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Abstract: Contemporary computer theory is governed by the discretization of continuous problems. Classical Turing machines (TMs)
are originally built to solve computation and computability problems, which mainfeature is discreteness. However, even some simple
numerical calculations problems, e.g., iterations inR

n, generate difficulties to be described or solved by constructing a TM. Thispaper
explores the computability of continuous problems by proposing a class ofcontinuous Turing machines (CTMs) that are an extension
of TMs. CTMs can be applied to the standard for the precision of algorithms. First, computable real numbers are precisely defined by
CTMs and their computations are regarded as the running of the CTMs. CTMs introduce the coded recursive descriptions, machine
states, and operations with the characters of computer instructions in essence compared with usual computable continuous models.
Hence, they can precisely present continuous computations with the formof processes. Second, the concepts of CTM computable
and CTM handleable are proposed. Moreover, the basic concepts on approximation theory such as convergency, metric space, and
fixed-point inRn are defined in a new space CTMRn. Finally, an iterative algorithm is shown by constructing a CTM to solve linear
equations.
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1 Introduction

The development of computability theory in information
science begins with the generation of recursive functions
that depend on logical theory. These recursive functions
are considered as the precise definitions of intuitive
algorithms [1]. Turing describes computations by a class
of mathematical machines (theoretical computers),
usually called Turing machines (TMs). The machines
precisely present the concept of computations with the
form of processes by introducing machine states and the
operations with respect to the characters of computer
instructions. TMs are equivalent to recursive functions.
Hence, computability problems are equivalent to Turing
computability [2].

A theory is said to be an systematic approach if its
deduction and reasoning depend on a standard
mathematical model. Computations are model-based
processes in the solution of a given calculated problem.
However, the existing TM computability theory cannot
properly presents computable real functions since TMs
are discrete in essence [3,4]. Thereafter, some
mathematical models and approaches are developed to

analyze the computability of real numbers. Mazur [5]
defines computable real functions by the proposed
sequence computability. Kreitz and Weihrauch [6,7] take
into account the presentation of real number
computability by introducing type-2 theory of
effectiveness (TTE), which is based on the theory of
representations and is an approach of computable
analysis. Edalat [8,9,10,11] studies computable real
functions by domain theory.

Many constructive analysis methods are also
proposed. Moore [12] proposesµ− hierarchy to interpret
recursion theory on reals and constructs flowcharts of
continuous time to handle real number computability and
halting problems. Doraszelski and Satterthwaite [13]
define computable real numbers by the established
Markov arithmetic. Blum, Cuckeret al. [14,15] analyze
the computable problems of real numbers by constructing
real-RAM models. However, the fact is that not all real
number computability that are described above are
equivalent. For example, Banach-Mazur computability is
not equivalent to Markov computability for computable
real numbers [16]. On the other hand, the described
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theories and models are difficult to compatible with the
classical model TMs. Hence, this paper attempts to
construct a class of extension TM to deal with real
number computability.

Numerical analysis involves the methods for real
number calculations. However, it does not consider
computability problems. Different computational models
can obtain inconsistent results on whether a real number
problems is computable. For example, a serious distortion
or an entire wrong conclusion may be obtained if the real
numbers computability is considered by TMs. Hence,
discrete machines do not properly demonstrate real
number computability. On the other hand, although the
theory of numerical analysis makes great achievements in
the past, its developments necessarily need a reliable
computable theory.

This paper begins with an extension from discrete
TMs to continuous TMs. Then, a class of autonomous
continuous Turing machines (CTMs) is proposed in
section 2. The rationality by using CTMs to explore the
computability of real numbers is considered in section 3.
CTMs have mainly two strengths compared with the
usual models. Firstly, the classic methods of TMs deal
with the computations of natural numbers, the sets of
natural number, and the arithmetical functions. A CTM
covers continuous computations and include discrete
computations. Second, it is realistic and feasible since the
concept of computable is defined by constructing CTMs.
An algorithm is said to be computable if a CTM can be
constructed for a certain input to reach an output at finite
steps.

CTMs have simple structures, basic operations, and
precise descriptions of computations in the form of
processes. A CTM series with respect to greater power
can be constructed by an iterative or recursive
construction of CTMs. Iterative technology based on
CTMs is considered in section 4, which demonstrates an
approach to prove CTM-computable and to explain how
to construct a complex machines. Finally, a typical
example is given to illustrate real function computability,
which can be regarded as a methodology to solve a class
of computable problems. In section 5, we state the results
of this paper.

2 Extension: discrete TM to continuous TM

The simplest way for a TM to compute four arithmetic
operations is that the representation of numbers only uses
‘0’ [ 3], where notation ‘0’ is a character in the tape of
TMs, which is distinguished with the numerical zero.
However, the representation method can lead to the
increase of storages. Importantly, by considering iterative
computations, a self-iterative TM can difficultly be
constructed since computations, e.g., iterations, cannotbe
easily represented by integers. Many researchers make
extensions from discrete models to continuous ones,
where continuous automatons, continuous Petri nets, and

Hybrid netset al [17,18] are proposed. These models do
not means that the number of new models is increase in
the series of computational models. Its purpose is to
correctly and easily present, solve, and analyze a class of
continuous problems. A good approximation generally
proves very valuably to solve a complex problem.
Therefore, an approximate method is considered in TMs
in this paper.

Generally, continuous models are time-related.
However, CTMs are regarded as time-independent. This
section expands TMs to CTMs by introducing an example
for a non-output and two-type nondeterministic TMM1
(Fig. 1(a)). First,M1 can be constructed by the following
algorithm.

