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Abstract: In the current study, multivariate analysis methods of time series are used to simplify the search for correlations among

different oil wells. Gamma ray log of potassium, thorium, and uranium isotopes of three wells in Ras Fanar oil field in Gulf of Suez,

Egypt are taken as examples. we suppose gamma log as a time series, where time is replaced by depth. Autocorrelation and principal

component analysis were applied to such supposed time series to extract stratigraphic structure of the fields under study. The uranium

gamma log was the common factor between the three wells and anti-correlated to depth, while thorium log depends on the depth but

with less conclusive results. The results clearly show the applicability to model petro-physical data using multivariate analysis.
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1 Introduction

Earth is a unique and complicated system; its geological
structure often fluctuates smoothly over millions of years
[1,2]. To put our hands on hidden earth treasures, search
for elegant techniques to explore its internal structure is
required. Well-logging is a major source of our
knowledge about layers of earth’s crust. Well-log
exploration [3] introduces a standard approach for
deducing lithology from wells and many other different
properties of rocks, such as permeability, density, and
porosity.

Gamma ray log is a common method of using natural
radioactive elements to investigate correlation between
stratigraphic sections in a borehole [4]. The amount of
natural gamma radiation from a rock depends on its
internal structure, for example, shales ordinarily radiate
more gamma rays than other sedimentary rocks, such as
gypsum, sandstone, and limestone [5]. The reason for
such behavior depends on two factors, the radiative
isotope of potassium (K), which is a basic component of
clay, and the cation exchange capacity of clay to absorb
uranium (U) and thorium (Th) [6]. Gamma ray logs are

used mainly to define and quantify productive intervals by
identifying gamma ray energies (Eγ) of each radioactive
source [7].

In fact, investigating the correlations between
different stratigraphic sections of different oil wells is
confronted with the obstacle of huge data logs for each
borehole against depth. In order to simplify situation, the
depth of a well is treated as similar to time factor, and
each log as an event in a time series. In other words, time
series methods of multivariate analysis such as
autocorrelation and principal components are used to
analyze gamma ray logs to explore the correlations
between different oil wells. The long-term correlations
are explored in the dynamics of many physical,
technological, and natural systems [8,9,10,11,12]. They
are described by a divergent correlation time [13]. We
focus our application in Ras Fanar oil field located on the
offshore part of the western side of the Gulf of Suez,
Egypt as shown in figure (1).

This study discovers the applicability of gamma well
log modeling using multivariate statistics that can be
beneficial for geophysicists to develop economical
methods for oil and gas discoveries. This study will help
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Fig. 1: Location Map of Ras Fanar Oil Field Taken from Ref.[14]

the researchers to uncover the critical areas of principal
component analysis and autocorrelation function that
many researchers were not able to explore.

2 Data Set

The gamma ray log is obtained by recording the gamma
radiation in a well at constant intervals of depth. In the
current study, three wells are chosen from Ras Fanar oil
field namely: RF-A1, RF-A3, and KK 84-11. Three logs
are taken into consideration as follows:

–POTA (wt%): radioactive potassium element,
–THOR (ppm): thorium element,
–URAN (ppm): uranium element.

The units used in the estimation of each log is given in
brackets. Measurements are recorded in foot interval. We
focus only on complete logs for each well. For RF-A1
well, 665 log was obtained in depth 1694 to 2358 ft.,
while the RF-A3 well a 926 log was reported in the range
1789 to 2714 ft. In case of KK 84-11well, a 1495 record
was taken in the range, 1757 to 3251 ft. Figure (2)

summarize the variation of the three radioactive elements’
concentration with depth for each well.

3 Method of Analysis

3.1 Autocorrelation

The autocorrelation function is used to measure how
strongly on average each data point of a series is
correlated with another, which is k steps away in the same
series. In other words, it is the ratio of the autocovariance
to the variance of data [15]. In case of uncorrelated data,
the ACF within ±2/

√
N of zero (two standard deviations)

for about 95% of the k values, where N is the series
length. The ACF could be represented as,

ACF =
∑N−K

i=1 (xi − x̄)(xi+k − x̄)

∑N
i=1(xi − x̄)2

(1)

The ACF falls from a value of 1 at k = 0 to zero at
large k. The value of k at which ACF falls to 1/e ≈ 37%
is called the correlation time τc [15], which can be used to
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Fig. 2: The Variation of the Radioactive Potassium (POTA), Thorium (THOR), and Uranium (URAN) Concentration with Depth for

Each Well

explore long-term correlations within a series of well-log
data.

