CTM handleable), iterative
computation to solve system linear equatiorMigeration
<M, w" >=<Mr, <M, 0" >> handleable.
@© 2014 NSP
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Algorithm for Miteration cONstruction:

CTM Miteration:="On input w = wy, wy, w3, B, ws, ws, Wy,
B, wy (‘B’ means no initial input on the tape):

stepl: Copy In/Output tape to d-tape3 (sav¥), delete
checked symbole’.

step2: Format c-tape4, copy In/Output tape to c-tape4,
delete checked symboé”, add checked symbol\’ on

x1( for middle computation).

step3: In c-tapel, run machine CT Mgy > with the data
of c-tapel and d-tapel by checked symbdl(compute
m;j). Copy the resulc CTM, ,, > and currenk; in
c-tape4 to c-tape2 and separate them with symol *
step4: In c-tape2, run machine CT My, > with the
right information (computen; ~x§k>). Copy the result
<CTM,, > to c-tape3, the subscriptcomes fronx;.
Initial c-tape2.

stepb: If not move ‘o’ in In/Output tape to blank, go to
stepb, else go tetepr.

step6: If * A" in c-tape4 does not removed to blank, then
consider c-tapel, c-tape4, and d-tape2, movehe step
to the right, go tostep3, else copyy; in d-tape3 to c-tape3
by checking @'. In c-tape3, run machine: Mgym > with

the right information (compute

xi<k+l> = z?zlmjx?() +by). Replace current; in

In/Output tape with the resutt CT M,,>. Move all
current '’ one step to the right. Initial c-tape3. The
symbols A’ in c-tapel and d-tapel are moved one step to
the right and locate on the right first symbol of ‘$’. Go to
step?.

step?: Copy In/Output tape and d-tape3 to c-tape5 and
run < Mjyq >. If the result< Mjud > satisfies the
precision requiremers, output In/Output tape (display
approximatiork* 1), then machindieration halt, else
initial all tapes except In/Output tape, gostepl.” O

iteration

Tape function

[m, ]

[m"j Dcﬁ'k)] w Hx, > c-tape 2
n
[zm:/ L—EL;,{) +b‘] ) <CT}%HI > '<CTMM >, b> c-tape 3
7 Middle
computations c-tape 4
[61'/] $0,,-9, dtapel
[ b i ] d-tape 2
(k+1) In/Output
[x;" ] ane
[x[( ] d-tape 3
Halting T
judgment = CIM ,;,<CIM ., x""#x" >H#e > c-tape 5

Fig. 8: Structure of CTMMjteration-

Proposition 2If iterative computation to solve system
linear equations is CTM handleable andiidyhtion Can
machine halt witre = 0, it is CTM Meration COMputable.

Proposition 2 is obvious and the proof is abbreviated.

5 Conclusion and future works

This paper deals with a class of time-independent
continuous Turing machines (CTMs) by extending from
homologous discrete counterpart to continuous. Some
equivalent proofs between CTMs and TMs and the
constructive algorithms in the sense of limitations are
given. The important concepts such as CTM, CTM
handleable, CTM computable are defined, which provide
an unified framework of computable theory for real
numbers (real functions) computations.

If the state graphs of TMs are using in CTMs, the fact
will generate infinite configurations and the incomplete
information descriptions. Hence a graph based
representation methods CEGs are proposed, which can
describe infinite configurations in CTMs by finite
elements and can effectively present the behaviors of
CTMs.

On the other hand, machine description with recursive
methods is proposed and a class of machine spaddzn
is defined to discuss the approximate problemsRih
Then, some basic concepts of approximations such as
convergence of machine computation, distance in
machine spac€T Mgn, and Fixed-point theory in CTM
etc, are given. Finally iteration approximate computagion
in solving system linear equations are proved to be CTM
handleable or computable.

Future works will consider the complexity theory in
CTMs. Researchers have discovered an elegant scheme to
classify a problem according to there computational
difficult. Hence, we will use CTMs as measure tools to
analysis algorithmic time complexity and space
complexity.
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