Algorithm for M1 construction.
TM M1:=“On inputω = ω1,ω2: // ω1 andω2 represent
initial inputs of the two tapes, respectively.
DO {
step1: If there is a ‘0’ on tape1, then move it to tape2 or
retain it in tape1 in a random manner.
step2: If there is a ‘0’ in tape2, then move it to tape1 or
retain it in tape2 in a random manner.
}while .T.” //Notation .T. means that the logical condition
of the loop ‘while’ is always true. �

According to the view of machine computations, a
character ‘0’ inM1 can be considered as a certain mount
of resources. Hence, a single resource is represented by a
single ‘0’ and several resources are represented by
multiple ‘0’ (0∗) in M1. TMs are theoretical models of
computers. In a real-world computer, the number of ‘0’
can be represented as the amount of information. For
example, a single ‘0’ can be interpreted as 1G information
and ‘00000’ as 5G information.

Second, a transformation is considered to divide each
‘0’ into k equal parts. This new TM is denoted byMk

1 and
shown in Fig. 1(b). The world ‘block’ is assumed as an unit
of ‘0’ in initial configurations. Each block is divided into
k. The new unit that is onek-th of block is called ‘piece’.
For example shown in Fig 1, the initial configuration of
M1 (Fig 1(a)) leads to the configuration ofMk

1 (Fig 1(b)) in
which the resources are expressed in pieces.

Generally, the transition functions of multiple
nondeterministic Turing machine (MNTM) have the form

δ : Q×Γ K → P(Q×Γ k×{L,R,S}k),

where Q is the set of states,Γ is the tape alphabet,k is the
number of tapes, andP is power set. The expression

δ (qi ,a1, · · · ,ak) ∈ P(q j ,b1, · · · ,bk,L, . . . ,R),ai ,b j ∈ Γ

means that if the sate of a machine isqi and read-write
head 1 through k are reading symbolsa1 through ak,
respectively. The machine goes to one of possible states
q j and writes symbolsb1 through bk. Correspondingly,
transition functions directs each head to move left, right,
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Fig. 1: Transformation of a TM: (a) ordinary TMM1, (b)
transformed ordinary TMMk

1, represented for k=4, (c) state
graph ofM1, (d) evolve configurations forM1, (e) implied evolve
configurations in Fig(d), and (f) evolve configurations forMk

1.

or to stay put. By consideringM1 as an example and its
state graph shown in Fig 1(c), its evolutions contain three
types of transition functions:

δ1 : (qk,0,�) = (qk+1,�,0,R,R)

δm : (qk,α ,�) = (qk−1,α ,�,L,L),∀α ∈ Γ

δc : (qk,�,0) = (qk,0,�,S,S)

Symbol� ∈ Γ denotes that there has not a resource at
corresponding positions on the tape, i.e., blank. Now, we
considerMk

1 with an strategy for the segmentation of
resources. Its transition functions are similar toM1.
However, let the scale of its evolutions be the unit of
piece. For example,δ1, δm, andδc in M1 are represented
by the following functions combinations:

δ k
1 :

{

(qk,α,k−α) = (qk,α −1,k−α +1,S,S), ∀α = 1,2, · · · ,k
(qk,1,k−1) = (qk+1,�,k,R,R)

δ k
m : (qk,{α,�},�) = (qk−1,{α,�},�,L,L), ∀α = 1,2, · · · ,k

δ k
c : (qk,k−α,α) = (qk,k−α +1,α −1,S,S), ∀α = 1,2, · · · ,k

By consideringM1 and its evolved configurations
shown in Fig. 1(d), the execution of transition functionδ1
consists of removing a block from tape1 and adding a
block to tape2. Correspondingly, by consideringMk

1 and
its evolved configurations shown in Fig. 1(f), the
execution ofδ k

1 consists of removing a piece from tape1

and adding a piece to tape2. Hence, the evolved
configurations can be expressed in blocks (integer) or in
pieces (rational number ifk is finite). Let Ck

i be a
configuration that is expressed in pieces inMk

1 and
Ci = Ck

i /k be the corresponding configuration that is
expressed in blocks inM1. Obviously, the computational
processes ofM1 are included in the processes ofMk

1.
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The fact that transition functions of a k-type TM
execute simultaneously is denoted by(δiδ j · · ·δk), where
δi ,δ j , · · · , andδk are transition functions from tapei to k,
respectively. The structure ofMk

1, which can executeδ1 k
times simultaneously, is shown in Fig. 2. The execution of
δ1 in M1 equals the execution of(δ k

1δ k
1 · · ·δ

k
1) in Mk

1. We
can change a way to describe transferred processes by
introducing some new notations. It facilitates to discuss
the extension from discrete TMs to continuous TMs.

Let [δi \ δ j \ · · · \ δk] be a class of orderly executive
sequences of transition functions.

Let [δiδ j · · ·δk] be a class of synchronized executive
sequences of transition functions.

Let [δi ]
α = [(δi)

α ] be a class of special executive
sequences, which performance means that TM
implements transition functionδi total α times
simultaneously and removes or addsα piece resources in
its tapes to produce a new configuration, whereα is a
non-negative number.

Fig. 3(a) shows a set of possible transitions ofM1 that
are concerned with two block resources. In addition to
single execution ofδ1 or δ2, multiple transitions by the
execution of[δ1\δ2], [δ1]

2, and[δ2]
2 are also represented.

The possible transitions ofMk
1 for k= 4 are shown in Fig.

3(b). Mk
1 contains many and finite multiple transitions,

e.g.,[δ1]
3, [δ2]

2 and[δ2]
6. We apostrophe read-write head

and state alphabet ‘qi ’ for simplification. By observing
the execution of[δ1]

3, its transition process can be
expressed in pieces as:

tape1
tape2

[

1 4�
3� �

]

[δ1]
3

−−−>

[

� 2�

4 2�

]
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Or it can be expressed in blocks as:
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Furthermore, we can also describe in pieces as:

(5,3)
[δ1]

3

−−−> (2,6)

or express in blocks as:

(1.25,0.75)
[δ1]

0.75

−−−−> (0.5,1.5)

tape1
0 1

1

2

2
2δ

3

1][δ

2

2][δ

tape1

tape2

1δ

1δ
1δ

1δ1
δ

1δ
1δ

1δ

2δ
2δ

2δ

2δ2
δ

2δ
2δ 6

2][δ

0 4 8

0

4

8

(block)

(piece)

0 1

1

2

2

1δ

1δ
2δ

2δ

2

1][δ

2

2][δ
]\[ 21 δδ

tape1

tape2

0 1

1

2

2

αδ ][ 1

tape2

α−2

α

αδ −2
2 ][

(a)

(b) (c)

Fig. 3: From discrete to continuous turing machine: (a) graph of
resource transition ofM1 in Figure 1(a), (b) graph of resource
transition ofMk

1 in Figure 1(b) for k=4, and (c) graph of resource
transition ofM∞

1 , for k→ ∞.