3.2 Principal Component Analysis

Principal Component Analysis (PCA) has a wide range of
applications in multivariate statistics [16,17,18,19,20].
PCA is an important tool to compress the size and extract
the most important information from the data set.
Consequently, it is used to simplify and analyze the
observations and the variables. PCA assumes new
variables called principal components (PC) which are
linearly dependent on the original variables. The new
variables are labeled factor scores, and can be represented
geometrically as projections of observations onto the PC
space [21].

let well depth is represented by I data points described
by J geophysical variables, so we have I× J matrix space,
X, whose components xi, j. The standardized data matrix

say, Ẋ is established from X by subtracting off the mean,
and dividing by the standard deviation of each column.

The correlation matrix C of matrix X, that defines all
relations between pairs of measurements is defined as

C =
1

n− 1
D−1/2 ·X ·XT ·D−1/2, (2)

where D−1/2 is a diagonal matrix equals to [1/σx j
].

The eigenvector of matrix C characterized by the highest
eigenvalue is the prevailing PC of the data set and is
labeled as (PC1). It represents the most significant
connection between the data dimensions. The largest
possible variance is associated by The PC1. The second
component abbreviated as (PC2) has the second largest
variance is considered to be orthogonal to the first
component.

The observations (depth) are donated in the principal
component space by their factor scores (red points in
figure (4)). The inter-correlation between variables are
represented as coordinates in the component space. In
PCA terms, such correlation is named a loading [21]
(blue lines in figure (4)). The circle of correlations is
defined as the circle that surround such loadings. As
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Fig. 3: The ACF of The Three Radioactive Elements for Each Well Calculated by Eq.1

variables get closer to the circle of correlations, it is easier
to be interpreted by the given components. On the other
hand, variables lose their significance as they approach
the center of circle of correlations [21]. The biplot graph
is used to interpret the results of PCA, which
characterizes the relationships between depth and
corresponding variables in the first two PCs.

4 Results and Discussions

Figure (3) shows the ACF for each radioactive element
with different color for each well. The additional
horizontal line at 0.37 of ACF axis represents the
accepted correlation time (τc). Consequently, the ACF of
higher τc with lag number (k) represents higher long term
correlation. For radioactive potassium, τc is persist up to
k ≈ 45 for RF-A3 well, while for KK 84-11 well τc takes
an intermediate value of k ≈ 20. On the other hand, τc for
RF-A1 well has a small value of k ≈ 6. This can make us
to draw a rough conclusion of a probably higher thickness
of clay layers within the RF-A3 borehole than other
wells. For thorium, the ACF takes another pattern where

τc shows that KK 84-11>RF-A3>RF-A1 at k ≈ 26, 13,
and 6 respectively. The small values of lag number k of
thorium compared to potassium may indicate to
uncommon distribution of thorium within layers of the
three wells. On the contrary, of potassium and thorium,
uranium shows a different pattern especially the RF-A1
well. The RF-A1 borehole has significant long-term
correlation up to k ≈ 58, followed by RF-A3 of k ≈ 41,
while the KK 84-11 has k ≈ 31. The higher values of k for
uranium may be an indicator for two reasons. The spread
distribution of uranium ores in different rock formations,
and/or its absorption within different layers as uranium
can be dissolved easily in ground water.

In order to confirm the ACF results, we give the PCA
of gamma ray log for the three wells together with depth
in figure (4). The PCA relies on singular value
decomposition of the correlation matrix C as given in
table (1). For statistical significance, two test are applied
to the correlation matrix [22]:

1.Kaiser-Meyer-Olkin test: measures the quality of data
to be studied by factor analysis. The minimum
accepted value is 0.5.
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Table 1: The correlation matrix C of the three wells calculated by eq.2.