The number of possible multiple transitions become
infinite if k tends to infinity. These transitions can be
denoted by an segment of a line between (2,0) and (0,2)
shown in Fig. 3(c). For example the description of the
following transition

(2−α,α)
[δ2]

β

−−−> (2−α +β ,α −β ),

implies that the configurations (2− α,α) and
(2− α + β ,α − β ) are expressed in pieces. Transition
function δ2 can be executedβ times from the

configuration (2−α,α) at a moment, whereα is any real
number in the range [0,2] andβ is called a transferred
quantity and satisfies the inequality 2− α ≤ β ≤ 2.
Similarly, if there is an execution of[δ1]

γ , thenγ satisfies
0 ≤ γ ≤ 2 − α. Multiple executions taken a form of
[(δ2)

β (δ1)
α ] are possible. TMsM1 and Mk

1 discussed
above belong to MNTM in essence. The defined
machines are recognizers [3] of languages in this paper if
there are not special remarks.

Lemma 1.Two-type nondeterministic TM M1 has an
equivalent five-type deterministic TM Md.

Proof. The ideal is make mutual simulations betweenM1
and Md. The fact thatM1 simulatesMd is simple since
deterministic TM M1 is an special case of
nondeterministic TMMd and we only needs to construct a
nondeterministic computational branch inM1.

On the other hand, ifMd is constructed to simulateM1,
Md needs trying all possible branches of nondeterministic
computations ofM1. The machineMd can be established
by constructing five tapes. As shown in Fig. 4, we assume
that every tape has a particular function. Tape 1 and 2 are
similar to the tapes inM1. They contain constant strings
that copy from the initial inputs ofM1. Tape 3 and 4 are
simulation tapes that maintain a copy from the tapes of
M1 for a branch of its nondeterministic computations. The
data in tape 3 and 4 contain evolved configurations at the
branch. The function of tape 5 is to generate the address
stringωaddressof nondeterministic computational branches
from the length one to length infinite, constantly.

Let Σ ∗ be an infinite set of all address strings, which
contains all possible branches of nondeterministic
computations. Any address string consists of finite kinds
of alphabets, which are connected with the number of
states. By consideringMd, its address strings consist of
three kinds of alphabets ‘1’, ‘2’, and ‘3’, which come
from the subscripts of the three states ofM1 (Fig. 1(c)).
Σ ∗ is countable according to Cantor’s theory since the
number of strings in some certain length is finite and the
union of denumerable countable sets is a countable set.

A list of Σ ∗ can be constructed by writing down all
strings of length zero, length one, length two and so on.
The total number of address strings can be expressed as
∑+∞

n=03n. We can easily make a mapping from any string
to n ∈ N. Not all the address strings are valid. For
example, address string ‘212’ is valid, which represents
that the current state isq2 which configuration is
displayed in tape 3 and 4. The next state isq1 that is
obtained by executingδm, whereδm is stored in controller
of Md. Then, the finally state isq2 that is obtained by
executing storedδ1. The process can be denoted by

q1
[δm\δ1]
−−−−−> q2. However, address string ‘233’ is invalid

since there not exists a transition function in the process
from stateq3 to q3 in Fig. 1(c). The existence of invalid
strings is reasonable since they can be considered as null
addresses. Proved process is just a constructive process,
we constructMd as follow:
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Algorithm for Md construction:
TM Md:=“On inputω = ω1,ω2,ω3,ω4,ω5 :
step1: Initial tape 1 and 2. Check correctness ofω1, ω2.
Tape 3 to 5 stay empty.
step2: Generate a stringωaddressin tape 5 according to
the rule of the increase of string lengths.
step3: Check the validity ofωaddressby checking
transition functional grid in controller. Ifωaddressis valid,
go tostep4, else go tostep2.
step4: Copy the data in tape 1 and 2 to tape 3 and 4,
respectively. Simulate the transition of states from the first
alphabet ofωaddressto the last one. Go tostep2.” �
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Fig. 4: Structure of five-type deterministicMd.

Lemma 2.Five-type deterministic TM Md has an
equivalent single-type deterministic TM Msd.

Proof. The ideal is make mutual simulations betweenMd
and Msd. The fact thatMd simulatesMsd is simple. We
only use any one of the tape inMd that can simulate the
single-tape ofMsd. The ideal is to show how to simulate
Md with Msd. Fig. 5 illustrates that single tape can be used
to represent five tapes.Msd simulates the functions ofMd
by storing their information on its single tape, where we
use symbol ‘B’ as a delimiter to separate different
work-spaces. Tape symbol with a small ‘∧’ above it is
used to mark the position of the head on the tape. These
new symbols have been added to the tape alphabet. In
other words,Msd contains virtual work-spaces and heads.
we constructMsd as follow:

Algorithm for Msd construction:
TM Msd:=“On inputω = Bω1Bω2Bω3B ω4Bω5 · · · :
step1: Msd puts its tape into the format and the formatted
tape containsB0̂0�B�̂��B�̂��B�̂��B ˆ· · ·
step2: Msd scans its tape from the left first ‘B’ in order to
determine the symbols under the virtual heads. ThenMsd
update its tape according toMd’s transition functions.
step3: WhenMsd moves virtual heads to the right onto
another ‘B’. It means that the corresponding head ofMd
has been moved onto the blank portion of the tape. Then,
it continuous the simulation as before.” �

Controller

SdM

B00ƶBƶƶƶBƶ0ƶB0ƶƶB1#2#Ă#123#Ă

single tape

Fig. 5: Structure of single-type deterministicMsd with a snapshot
in Fig. 4.

Lemma 3.Two-type nondeterministic TM M1 has an
equivalent single-type deterministic TM Msd

Proof. By Lemma 1 and 2, we have the conclusion. �

Lemma 4.Two-type nondeterministic TM Mk1 has an
equivalent single-type deterministic TM Mk

sd.

Proof. Two-type TMMk
1 can be expressed by 2k-type TM

Mk
1 with an unit of pieces, which is denoted by Fig. 2. We

assume that the unit ofMsd is also expressed in pieces. By
considering the 2k-type structure ofMk

1 shown in Fig. 2,
according to Lemma 3, the computations in the two tapes
of any level are equivalent to the computations ofMsd.
Hence, the computations of 2k-type Mk

1 equal the
computations ofk Msd machines.Mk

sd can be constructed
by combining the resources of the corresponding
positions of k Msd machines , where resources are
expressed in blocks. Hence,Mk

1 is equivalent toMk
sd. �

Lemma 5.Single-type deterministic TM Mksd has an
equivalent single-type deterministic TM Msd.

Proof. The fact thatMk
sd simulatesMsd can be achieved by

setting the parameterk = 1. UsingMsd to simulateMk
sd

needs little changes about the inputs ofMsd. A new wider
range delimiter is increased to separate piece work-groups
(a piece work-group equals five original work-spaces,
which is shown in Fig. 5). Thek piece work-groups are
combined by copying the initial data ofMsd total k times
to its single type in order of priority. Then, simulation can
be achieved by changing the unit of blocks into pieces
and the extended transition functions. �

Corollary 1.Two-type nondeterministic TM M1 has an
equivalent two-type nondeterministic TM Mk

1

Proof. By lemma 3, 4 and 5, we have the conclusion.�

Theorem 1.Single-type deterministic TM M∞sd has an
equivalent single-type deterministic TM Msd.
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Proof. M∞
sd can be constructed byMk

sd if k tends infinite.
We have its equivalent machineMsd by Lemma 4, where
the number of work-spaces tends infinite. Hence, the
mutual simulations between them are enabled. Of course,
the length of the single tape ofMsd is necessarily infinite
andMsd is a non-haltable TM in general sense. Note that
machine halt in general sense equals classical TM halt [3,
4]. The concept corresponds to machine halt at the sense
of convergence of computational histories. For example, a
machine is a non-haltable machine if the number of
resource divisions tends infinite. It has not acceptive and
rejective states in general sense since these states cannot
be achieved within a finite time. However, machine halt in
convergent meaning of computational histories is to
illustrates some important problems in CTMs. �

Theorem 1 guarantees that the division of resources
does not increase the power of TMs. Importantly, any TM
with resource division has an equivalent ordinary TM no
matter how many tapes it has and it is deterministic or
nondeterministic. This equivalency necessarily satisfies
machine non-haltable in theoretical sense. Actually, the
equivalency cannot be guaranteed in real-world hardware
environments. For example, infinite division of resources
is not possible by the bit restriction of computers.

Hence, a more general situations should be
considered. For example, we deal with the machines that
are similar toM∞

sd, which can machine halt in general
sense. These machines can achieve acceptive or rejective
states. The judgments of these states should based on the
length of computational histories since any simple
computation is infinite ifk tends infinite. In other words,
we consider the approximate calculation ofM∞

sd.
The classical computational history of a TM is usually

considered as the configurations of the TM. However, if
real number is tacked, any configuration may has an
infinite length. Hence, classical computational history
cannot be applied to describe the dynamic behavior of the
TM with real numbers. Hence, a class of computational
history with respect to state transitions is proposed.

Definition 1.A string denoted byωh = i jk · · · is said to be
a computational history if the string composed of the
subscripts of the existent states, where every two adjacent
characters i and j represents that the machine restores
the computation path from state qi to qj .

In this case, the computational history of an
non-haltable TM is a string with infinite length, even if
the TM has finite states. For example, the states and
transitions shown in Fig. 1(c) can generate computation
history with infinite length. Obviously, the length of
computational histories is finite if the machines are
haltable since the states of them are necessarily achieve
acceptive or rejective states.

Definition 2.A computational history of Mk is said to be
convergent if there exists an absolute difference between
the output of Mk and another output of Mk with the length
l of computational history, which is less than any givenε.

Definition 3.HALTTM = {〈MK ,ω〉 | MK is a TM that the
length of its computational history is finite or its
computational history is convergent}.

Theorem 2.TM M∞
halt has an equivalent single-tape

deterministic TM Mordinary (ordinary means that it is a
haltable TM).

Proof. The fact thatk tends infinite means that the number
of tapes tends infinite in unit piece. If the computational
history of M∞

halt is convergent, its approximate
computations allows that there exists a reasonable lengthl
of computational history for transition functions at the
sense of convergency. The evolution ofM∞

halt achieves
terminal states and the machine outputs approximate
computational results if the number of state transitions
comes tol .

By using Theorem 1, we can find a single-tape
deterministic TMMsd and make the length of its tape
tends infinite. The single-tape is divided into infinite
number of work-groups. Actually, it is just attach the
longitudinalk tapes inM∞

halt to the single-tape ofMsd such
thatMsd is equivalent toM∞

halt.
In this case, if the computational history ofM∞

halt is
convergent,Msd is haltable. The haltableMsd at the sense
of convergency is denoted byMordinary. Hence,Mordinary
andM∞

halt have the same computational results. �

Theorem 3.M∞
sd has not an equivalent TM M∞halt.