Depth POTA1 THOR1 URAN1 POTA2 THOR2 URAN2 POTA3 THOR3 URAN3

Depth 1 -0.8372 0.16685 -0.6785 -0.2458 0.26632 -0.2516 -0.0088 0.46219 -0.4306

POTA1 -0.8372 1 -0.019 0.58212 0.33754 -0.1876 0.15479 -0.0115 -0.4517 0.50151

THOR1 0.16685 -0.019 1 0.09602 -0.1426 -0.1326 0.09764 -0.1794 0.20001 0.25035

URAN1 -0.6785 0.58212 0.09602 1 -0.1391 -0.1651 0.25639 -0.1775 -0.3154 0.38055

POTA2 -0.2458 0.33754 -0.1426 -0.1391 1 -0.1663 -0.1862 0.29779 -0.2002 0.23285

THOR2 0.26632 -0.1876 -0.1326 -0.1651 -0.1663 1 -0.0603 -0.0579 -0.161 -0.1733

URAN2 -0.2516 0.15479 0.09764 0.25639 -0.1862 -0.0603 1 -0.1108 -0.0592 0.09085

POTA3 -0.0088 -0.0115 -0.1794 -0.1775 0.29779 -0.0579 -0.1108 1 -0.1216 -0.1374

THOR3 0.46219 -0.4517 0.20001 -0.3154 -0.2002 -0.161 -0.0592 -0.1216 1 -0.1898

URAN3 -0.4306 0.50151 0.25035 0.38055 0.23285 -0.1733 0.09085 -0.1374 -0.1898 1
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Fig. 4: PCA of Correlation Matrix of Table (1) Between the Three Wells

2.Bartlett’s Test of Sphericity: examines the null
hypothesis that there are no correlations between
variables. We have applied such two tests to our
correlation matrix and it passed them.

The calculated PC1, and PC2 of the correlation matrix
between the three wells are given in figure (4).
Abbreviations are given for each well to facilitate their
location on the figure, i.e. numbers 1, 2, and 3 for RF-A1,
RF-A3, and KK 84-11 well respectively. The following
points can be extracted:

–As a general trend, the radioactive elements of the
same type are grouped together independently on the
well location. This is clear in potassium on the lower

right side, uranium on the upper right side, and
thorium on the left side.

–POTA1, URAN1, and URAN3 are negative
(anti)correlated with depth, as depth of well increase
their concentration in the borehole layers decreases.
This may be inferred as soil structure depends on
depth, as depth increases the soil density increase and
consequently the shale layers − which are less
dense− disappear.

–POTA3, and THOR1 are independent on depth, in
other words they are not positive or negative
correlated to depth.

–The distribution of data points (red points) are more
correlated to depth.
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–THOR2 is the shortest one of the loadings, accordingly
we cannot estimate its values by PC1, and PC2 with
acceptable accuracy if we lost some of its logs. On the
other hand, POTA1, and URAN1 have higher values of
loadings (longest), therefore could be easily estimated
with good accuracy.

To the best of our knowledge, there are no sufficient
studies that use autocorrelation, and PCA together to
explore well-log data as a time series. Subsequently,
comparison with previous studies have not been
conducted here. Different statistical methods are used
recently in literature. The authors of Ref. [23] used
non-parametric regression with multivariate analysis
approach to predict permeability with different well logs.
Guevara et al. [24] extended a data-driven sweet spotting
technique for shale to predict horizontal well production
using vertical well logs using functional Principal
Component Analysis. The authors of Ref. [25] used
wavelet transform for identification of the main sequence
boundaries from well-log data. While Srivardhan [26]
applied discrete wavelet transform and multi-scale
analysis for detecting stratigraphic interfaces and
correlating them between wells. Principal component and
cluster analysis are used to detect electrofacies of the
Kareem Formation in the Southern Gulf of Suez, Egypt.
The identified electrofacies exhibited good correlation
with the lithofacies that were elicited from core analysis
[27].

5 Perspective

In the current study, two methods of multivariate analysis
namely autocorrelation, and PCA are used to inspect
gamma ray log for long term correlation, and their cross
correlation. The results show that, the uranium gamma
log was the common factor among the boreholes under
study, and anti-correlated to depth, and can be used as a
benchmark in stratigraphic mapping. We would like to
stress that, the results obtained here are not
self-conclusive, but should be taken into consideration
with other petro-physical methods such as Seismic,
Neutron porosity, Density, Sonic, photoelectrical
absorption, resistivity logs etc. These logs together give
us a complete picture of the stratigraphic structure of a
field under study.
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