Proof. By using Theorems 1 and 2, we only need to proof
thatMsd is not equivalent toMordinary. Msd cannot achieve
acceptive or rejective states sinceMsd cannot ensure
machine halt. However,Mordinary has terminal states by
considering the approximation. Hence,Msd cannot
simulate the terminal states ofMordinary. Actually, Msd
can be regarded as the limiting state of the computations
of Mordinary. They are not equivalent in the sense of
convergence of computational history. �

Theorems 1 and 2 guarantee the rationality of the
extension from TMs to CTMs such that CTMs can be
formally defined. In this paper, single-tape deterministic
CTMs (ordinary CTMs) and the ordinary CTMs at the
sense of convergence in computational history are
defined. The former are models of computational theory
for real numbers and the latter are theoretical models of
real functional approximation. Other classes of CTMs are
equivalent to them.

Definition 4.An ordinary CTM is a 7-tuple,(Q,Σ ,Γ ,δ α ,
q1,qLIM

accept,q
LIM
re ject), where

1. Q is a finite and non-empty set of states.
2.Σ is the set of input alphabets. It comes fromR+ and

is expressed in blocks.
3. Γ = Σ

⋃

{♯,∧�, · · ·} is the set of tape alphabets,
where ‘ ♯’ is a symbol of work-space delimiter, ‘∧’ is a
symbol of virtual head, and ‘�’ is blank.

4. δ α : Q ×Γ → Q×Γ × {L,R,S} is the transition
function, whereα is transfer quantity that is defined as a
positive rational number.
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5. q1,qLIM
accept,q

LIM
re ject ∈ Q are the initial state, acceptive

state and rejective state, respectively.

If we have a CTM and want to construct a CTM
algorithm with the form ‘0’ that is similar to ‘0’ in TM,
we only need to guarantee thatΣ of the CTM comes from
the range(0,1] (a subset ofR+). α is defined as a positive
rational number since any transfer quantity of transition
functions is stored in the controllers of CTMs with the
form of data table. In other words,α is a fixed value and
is not a variable. Hence, the continuity of CTMs are
ensured since the data of computations of CTMs are real
numbers.

Definition 5.A haltable CTM at the sense of
computational history convergency is a 7-tuple,
(Q,Σ ,Γ ,δ α , q1,qLIM

accept,q
LIM
re ject), where

1. Q is a finite and non-empty set of states.
2.Σ is the set of input alphabets. It comes fromR+ and

is expressed in blocks.
3. Γ = Σ

⋃

{♯,∧�, · · ·} is the set of tape alphabets,
where ‘ ♯’ is a symbol of work-space delimiter, ‘∧’ is a
symbol of virtual head, and ‘�’ is blank.

4. δ α : Q ×Γ → Q×Γ × {L,R,S} is the transition
function, whereα is transfer quantity that is defined as a
positive rational number.

5. q1,qm
accept,q

m
re ject ∈ Q is the initial state, acceptive

state and rejective state when the length of computational
history is m, respectively.

The lengthm follows the hardware restrictions or the
computational precision demands. By considering
Definitions 4 and 5, the machinesM∞

sd is an ordinary CTM
andM∞

halt is a haltable CTM at the sense of convergency.
A configuration of CTMs is similar to that in TMs,

which contains three items: the current state, tape
contents, and head position. It is represented by the string
‘uqv’, where the current state is ‘q’, the current tape
contents are ‘u’ and ‘v’ and the current head position is
the first symbol of ‘v’. Any symbol in ‘u’ and ‘v’ comes
fromR+.

A configuration is a description of computations of a
TM at some moment. The number of configurations in a
haltable TM is finite. However, any change of states may
contain infinite configurations in a CTM by the influence
of the continuous. Hence, the configurations in TMs does
not suit to represent the evolution of the computations in
CTMs.

Importantly, state graphs cannot express computations
of CTMs in detail. Hence, the concept of configuration
evolution graphs (CEGs) is proposed to better describe
and analyze the configuration change of CTMs. Using
CEGs to describe some special CTMs without
considering the complex CTM construction algorithms is
hence available.

Definition 6.The CEG of a CTM(MCTM,C
q1
0 ) is a

digraph CEG(MCTM,C
q1
0 ) =(V,E), where Cq1

0 means the
initial configuration of MCTM, V={Ci | Ci is a

configuration of MCTM} and E={(C
q j
i ,δ α

j ,(C
q j
i )′)|

C
q j
i ,(C

q j
i )′ ∈ V,Ci

δ α
k

−−> C′
i} are sets of vertexes and edges

respectively, where(C
q j
i )′ is a successor of C

q j
i .

The CEG for CTM M∞
1 (M∞

1 comes fromMk
1) is

shown in Fig. 6. The infinite configurations and state
transition processes can be expressed in simple form with
finite elements (vertex, edge, and arc). The initial
configuration is denoted byC0 = [2 ♯ 0]q1, where q1
means thatC0 is just in the stateq1, the number of both
sides of ‘♯’ represents the total amount of the resources in
the two tapes. The range of changing of them isR+.
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Fig. 6: CEG for CTMM∞
1 (Mk

1,k→ ∞, Mk
1 is shown in Fig. 1(b))

However, the moments when different classes of
transition functions are executed are only recorded as the
vertexes of the CEG. The weights on arcs means transfer
qualities executed according to transition functions. The
amount of configurations in any two adjacent vertexes
with the transfer qualityα is infinite. The significance of
CEGs for CTMs are as follows:

–Infinite configurations are expressed by finite vertexes.
–The transition function grid in detail from the graph
can be obtained.

–The state graphs by folding vertexes and arcs
according to superscript of vertexes can be obtained.

3 CTM computable functions

A CTM computes a function by adding the inputs of the
function to its tape and halting with the outputs of the
function on the same tape at the sense of computational
history convergency.

Definition 7.A function f : Σ ∗
CTM → Σ ∗

CTM is a CTM
computable function if some CTMs for every inputsω can
halt with just ( f (ω))∗ on its tape at the sense of
computational history convergency, where( f (ω))∗

denotes precise values or theoretical values.
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Definition 8.A function f : Σ ∗
CTM → Σ ∗

CTM is a CTM
handleable function if some CTMs for every inputs can
halt with the unique finite length computational history
( f (ω))m on its tape by approximation, where( f (ω))m

denotes the approximate values of length m of
computational history.

The ‘unique’ in Definition 8 lies on hardware
restrictions or approximate precisions. CTM computable
functions contain classic TM computable functions since
the terminal states of TMs are special situations of the
limiting forms of CTMs. Discrete characteristics of TMs
make them to achieve the terminal states in finite times.

Any CTM computable function is necessarily a CTM
handleable function by Definition 7 and 8. In other words,
any CTM computable function can find an approximation
function in certain hardware restriction. Verse is not true.
The purpose to define CTM handleable functions is to
describe the numerical and function approximation
problems inR+. For example, by considering iterative
methods for matrix eigenvalues calculation, it may
possible for a computer to get an approximate value but a
precise value. Computers are hardware limited. It can
machine halt through the ‘overflow’. However, the
computations of the theoretical machine CTM is platform
irrelevant , which may not lead to machine halt since the
length of computational history may be infinite.

Hence, we cannot to say that the computational
processes of eigenvalues are CTM computable since the
machine cannot halt in precise value, and we cannot also
to say it is not CTM computable since computations
always access to precise value. Consequently, the
definition of CTM handleable is necessary. If a function is
CTM handleable, its limiting evolved states are CTM
computable. The concept is special occurs in CTMs and
not appear in TMs, which will consider in detail in next
section.

CTM computable has two meanings: usual arithmetic
operations on reals and the transformations of machine
coded descriptions. On the former, the inputs can achieve
(not approximation) the outputs according to the
computations of CTMs at the sense of convergency. For
example, we construct a CTM that takes an input
< r1, r2 > r1, r2 ∈ R+ and returnsr1 − r2. Note that the
substraction is assumed as true substraction:

r1− r2 =

{

r1− r2 r1 ≥ r2
0 r1 < r2

Let Msubstractbe a CTM that can do this work. Its CEG can
be shown in Fig. 7, whereα ∈ (0,max(r1, r2)) and related
transition functions are as follows:

δ1 : (qk,m,n) = (qk+1,m−1,n−1,R,R) m∈ (0, r1],n∈
(0, r2]

δ2 : (qk,0,n) = (qre ject,0,0,R,R) n∈ (0, r2− r1]

δ3 : (qk,m,0) = (qaccept, r1− r2,0,L,L) m∈ (0, r1− r2]

According to transition directions (the directions of arcs)
in Fig. 7, the CTMMsubstractcan achieve terminal states in
its limits. Although( f (ω))∗ as a CTM piecewise function
has two possible valuesr1− r2 and 0, it will halt with just
the value of( f (ω))∗ on its tape. Hence, functionf is CTM
computable according to Definition 7.

[ ]qkrr αα −21 #-[ ] 021#
q

rr [ ]qkrr 0#- 21

αδ ][ 1

αδ −2][ 1
r

2][ 1

rδ

[ ]qkrr 12#0 − [ ] acceptq
rr #012 −

[ ] rejectq
0#0

1][ 1
rδ

2δ

3δαδ −1][ 1

r

Fig. 7: Configuration evolution graph ofCTMsubstract.

On the latter, A TM can get its machine coded
description< TM > and can make computations for
coded description of other machines by self reference and
recursion theorem [3] in classic computation theory.
CTMs can also get coded descriptions by similar
methods. A CTM computable function is a class of
transformation of CTM coded descriptions. For example,
a CTM computable functionf takes an inputω =< M >
and returns another coded description< M′ >, which is

kept asf :< M >
δ
−>< M′ >, whereM′ andM recognize

the same language but locate on different configurations.
Therefore, whether a function is CTM computable can be
proved by constructing a CTM to compute it and
returning unique coded strings at the sense of
computational history convergency.

Coded descriptions can greatly enhance the described
ability of machines. For example, if we proof that a
complex functionϕ = ∑n

i=1(R− r i),R,∀r i ∈ R+ is CTM
computable, we only need to proof function

f1 :< r1, r2 >
δ
−>< r1 − r2 > is CTM computable (the

conclusion is proved by the construction ofMsubstruct),
then we proof the function f2 :<

Msubstruct1,Msubstruct2 >
δ
−>< Msubstruct1 + Msubstruct2 > is

CTM computable (it is easily to constructMadd since
adding and subtraction are similar). Finally, we construct
coded functionϕ :< f1, f2 >. If there exists a CTM with
the inputs of< f1, f2 > that can outputs the unique string
by the transition functions ofϕ, function ϕ is CTM
computable.

Actually, substraction of real is CTM computable,
addition is the opposite of the operation of subtraction,
and multiplication is the result of continuous additions.
Hence, functionϕ is CTM computable. There are many
works that are not CTM computable. Divergent iterative
process is an example.
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Mapping reducible at the sense of CTMs is
considered whcih can extend the proof directions of CTM
computable.

Definition 9.CTM < MA > is mapping reducible to CTM
< MB >, written < MA >≤m< MB >, if there is a CTM
computable function f: Σ ∗

CTM → Σ ∗
CTM such that for every

ω,

< M′
A,ω ′ >input ω⇔< M′

B, f (ω)′ >input f(ω)

The function f is called the reduction from machine
< MA > to < MB >, where the meaning of
< M′

A,ω ′ >input ω is that the coded machine< MA >
computes the stringω (ω can be a function) and
generates a new stringω ′ on its tape when< MA > halt at
the sense of computational history convergency.M′

A and
MA locate in different configurations but recognize the
same language.

Actually, Definition 9 is recursive. It is possible to
construct a CTM to compute or decide a reductional
function f . For example,< MA > and < MB > in
Definition 9 may be the machines to computing another
reductional functions. If a CTM computable problem is
reducible to another problem, which is proved if the
original problem is CTM computable. The following
theorem can illustrates this ideal.

Theorem 4.Let < MA > and < MB > be machines to
compute functions f1 and f2, denoted as< MA, f1 > and
< MA, f2 >, respectively. Function f1 is CTM < MA >
computable if< MA >≤m< MB > and< MB > is CTM
computable.

Proof. We assume that< MB, f2 > is CTM < M >
computable and functionf is the reduction from< MA >
to < MB >. We construct a new CTMN to compute
< MA, f1 > such that machineN can halt with just code
<< M′

B, f ′2 >
∗> on its tape.

Algorithm for CTM N construction:
CTM N:=“On inputω =< MA, f1 >:
step1: According to reductional functionf , we have
f (ω) =< MB, f2 >. Run machine< MB, f2 > and output
<< M′

B, f ′2 >
∗> if < MB, f2 > machine halt at the sense

of limit.
step2: Run machine< M > with the input
<< M′

B, f ′2 >
∗> and output whatever< M > outputs.”

Obviously, if < MA >≤m< MB > and f2 is CTM <
MB > computable, thenf1 is MA computable. �

An example of the proof for CTM computable by using
reduction is proposed. By considering a functionf1(x) =
x, x∈ [−1,1], we construct CTMM f 1 as follow:

Obviously, f1 is a CTM computable function. Let
another function bef2(y) = cos(y), y ∈ [0,π] which
computable property is not clear and the work of
constructing a CTM to compute ‘cos’ is also complicated.

Algorithm for CTM M f 1 construction:
CTM M f 1:=“On inputω = x :
Output x, then accept.” �

We assume such a CTM is existent and is denoted by
M f 2. The mapping fromf2 to f1 is clearly exist by their
geometric meanings such that for anyy∈ [0,π], we have

< M′
f 2,y

′ >input y⇔< M′
f 1, f2(y)′ >input f2(y)

Then, function f2(y) = cos(y), y ∈ [0,π] is also CTM
computable according to Theorem 4.

4 Iterative technology based on CTMs

The concept of iterations appears in computational
mathematics and the theory of programming. Almost all
high-level programming languages support iterations. The
solution of many mathematic approximation problems
needs iterations. However, iterations inR are not TM
computable. In real-world, computers can handle
approximate and iterative computations inR. Hence, TMs
should have an ability to do and do better the works since
TMs are a class of platform-independent theoretical
models. However, their description abilities do not match
usual computers. It is unreasonable that TMs are models
of this class of computations. The proposed CTMs are the
expansions of TMs, which can deal with these issues.
Therefore, the computable properties of iteration
problems under CTMs are discussed in this section,
which can as a classical example of CTM applications.

The process of iteration in numerical calculations is
considered. It takes an initial point and an iterative
formula. Then, let the obtained solution be the next initial
point and the process keeps iteration until the fixed point
is approximated. The computation ends when the adjacent
approximative solutions satisfy a precision requirement.

This section introduces CTM to compute the iteration
problems of system linear equations, which can make
better understanding for the significance of CTM
computable compared with considering simple iteration
problems. The key problems to prove iteration
computability is that the concept of convergence and a
type of fixed-point theorem can be described by CTMs.
On the former, we define n-dimensional real value vector
as the input of CTMs. All these CTMs constitute a space.
Then, the concepts of distance, convergence can be
defined. On the latter, we can use CTM recursion theorem
to get the definitions.

It is necessary to ensure convergence and fixed-point
theorem. If the computations of a CTMMiteration are
convergence and satisfy the fixed-point theorem, the
iteration process is CTMMiteration handleable. Its limit
case is CTM Miteration computable. Otherwise, the
iteration process is neitherMiteration computable nor
Miteration handleable.
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Theorem 5.(Recursion theorem in CTM) Let T be a CTM
that computes a function t: Σ ∗

CTM×Σ ∗
CTM → Σ ∗

CTM, then
there exists a CTM U that computes a function u: Σ ∗

CTM →
Σ ∗

CTM for everyω, such that

u(ω) = t(<U,ω >)

The proof is is abbreviated since it is similar to the
recursion theorem in TMs [3]. Recursion theorem
indicates that CTMs can output the descriptions of
themselves and continuous perform a computation by
these descriptions. Hence, any complex CTM can be
described by recursive coded methods. Theorem 5 is the
basis of the following definitions.

‘ω ’ is used to denote a possible string in a CTM. For
any x = (x1,x2, . . . ,xn) ∈ R

n, there exists a CTMM that
takes ω = x1x2 . . .xn as the input, which is written as
< M,ω >. All of these CTMs constitute a new complete
space that is calledCTMRn space.

The concept of distance inCTMRn space is similar to
Euclidean distance. For any stringsω1 = x1x2 . . .xn and
ω2 = y1y2 . . .yn, we can obtain< M,ω1 >,< M,ω2 >∈
CTMRn. The distance inCTMRn space is defined as
follows:

ρ(< M,ω1 >,< M,ω2 >) =< Msqrt,<

Msum(i=1 to n),< Msquare,< Msub,xi −yi >>>> .

If x,y∈ R, we have the distance

ρ(< M,ω1 >,< M,ω2 >) =

< Mabs,< Msub,x−y>> .

It is easy to prove that they satisfy distance axioms.

Definition 10.Let CTMRn be a metric space and
< M,ωn >, n = 1,2, . . . be CTMs in CTMRn space. A
CTM< M,ωn > is convergent to< M,ω >, written as

lim
n→∞

< M,ωn >=< M,ω >,

if ρ(< M,ωn >,< M,ω >)→< M,0>

Definition 11.Let CTMRn be a metric space. Function
< MT ,ω >: CTMRn → CTMRn is a CTM with the ability
of contraction (it is similar to the contraction operator in
mathematic) if ∃ θ , 0 ≤ θ < 1,
∀ < M,ω1 >,< M,ω2 >∈CTMRn, we have

ρ(< MT ,< M,ω1 >>,< MT ,< M,ω1 >>)≤

< Mmul,θ ♯ρ(< M,ω1 >,< M,ω2 >)>

Definition 12.Let CTMRn be a metric space.< MT ,ω >:
CTMRn → CTMRn. CTM < M,ω∗ > is called the fixed-
point of < MT ,ω >, if there exists a CTM< M,ω∗ >∈
CTMRn such that

< M,ω∗ >=< MT ,< M,ω∗ >>

Theorem 6.(Fixed-point theorem in CTM) Let CTMRn be
a complete metric space,∃ < MT ,ω >∈CTMRn, CTM<
MT ,ω > possesses unique fixed-point such that

< M,ω∗ >=< MT ,< M,ω∗ >>

The proof is abbreviated since it is similar to that of the
fixed-point theorem in mathematic.

This section introduces an example of solving a linear
system equation

n

∑
j=1

ai j x j = bi , i = 1,2, . . . ,n

by constructing a CTMMiteration to compute it. The
equation can be denoted by the form

xi =
n

∑
j=1

(δi j −αi j )x j +bi , i = 1,2, . . . ,n.

If mi j = δi j − αi j is hold, the iterative scheme can is
represented as

x(k+1)
i =

n

∑
j=1

mi j x
(k)
j +bi , i = 1,2, . . . ,n,

k= 0,1,2, . . .

The CTM Miteration can be constructed recursively by
Theorem 5. Firstly, we constructCTMsub (it is similar to
Msubstract) to computemi j . Second,CTMsub is constructed

to computemi j x
(k)
j . Finally,CTMsum is introduced to deal

with ∑n
j=1mi j x

(k)
j +bi . MachineMiteration can be executed

by inputting the coded descriptions ofCTMsub, CTMsub,
CTMsum, and their corresponding inputs on the tapes of
Miteration. Fig. 8 shows the structure ofMiteration.

Proposition 1.Iterative computation to solve system
linear equations is CTM handleable if it satisfies Theorem
6 (Fixed-point theorem in CTM).

Proof. If the iterative computation does not satisfy
fixed-point theorem, then the computation may divergent
within two situations. First, the computational history
may be finite by embedding a controllable CTM such that
Miteration can machine halt at a given length. However, the
fact violates the meaning of approximation.

Second, many convergent values lead to different
approximate values, which can generate different
computational histories. Hence, the iterative computation
is not CTM handleable by Definition 8. The proposition is
proofed. �

Actually, if the iterative computation satisfies
fixed-point theorem, related results are necessarily
convergent, uniqueness, and reasonable approximation.
According to algorithm 6, if halting judgment conditionε
is given, Miteration is necessarily machine halt and the
length of the unique computational history is finite.
According to Definition 8 (CTM handleable), iterative
computation to solve system linear equation isMiteration
handleable.
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Algorithm for Miteration construction:
CTM M iteration:=“On inputω = ω1,ω2,ω3,B,ω5, ω6,ω7,
B,ω9 (‘B’ means no initial input on the tape):
step1: Copy In/Output tape to d-tape3 (savex(k)), delete
checked symbol ‘•’.
step2: Format c-tape4, copy In/Output tape to c-tape4,
delete checked symbol ‘•’, add checked symbol ‘∧’ on
x1( for middle computation).
step3: In c-tape1, run machine<CTMsub> with the data
of c-tape1 and d-tape1 by checked symbol ‘∧’ (compute
mi j ). Copy the result<CTM′

sub> and currentx j in
c-tape4 to c-tape2 and separate them with symbol ‘♯’.
step4: In c-tape2, run machine<CTMmul > with the

right information (computemi j ·x
(k)
j ). Copy the result

<CTM′
mul > j to c-tape3, the subscriptj comes fromx j .

Initial c-tape2.
step5: If not move ‘•’ in In/Output tape to blank, go to
step6, else go tostep7.
step6: If ‘∧’ in c-tape4 does not removed to blank, then
consider c-tape1, c-tape4, and d-tape2, move ‘∧’ one step
to the right, go tostep3, else copybi in d-tape3 to c-tape3
by checking ‘•’. In c-tape3, run machine< Msum> with
the right information (compute

x(k+1)
i = ∑n

j=1mi j x
(k)
j +bi). Replace currentxi in

In/Output tape with the result<CTM′
sum>. Move all

current ‘•’ one step to the right. Initial c-tape3. The
symbols ‘∧’ in c-tape1 and d-tape1 are moved one step to
the right and locate on the right first symbol of ‘$’. Go to
step2.
step7: Copy In/Output tape and d-tape3 to c-tape5 and
run< M jud >. If the result< M′

jud > satisfies the
precision requirementε, output In/Output tape (display
approximationx(k+1)), then machineMiteration halt, else
initial all tapes except In/Output tape, go tostep1.” �

Controller

iterationM
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Fig. 8: Structure of CTMMiteration.

Proposition 2.If iterative computation to solve system
linear equations is CTM handleable and Miteration can
machine halt withε = 0, it is CTM Miteration computable.

Proposition 2 is obvious and the proof is abbreviated.

5 Conclusion and future works

This paper deals with a class of time-independent
continuous Turing machines (CTMs) by extending from
homologous discrete counterpart to continuous. Some
equivalent proofs between CTMs and TMs and the
constructive algorithms in the sense of limitations are
given. The important concepts such as CTM, CTM
handleable, CTM computable are defined, which provide
an unified framework of computable theory for real
numbers (real functions) computations.

If the state graphs of TMs are using in CTMs, the fact
will generate infinite configurations and the incomplete
information descriptions. Hence a graph based
representation methods CEGs are proposed, which can
describe infinite configurations in CTMs by finite
elements and can effectively present the behaviors of
CTMs.

On the other hand, machine description with recursive
methods is proposed and a class of machine spaceCTMRn

is defined to discuss the approximate problems inR
n.

Then, some basic concepts of approximations such as
convergence of machine computation, distance in
machine spaceCTMRn, and Fixed-point theory in CTM
etc, are given. Finally iteration approximate computations
in solving system linear equations are proved to be CTM
handleable or computable.

Future works will consider the complexity theory in
CTMs. Researchers have discovered an elegant scheme to
classify a problem according to there computational
difficult. Hence, we will use CTMs as measure tools to
analysis algorithmic time complexity and space
complexity.
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